Misplaced Pages

AGM-86 ALCM

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An inertial navigation system ( INS ; also inertial guidance system , inertial instrument ) is a navigation device that uses motion sensors ( accelerometers ), rotation sensors ( gyroscopes ) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity (direction and speed of movement) of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors ( magnetometers ) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships , aircraft , submarines , guided missiles , and spacecraft . Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

#112887

93-621: The AGM-86 ALCM is an American subsonic air-launched cruise missile (ALCM) built by Boeing and operated by the United States Air Force . This missile was developed to increase the effectiveness and survivability of the Boeing B-52G and B-52H Stratofortress strategic bombers , allowing the aircraft to deliver its payload from a great distance. The missile dilutes an enemy's forces ability to respond and complicates air defense of its territory. The concept started as

186-453: A vibrating structure gyroscope to detect changes in heading and the odometer pickup to measure distance covered along the vehicle's track. This type of system is much less accurate than a higher-end INS, but it is adequate for the typical automobile application where GPS is the primary navigation system and dead reckoning is only needed to fill gaps in GPS coverage when buildings or terrain block

279-424: A B-52 on a radar display . Quail was designed in the mid-1950s when the normal attack profile for a strategic bomber was to fly as high and fast as possible to reduce the time the defenders had to respond to the aircraft before it flew out of range. This was effective against interceptor aircraft but of little use against surface-to-air missiles (SAMs), whose attack times were measured in seconds. This led to

372-420: A conventional or nuclear warhead. The LRSO program is to develop a weapon that can penetrate and survive integrated air defense systems and prosecute strategic targets. Both conventional and nuclear versions of the weapon are required to reach initial operational capability (IOC) before the retirement of their respective ALCM versions, around 2030. The technology development contracts were to be submitted before

465-518: A decoy. This would allow it to act as a decoy for much of its flight, and then deliberately approach a selected defensive site and attack it. As such, the program was renamed Subsonic Cruise Armed Decoy, retaining the SCAD acronym. For this role, the accuracy of the original INS guidance hardware was not enough. While a similar system was also used in SRAM, its shorter range and much shorter flight times meant

558-440: A flotation chamber to mount a gyrostabilized platform. These systems can have very high precisions (e.g., Advanced Inertial Reference Sphere ). Like all gyrostabilized platforms, this system runs well with relatively slow, low-power computers. The fluid bearings are pads with holes through which pressurized inert gas (such as helium) or oil presses against the spherical shell of the platform. The fluid bearings are very slippery and

651-694: A gimballed system. That is, it must integrate the vehicle's attitude changes in pitch, roll and yaw, as well as gross movements. Gimballed systems could usually do well with update rates of 50–60 Hz. However, strapdown systems normally update about 2000 Hz. The higher rate is needed to let the navigation system integrate the angular rate into an attitude accurately. The data updating algorithms ( direction cosines or quaternions ) involved are too complex to be accurately performed except by digital electronics. However, digital computers are now so inexpensive and fast that rate gyro systems can now be practically used and mass-produced. The Apollo lunar module used

744-455: A gyroscope system can sometimes also be inferred simply from its position history (e.g., GPS). This is, in particular, the case with planes and cars, where the velocity vector usually implies the orientation of the vehicle body. For example, Honeywell 's Align in Motion is an initialization process where the initialization occurs while the aircraft is moving, in the air or on the ground. This

837-488: A gyroscopic element (for maintaining an absolute angular reference). Angular accelerometers measure how the vehicle is rotating in space. Generally, there is at least one sensor for each of the three axes: pitch (nose up and down), yaw (nose left and right) and roll (clockwise or counter-clockwise from the cockpit). Linear accelerometers measure non-gravitational accelerations of the vehicle. Since it can move in three axes (up and down, left and right, forward and back), there

930-631: A long-range drone aircraft that would act as a decoy, distracting Soviet air defenses from the bombers. As new lightweight nuclear weapons emerged in the 1960s, the design was modified with the intent of attacking missile and radar sites at the end of its flight. Further development extended its range so much that it emerged as a weapon allowing the B-52s to launch their attacks while still well outside Soviet airspace, saturating their defenses with hundreds of tiny, low-flying targets that were extremely difficult to see on radar. Entering service in 1982 as part of

1023-610: A mixture of the two remains. In the summer of 1952, Dr. Richard Battin and Dr. J. Halcombe "Hal" Laning, Jr. , researched computational based solutions to guidance and undertook the initial analytical work on the Atlas inertial guidance in 1954. Other key figures at Convair were Charlie Bossart, the Chief Engineer, and Walter Schweidetzky, head of the guidance group. Schweidetzky had worked with von Braun at Peenemünde during World War II. The initial Delta guidance system assessed

