A surge tank (or surge drum or surge pool ) is a standpipe or storage reservoir at the downstream end of a closed aqueduct , feeder pipe, or dam to absorb sudden rises of pressure , as well as to quickly provide extra water during a brief drop in pressure.
62-581: The Coleridge Power Station is a hydroelectric facility at Lake Coleridge on the Rakaia River in Canterbury , New Zealand . The power station is owned and operated by Manawa Energy (formerly Trustpower). Coleridge was New Zealand's first major power station in which the state was involved. It was constructed mainly to supply electricity to Christchurch , with construction beginning in 1911 and completed with three generating units in 1914. For
124-745: A greenhouse gas . According to the World Commission on Dams report, where the reservoir is large compared to the generating capacity (less than 100 watts per square metre of surface area) and no clearing of the forests in the area was undertaken prior to impoundment of the reservoir, greenhouse gas emissions from the reservoir may be higher than those of a conventional oil-fired thermal generation plant. In boreal reservoirs of Canada and Northern Europe, however, greenhouse gas emissions are typically only 2% to 8% of any kind of conventional fossil-fuel thermal generation. A new class of underwater logging operation that targets drowned forests can mitigate
186-463: A low-head hydro power plant with hydrostatic head of few meters to few tens of meters can be classified either as an SHP or an LHP. The other distinction between SHP and LHP is the degree of the water flow regulation: a typical SHP primarily uses the natural water discharge with very little regulation in comparison to an LHP. Therefore, the term SHP is frequently used as a synonym for the run-of-the-river power plant . The largest power producers in
248-505: A state-owned enterprise called the Electricity Corporation of New Zealand (Electricorp). Electricorp began downsizing staff and upgrading systems at the facility, and in 1994 it restructured into two subsidiaries. One subsidiary, Transpower , adopted responsibility for the outdoor switching yard, with the parent company planning to sell the facility at Coleridge. After Ngāi Tahu waived their right of first refusal to
310-421: A flood and fail. Changes in the amount of river flow will correlate with the amount of energy produced by a dam. Lower river flows will reduce the amount of live storage in a reservoir therefore reducing the amount of water that can be used for hydroelectricity. The result of diminished river flow can be power shortages in areas that depend heavily on hydroelectric power. The risk of flow shortage may increase as
372-538: A key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once a hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel -powered energy plants. However, when constructed in lowland rainforest areas, where part of
434-809: A large natural height difference between two waterways, such as a waterfall or mountain lake. A tunnel is constructed to take water from the high reservoir to the generating hall built in a cavern near the lowest point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway. A simple formula for approximating electric power production at a hydroelectric station is: P = − η ( m ˙ g Δ h ) = − η ( ( ρ V ˙ ) g Δ h ) {\displaystyle P=-\eta \ ({\dot {m}}g\ \Delta h)=-\eta \ ((\rho {\dot {V}})\ g\ \Delta h)} where Efficiency
496-451: A larger amount of methane than those in temperate areas. Like other non-fossil fuel sources, hydropower also has no emissions of sulfur dioxide, nitrogen oxides, or other particulates. Reservoirs created by hydroelectric schemes often provide facilities for water sports , and become tourist attractions themselves. In some countries, aquaculture in reservoirs is common. Multi-use dams installed for irrigation support agriculture with
558-455: A long penstock . The main functions of the surge tank are: 1. When the load decreases, the water moves backward and gets stored in it. 2. When the load increases, the additional supply of water will be provided by a surge tank. In short, the surge tank mitigates pressure variations due to rapid changes in the velocity of water. Consider a pipe containing a flowing fluid. When a valve is either fully or partially closed at some point downstream,
620-592: A positive risk adjusted return, unless appropriate risk management measures are put in place. While many hydroelectric projects supply public electricity networks, some are created to serve specific industrial enterprises. Dedicated hydroelectric projects are often built to provide the substantial amounts of electricity needed for aluminium electrolytic plants, for example. The Grand Coulee Dam switched to support Alcoa aluminium in Bellingham, Washington , United States for American World War II airplanes before it
682-548: A relatively constant water supply. Large hydro dams can control floods, which would otherwise affect people living downstream of the project. Managing dams which are also used for other purposes, such as irrigation , is complicated. In 2021 the IEA called for "robust sustainability standards for all hydropower development with streamlined rules and regulations". Large reservoirs associated with traditional hydroelectric power stations result in submersion of extensive areas upstream of
SECTION 10
#1732772517096