SECTION 10

#1732780923113

1116-663: A result of the Strategic Offensive Reductions Treaty requirement to go below 2,200 deployed nuclear weapons by 2012, with the AGM-129 ACM chosen for disposal because it has reliability problems and high maintenance costs. Even with the SLEP (service life extension program), the remaining AGM-86s were to reach their end of service by 2020, leaving the B-52 without a nuclear mission. However, in 2012,

1209-408: A single transformer to power the platform. Some small missiles have powered the platform with light from a window or optic fibers to the motor. A research topic is to suspend the platform with pressure from exhaust gases. Data is returned to the outside world via the transformers, or sometimes LEDs communicating with external photodiodes . Lightweight digital computers permit the system to eliminate

1302-458: A strapdown system in its backup Abort Guidance System (AGS). Strapdown systems are nowadays commonly used in commercial and military applications (aircraft, ships, ROVs , missiles , etc.). State-of-the-art strapdown systems are based upon ring laser gyroscopes , fibre optic gyrocopes or hemispherical resonator gyroscopes . They are using digital electronics and advanced digital filtering techniques such as Kalman filter . The orientation of

1395-470: A terrain contour-matching guidance system ( TERCOM ) to fly to its assigned target. It can carry a single W80 thermonuclear warhead, with a yield of 5 or 150 kilotons. A modified variant of the B61 , it was mainly designed for use on ground and air-launched cruise missiles. The AGM-86C/D CALCM carries a conventional high-explosive payload rather than a thermonuclear payload. This is a fragmentation warhead in

1488-536: A wide range of applications. These products include "tuning fork gyros". Here, the gyro is designed as an electronically driven tuning fork, often fabricated out of a single piece of quartz or silicon. Such gyros operate in accordance with the dynamic theory that when an angle rate is applied to a translating body, a Coriolis force is generated. This system is usually integrated on a silicon chip. It has two mass-balanced quartz tuning forks, arranged "handle-to-handle" so forces cancel. Aluminum electrodes evaporated onto

1581-405: Is a linear accelerometer for each axis. A computer continually calculates the vehicle's current position. First, for each of the six degrees of freedom (x,y,z and θ x , θ y and θ z ), it integrates over time the sensed acceleration, together with an estimate of gravity, to calculate the current velocity. Then it integrates the velocity to calculate the current position. Inertial guidance

1674-459: Is a self-contained navigation technique in which measurements provided by accelerometers and gyroscopes are used to track the position and orientation of an object relative to a known starting point, orientation and velocity. Inertial measurement units (IMUs) typically contain three orthogonal rate-gyroscopes and three orthogonal accelerometers, measuring angular velocity and linear acceleration respectively. By processing signals from these devices it

1767-421: Is accomplished using GPS and an inertial reasonableness test, thereby allowing commercial data integrity requirements to be met. This process has been FAA certified to recover pure INS performance equivalent to stationary alignment procedures for civilian flight times up to 18 hours. It avoids the need for gyroscope batteries on aircraft. Less-expensive navigation systems, intended for use in automobiles, may use

1860-521: Is difficult without computers. The desire to use inertial guidance in the Minuteman missile and Project Apollo drove early attempts to miniaturize computers. Inertial guidance systems are now usually combined with satellite navigation systems through a digital filtering system. The inertial system provides short term data, while the satellite system corrects accumulated errors of the inertial system. An inertial guidance system that will operate near

1953-510: Is held annually in October in Germany. The publications of all DGON ISA conferences over the last more than 60 years are accessible. All inertial navigation systems suffer from integration drift: small errors in the measurement of acceleration and angular velocity are integrated into progressively larger errors in velocity, which are compounded into still greater errors in position. Since

SECTION 20

#1732780923113

2046-500: Is possible to track the position and orientation of a device. An inertial navigation system includes at least a computer and a platform or module containing accelerometers , gyroscopes , or other motion-sensing devices. The INS is initially provided with its position and velocity from another source (a human operator, a GPS satellite receiver, etc.) accompanied with the initial orientation and thereafter computes its own updated position and velocity by integrating information received from

2139-452: Is usually used to supplement other navigation systems, providing a higher degree of accuracy than is possible with the use of any single system. For example, if, in terrestrial use, the inertially tracked velocity is intermittently updated to zero by stopping, the position will remain precise for a much longer time, a so-called zero velocity update . In aerospace particularly, other measurement systems are used to determine INS inaccuracies, e.g.

2232-428: Is very accurate. However it is still relatively expensive due to the cost of the precision ground and polished hollow quartz hemispheres. Northrop Grumman currently manufactures IMUs ( inertial measurement units ) for spacecraft that use HRGs. These IMUs have demonstrated extremely high reliability since their initial use in 1996. Safran manufactures large numbers of HRG based inertial navigation systems dedicated to

2325-534: Is vulnerable to gimbal lock . The primary guidance system of the Apollo spacecraft used a three-axis gyrostabilized platform, feeding data to the Apollo Guidance Computer . Maneuvers had to be carefully planned to avoid gimbal lock. Gimbal lock constrains maneuvering and it would be beneficial to eliminate the slip rings and bearings of the gimbals. Therefore, some systems use fluid bearings or

2418-768: The Cold War led to cutbacks in this program, and its expensive maintenance eventually resulted in it being abandoned in favor of life extensions to the original ALCM. Examples of the AGM-86A and AGM-86B are on display at the Steven F. Udvar-Hazy Center of the National Air and Space Museum , near Washington, D.C. The ALCM traces its history to the ADM-20 Quail missile, which began development in February 1956. Quail

2511-598: The SA-2 Guideline missiles it faced. Flying at Mach 3, it quickly flew out in front of the bombers, reaching the missile site before the bomber flew into the range of the SA-2. While highly capable against known missile locations, SRAM could do nothing to defend against unknown sites, nor help with the problem of interceptor aircraft. To deal with these threats, Quail continued to be carried, typically in pairs, providing some defense against these other threats. However, by

2604-550: The Space Shuttle , open loop guidance was used to guide the Shuttle from lift-off until Solid Rocket Booster (SRB) separation. After SRB separation the primary Space Shuttle guidance is named PEG (Powered Explicit Guidance). PEG takes into account both the Q system and the predictor-corrector attributes of the original "Delta" System (PEG Guidance). Although many updates to the Shuttle's navigation system had taken place over

2697-417: The U.S. Army Research Laboratory reported a method to merge measurements from 10 pairs of MEMS gyroscope and accelerometers (plus occasional GPS), reducing the positional error by two thirds for a projectile. The algorithm can correct for systemic biases in individual sensors, using both GPS and a heuristic based on the gun-firing acceleration force. If one sensor consistently over or underestimates distance,

2790-460: The drift rate of the system was not a serious concern as long as the bomber could feed it accurate information just before launch, to "zero out" the drift. In contrast, SCAD was designed to fly over much longer ranges and slower speeds, resulting in longer flight times and increasing the problem with drift; even with the drift "zeroed out" just before launch, subsequent drift during the longer flight would accumulate to an unacceptable error. To provide

2883-562: The pressure reference system was developed to use one numerical integration of the angular rate measurements. Estimation theory in general and Kalman filtering in particular, provide a theoretical framework for combining information from various sensors. One of the most common alternative sensors is a satellite navigation radio such as GPS , which can be used for all kinds of vehicles with direct sky visibility. Indoor applications can use pedometers , distance measurement equipment, or other kinds of position sensors . By properly combining

AGM-86 ALCM - Misplaced Pages Continue

2976-509: The AGM-86C and a unitary penetrating warhead in the AGM-86D. The AGM-86C/D uses an onboard Global Positioning System (GPS) coupled with its inertial navigation system (INS) to navigate in flight. This allows the missile to guide itself to the target with pinpoint accuracy. Litton Guidance and Control , and Interstate Electronics Corporation (one of the companies acquired by L3Harris ) were

3069-661: The Air Force and Navy were ordered to collaborate under the "Joint Cruise Missile Project", JCMP, with the intention of using as many parts in common as possible. After considering the two designs, the Air Force agreed to modify the ALCM with the SLCM's McDonnell Douglas AN/DPW-23 TERCOM system, as well as using its Williams F107 turbofan engine. While the JCMP program was taking place, the B-1

3162-546: The Air Force had also issued a requirement for a version with a much longer 1,500 nautical miles (2,800 km; 1,700 mi) range. This would allow the bombers to launch their missiles from far off the Russian coast, placing it outside the range of the interceptors as well. To reach the intended range, this new Extended Range Version (ERV) would have to be lengthened to contain more fuel, or external fuel tanks would have to be added. Either change would make it too large to fit on

3255-411: The B model's TERCOM and integrated a GPS capability with the existing inertial navigation system computer . In 1996 and 1997, 200 additional CALCMs were produced from excess ALCMs. These missiles, designated Block I, incorporate improvements such as a larger and improved conventional payload (1,360 kg, 3,000 lb blast class), a multi-channel GPS receiver and integration of the buffer box into

3348-563: The B-52G with the 416th Bombardment Wing / 668th Bombardment Squadron, Griffiss Air Force Base, New York. Eventually, the missile was deployed across the entire B-52G and B-52H fleet throughout Strategic Air Command. Integration and successful flight testing did occur with the B-1B (involving moving the bulkhead between the forward and intermediate stores bay forward one position) - however the AGM-86

3441-832: The C-5A which utilized the triple INS configuration, similar to the 747. The KC-135A fleet was fitted with a single Carousel IV-E system that could operate as a stand-alone INS or can be aided by the AN/APN-81 or AN/APN-218 Doppler radar . Some special-mission variants of the C-135 were fitted with dual Carousel IV-E INSs. ARINC Characteristic 704 defines the INS used in commercial air transport. INSs contain Inertial Measurement Units (IMUs) which have angular and linear accelerometers (for changes in position); some IMUs include

3534-870: The Delco Electronics Div. of General Motors Corp. were awarded the joint contract for design and production of the Apollo Guidance and Navigation systems for the Command Module and the Lunar Module. Delco produced the IMUs ( Inertial Measurement Units ) for these systems, Kollsman Instrument Corp. produced the Optical Systems, and the Apollo Guidance Computer was built by Raytheon under subcontract. For

3627-665: The Department of Defense has awarded both Lockheed Martin and Raytheon Corporations with $ 900 million ($ 1.12 billion in 2023) to develop the LRSO. Contracts end in 2022, when the Department of Defense will select one design to continue further developments. The CALCM was retired on 20 November 2019, replaced in the conventional standoff strike role by the AGM-158B JASSM-ER . Aerodynamics#Incompressible aerodynamics Too Many Requests If you report this error to

3720-464: The Earth, since they did not know what direction the car was facing relative to the Earth when they felt the accelerations. However, by tracking both the current angular velocity of the system and the current linear acceleration of the system measured relative to the moving system, it is possible to determine the linear acceleration of the system in the inertial reference frame. Performing integration on

3813-561: The GPS receiver. The upgraded avionics package was retrofitted into all existing CALCM (Block 0) so all AGM-86C missiles are electronically identical. All variants of the AGM-86 missile are powered by a Williams F107 turbofan jet engine that propels it at sustained subsonic speeds and can be launched from aircraft at both high and low altitudes. The missile deploys its folded wings, tail surfaces and engine inlet after launch. AGM-86B/C/D missiles increase flexibility in target selection. AGM-86B missiles can be air-launched in large numbers by

AGM-86 ALCM - Misplaced Pages Continue

3906-515: The Honeywell LaseRefV inertial navigation systems uses GPS and air data computer outputs to maintain required navigation performance . The navigation error rises with the lower sensitivity of the sensors used. Currently, devices combining different sensors are being developed, e.g. attitude and heading reference system . Because the navigation error is mainly influenced by the numerical integration of angular rates and accelerations,

3999-576: The SRAM launchers and the extended-fuselage version would be too large to fit in the bomb bay of the new B-1 Lancer bomber. The Air Force intended to replace the original ALCM with the new version at some future date. The Navy was also in the midst of its own cruise missile project, the Sea-Launched Cruise Missile (SLCM), which ultimately emerged as the BGM-109 Tomahawk , which was similar to ALCM in many ways. In 1977,

4092-593: The USAF announced plans to extend the useful life of the missiles until at least 2030. To replace the ALCM, the USAF planned to award a contract for the development of the new Long-Range Stand-Off (LRSO) weapon in 2015. Unlike the AGM-86, the LRSO will be carried on multiple aircraft, including the B-52, the B-2 Spirit , and the Northrop Grumman B-21 . Like the AGM-86, the LRSO can be armed with either

4185-554: The V2 provided many innovations as an integrated platform with closed loop guidance. At the end of the war von Braun engineered the surrender of 500 of his top rocket scientists, along with plans and test vehicles, to the Americans. They arrived at Fort Bliss, Texas in 1945 under the provisions of Operation Paperclip and were subsequently moved to Huntsville, Alabama , in 1950 where they worked for U.S. Army rocket research programs. In

4278-501: The Wikimedia System Administrators, please include the details below. Request from 172.68.168.236 via cp1112 cp1112, Varnish XID 936112483 Upstream caches: cp1112 int Error: 429, Too Many Requests at Thu, 28 Nov 2024 08:02:03 GMT Inertial navigation system Integrals in the time domain implicitly demand a stable and accurate clock for the quantification of elapsed time. Inertial navigation

4371-517: The accuracy needed to attack the SAM sites with a small warhead, some system was needed to zero out the drift in-flight, and for this need, a radar-based TERCOM system was added. Development was approved in July 1970, and it was given the designation ZAGM-86A, the Z indicating its initial development status. As SCAD moved from the pure-decoy role to decoy-and-attack, this meant it would be able to carry out

4464-410: The adoption of low-level attacks, where the bombers would fly below the radar horizon so they could not be seen on ground-based radars. Quail, originally designed for the high-altitude mission, was modified with the addition of a barometric altimeter to allow it to fly at lower altitudes. Doing so seriously limited its effective range and flight time. In the early 1960s, the Air Force began to question

4557-429: The advent of spacecraft , guided missiles , and commercial airliners . Early German World War II V2 guidance systems combined two gyroscopes and a lateral accelerometer with a simple analog computer to adjust the azimuth for the rocket in flight. Analog computer signals were used to drive four graphite rudders in the rocket exhaust for flight control. The GN&C (Guidance, Navigation, and Control) system for

4650-435: The angular displacement, the system's current orientation is known at all times. This can be thought of as the ability of a blindfolded passenger in a car to feel the car turn left and right or tilt up and down as the car ascends or descends hills. Based on this information alone, the passenger knows what direction the car is facing, but not how fast or slow it is moving, or whether it is sliding sideways. Accelerometers measure

4743-590: The bomber force. B-52H bombers carry six AGM-86B or AGM-86C missiles on each of two externally mounted pylons and eight internally on a rotary launcher, giving the B-52H a maximum capacity of 20 missiles per aircraft. An enemy force would have to counterattack each of the missiles individually, making defense against them costly and complicated. The enemy's defenses are further hampered by the missiles' small size and low-altitude flight capability, which makes them difficult to detect on radar . The nuclear armed AGM-86B uses

SECTION 50

#1732780923113

4836-452: The car has turned and how it has accelerated and decelerated since, then they can accurately know the current orientation, position, and velocity of the car at any time. Inertial navigation is used in a wide range of applications including the navigation of aircraft, tactical and strategic missiles, spacecraft, submarines and ships. It is also embedded in some mobile phones for purposes of mobile phone location and tracking. Recent advances in

4929-460: The construction of microelectromechanical systems (MEMS) have made it possible to manufacture small and light inertial navigation systems. These advances have widened the range of possible applications to include areas such as human and animal motion capture . Inertial navigation systems are used in many different moving objects. However, their cost and complexity place constraints on the environments in which they are practical for use. To support

5022-519: The difference in position from a reference trajectory. A velocity to be gained (VGO) calculation is made to correct the current trajectory with the objective of driving VGO to zero. The mathematics of this approach were fundamentally valid, but dropped because of the challenges in accurate inertial guidance and analog computing power. The challenges faced by the Delta efforts were overcome by the Q system (see Q-guidance ) of guidance. The Q system's revolution

5115-776: The early 1950s, the US government wanted to insulate itself against over-dependency on the German team for military applications, including the development of a fully domestic missile guidance program. The MIT Instrumentation Laboratory (later to become the Charles Stark Draper Laboratory , Inc.) was chosen by the Air Force Western Development Division to provide a self-contained guidance system backup to Convair in San Diego for

5208-462: The end of 2012. In March 2014 a further three-year delay in the project was announced by the Department of Defense, delaying a contract award until fiscal year 2018. The House Armed Services Committee moved to reject this delay. The delay was caused by financial pressures and an uncertain acquisition plan, and allowed by the long remaining service life left for the AGM-86 and lack of urgent necessity compared to other defense needs. As of August 24, 2017,

5301-488: The first production Carousel systems for the early models (-100, -200 and -300) of the 747 aircraft. The 747 utilized three Carousel systems operating in concert for reliability purposes. The Carousel system and derivatives thereof were subsequently adopted for use in many other commercial and military aircraft. The USAF C-141 was the first military aircraft to utilize the Carousel in a dual system configuration, followed by

5394-534: The first time in March 1976, and its new guidance system was first tested that September. In January 1977, the missile was ordered into full-scale production. Compared to the models that entered service in the 1980s, the A-model had a distinctive look; the nose tapered sharply to a triangular point giving it a shark-like appearance, compared to the later models which had a more rounded conventional appearance. Meanwhile,

5487-419: The forks and the underlying chip both drive and sense the motion. The system is both manufacturable and inexpensive. Since quartz is dimensionally stable, the system can be accurate. As the forks are twisted about the axis of the handle, the vibration of the tines tends to continue in the same plane of motion. This motion has to be resisted by electrostatic forces from the electrodes under the tines. By measuring

5580-449: The gimbals, creating strapdown systems, so called because their sensors are simply strapped to the vehicle. This reduces the cost, eliminates gimbal lock , removes the need for some calibrations and increases the reliability by eliminating some of the moving parts. Angular rate sensors called rate gyros measure the angular velocity of the vehicle. A strapdown system needs a dynamic measurement range several hundred times that required by

5673-514: The guidance contractors for the C model. The CALCM became operational in January 1991 at the onset of Operation Desert Storm . Seven B-52Gs from Barksdale AFB launched 35 missiles at designated launch points in the U.S. Central Command 's area of responsibility to attack high-priority targets in Iraq . These "round-robin" missions marked the beginning of the operation's Air Force component and were

SECTION 60

#1732780923113

5766-451: The inertial accelerations (using the original velocity as the initial conditions) using the correct kinematic equations yields the inertial velocities of the system and integration again (using the original position as the initial condition) yields the inertial position. In our example, if the blindfolded passenger knew how the car was pointed and what its velocity was before they were blindfolded, and if they are able to keep track of both how

5859-563: The information from an INS and other systems ( GPS ), the errors in position and velocity are stable . Furthermore, INS can be used as a short-term fallback while GPS signals are unavailable, for example when a vehicle passes through a tunnel. In 2011, GPS jamming at the civilian level became a governmental concern. The relative ease in ability to jam these systems has motivated the military to reduce navigation dependence on GPS technology. Because inertial navigation sensors do not depend on radio signals unlike GPS, they cannot be jammed. In 2012,

5952-515: The last 30 years (ex. GPS in the OI-22 build), the guidance core of the Shuttle GN&;C system had evolved little. Within a crewed system, there is a human interface needed for the guidance system. As astronauts are the customer for the system, many new teams were formed that touch GN&C as it is a primary interface to "fly" the vehicle. One example of a popular INS for commercial aircraft

6045-566: The late 1960s the Air Force concluded "that the Quail was only slightly better than nothing." In January 1968, a new requirement emerged for a modern version of Quail for this new mission, the Subsonic Cruise Aircraft Decoy, or SCAD. SCAD was designed specifically to fit onto the same rotary launcher used by SRAM, allowing a single aircraft to carry multiple SRAM and SCAD and launch either at any time. This led to it being

6138-410: The linear acceleration and angular velocity applied to the system. Since it requires no external reference (after initialization), it is immune to jamming and deception. Gyroscopes measure the angular displacement of the sensor frame with respect to the inertial reference frame . By using the original orientation of the system in the inertial reference frame as the initial condition and integrating

6231-512: The linear acceleration of the moving vehicle in the sensor or body frame, but in directions that can only be measured relative to the moving system (since the accelerometers are fixed to the system and rotate with the system, but are not aware of their own orientation). This can be thought of as the ability of a blindfolded passenger in a car to feel themself pressed back into their seat as the vehicle accelerates forward or pulled forward as it slows down; and feel themself pressed down into their seat as

6324-624: The longest known aircraft combat sorties in history at the time (more than 14,000 miles (23,000 km) and 35 hours of flight). CALCM's next employment occurred in September 1996 during Operation Desert Strike . In response to Iraq's continued hostilities against the Kurds in northern Iraq, the Air Force launched 13 CALCMs in a joint attack with the Navy . This mission has put the CALCM program in

6417-413: The motion sensors. The advantage of an INS is that it requires no external references in order to determine its position, orientation, or velocity once it has been initialized. An INS can detect a change in its geographic position (a move east or north, for example), a change in its velocity (speed and direction of movement) and a change in its orientation (rotation about an axis). It does this by measuring

6510-537: The new Atlas intercontinental ballistic missile (Construction and testing were completed by Arma Division of AmBosch Arma). The technical monitor for the MIT task was engineer Jim Fletcher, who later served as NASA Administrator. The Atlas guidance system was to be a combination of an on-board autonomous system and a ground-based tracking and command system. The self-contained system finally prevailed in ballistic missile applications for obvious reasons. In space exploration,

6603-489: The new position is calculated from the previous calculated position and the measured acceleration and angular velocity, these errors accumulate roughly proportionally to the time since the initial position was input. Even the best accelerometers, with a standard error of 10 micro-g, would accumulate a 50-meter (164-ft) error within 17 minutes. Therefore, the position must be periodically corrected by input from some other type of navigation system. Accordingly, inertial navigation

6696-401: The platform keep the same orientation while the vehicle rotates around it). There are two gyroscopes (usually) on the platform. Two gyroscopes are used to cancel gyroscopic precession , the tendency of a gyroscope to twist at right angles to an input torque. By mounting a pair of gyroscopes (of the same rotational inertia and spinning at the same speed in opposite directions) at right angles

6789-502: The platform uses similar strip-shaped transformers to read the varying magnetic fields produced by the transformers wrapped around the spherical platform. Whenever a magnetic field changes shape, or moves, it will cut the wires of the coils on the external transformer strips. The cutting generates an electric current in the external strip-shaped coils and electronics can measure that current to derive angles. Cheap systems sometimes use bar codes to sense orientations and use solar cells or

6882-492: The precessions are cancelled and the platform will resist twisting. This system allows a vehicle's roll, pitch and yaw angles to be measured directly at the bearings of the gimbals. Relatively simple electronic circuits can be used to add up the linear accelerations, because the directions of the linear accelerometers do not change. The big disadvantage of this scheme is that it uses many expensive precision mechanical parts. It also has moving parts that can wear out or jam and

6975-686: The renewed American arms buildup during the Late Cold War , the ALCM so improved the capabilities of the US bomber force that the Soviets developed new technologies to counter the weapon. Among these were airborne early warning aircraft and new weapons like the MiG-31 and Tor missile system specifically to shoot down the AGM-86. The Air Force responded with the development of the AGM-129 ACM , which included stealth capabilities. The ending of

7068-490: The same 14 foot (4.3 m) length as SRAM, and the use of a fuselage with a triangular cross-section, which maximized the usable volume on the rotary launchers. The system was otherwise similar to Quail, using a simple inertial navigation system (INS) allowing the missile to fly a pre-programmed course. Soon after development began, it was noted that the very small nuclear warheads being developed at that time could be fit to SCAD without seriously affecting its performance as

7161-557: The same mission as SRAM, but from much longer range. This would reduce the need for a decoy. Accordingly, in June 1973, SCAD was canceled in favor of a system dedicated purely to the long-range attack mission. The original designation number remained, but the name changed to reflect the new mission, becoming the Air Launched Cruise Missile, or ALCM. The first example, similar to the original SCAD in most ways, flew for

7254-623: The satellite signals. If a standing wave is induced in a hemispheric resonant structure and then the resonant structure is rotated, the spherical harmonic standing wave rotates through an angle different from the quartz resonator structure due to the Coriolis force. The movement of the outer case with respect to the standing wave pattern is proportional to the total rotation angle and can be sensed by appropriate electronics. The system resonators are machined from fused quartz due to its excellent mechanical properties. The electrodes that drive and sense

7347-409: The spherical platform can turn freely. There are usually four bearing pads, mounted in a tetrahedral arrangement to support the platform. In premium systems, the angular sensors are usually specialized transformer coils made in a strip on a flexible printed circuit board . Several coil strips are mounted on great circles around the spherical shell of the gyrostabilized platform. Electronics outside

7440-604: The spotlight for future modifications. Operation Desert Strike was also the combat debut of the B-52H and the carriage of the CALCM on the weapons bay-mounted Common Strategic Rotary Launcher (CSRL). During the Operation Desert Storm, the CALCM had been carried on the B-52G and wing-mounted pylons. The CALCM was also used in Operation Desert Fox in 1998, Operation Allied Force in 1999, and Operation Iraqi Freedom in 2003. Operation Iraqi Freedom

7533-404: The standing waves are deposited directly onto separate quartz structures that surround the resonator. These gyros can operate in either a whole angle mode (which gives them nearly unlimited rate capability) or a force rebalance mode that holds the standing wave in a fixed orientation with respect to the gyro housing (which gives them much better accuracy). This system has almost no moving parts and

7626-433: The surface of the earth must incorporate Schuler tuning so that its platform will continue pointing towards the center of the Earth as a vehicle moves from place to place. Some systems place the linear accelerometers on a gimballed gyrostabilized platform. The gimbals are a set of three rings, each with a pair of bearings initially at right angles. They let the platform twist about any rotational axis (or, rather, they let

7719-400: The system can adjust the corrupted sensor's contributions to the final calculation. Inertial navigation systems were originally developed for rockets . American rocketry pioneer Robert Goddard experimented with rudimentary gyroscopic systems. Goddard's systems were of great interest to contemporary German pioneers including Wernher von Braun . The systems entered more widespread use with

7812-504: The use of inertial technology in the best way, already in 1965 a technical working group for Inertial Sensors had been established in Germany to bring together the users, the manufacturers and the researchers of inertial sensors. This working group has been continuously developed and today it is known as DGON ISA Inertial Sensors and Application Symposium, the leading conference for inertial technologies for more than 60 years. This Symposium DGON / IEEE ISA with about 200 international attendees

7905-569: The usefulness of Quail in the face of improving Soviet defenses. Looking for another solution to the Soviet SAM problem, in 1964 the Air Force began developing a new system that would directly attack the missile sites rather than confuse them. This emerged as the AGM-69 SRAM , with a range of about 50 nautical miles (93 km; 58 mi), allowing it to be launched from outside the roughly 20 nautical miles (37 km; 23 mi) range of

7998-420: The vehicle accelerates up a hill or rise up out of their seat as the car passes over the crest of a hill and begins to descend. Based on this information alone, they know how the vehicle is accelerating relative to itself; that is, whether it is accelerating forward, backward, left, right, up (toward the car's ceiling), or down (toward the car's floor), measured relative to the car, but not the direction relative to

8091-494: Was also the combat debut of the AGM-86D, a further development of the missile which replaced the blast/fragmentation warhead of the AGM-86C with a penetrating warhead. In 2007 the USAF announced its intention to retire all of its AGM-129 ACMs and to reduce the ALCM fleet by more than 500 missiles, leaving 528 nuclear cruise missiles. The ALCM force will be consolidated at Minot Air Force Base , North Dakota , and all excess cruise missile bodies will be destroyed. The reductions are

8184-730: Was canceled. This eliminated the need for ALCM to fit in the B-1's bomb bay, and the length limitations that implied. The Air Force decided to cancel production of the A-model ALCM, and replace it with either an air-launched version of the SLCM, or the ERV. The ERV flew in August 1979, and was declared the winner of the head-to-head fly-off against the SLCM in March 1980. Production of the initial 225 AGM-86B missiles began in fiscal year 1980. The AGM-86B reached operational status in December 1982, on

8277-530: Was never operationally deployed on the B-1. Production of a total 1,715 missiles was completed in October 1986. More than 100 launches have taken place since then, with a 90% approximate success rate. In June 1986 a limited number of AGM-86B missiles were converted to carry a high-explosive blast/fragmentation warhead and an internal GPS. They were redesignated as the AGM-86C CALCM (Conventional Air-Launched Cruise Missile). This modification also replaced

8370-553: Was presented at the first Technical Symposium on Ballistic Missiles held at the Ramo-Wooldridge Corporation in Los Angeles on 21 and 22 June 1956. The Q system was classified information through the 1960s. Derivations of this guidance are used for today's missiles. In February 1961 NASA awarded MIT a contract for preliminary design study of a guidance and navigation system for the Apollo program . MIT and

8463-486: Was the Delco Carousel , which provided partial automation of navigation in the days before complete flight management systems became commonplace. The Carousel allowed pilots to enter 9 waypoints at a time and then guided the aircraft from one waypoint to the next using an INS to determine aircraft position and velocity. Boeing Corporation subcontracted the Delco Electronics Div. of General Motors to design and build

8556-531: Was the ultimate outcome of several similar programs to develop a small decoy aircraft that would be launched from bombers during their approach to targets, presenting false targets to saturate the defenses and allow the bombers to escape an attack. The small jet-powered drone aircraft had a simple inertial navigation system (INS) that allowed it to fly a pre-programmed course that would make it visible to known Soviet defensive sites. A number of radar jammers and radar reflectors were intended to make it appear like

8649-420: Was to bind the challenges of missile guidance (and associated equations of motion) in the matrix Q. The Q matrix represents the partial derivatives of the velocity with respect to the position vector. A key feature of this approach allowed for the components of the vector cross product (v, xdv, /dt) to be used as the basic autopilot rate signals—a technique that became known as cross-product steering . The Q-system

#112887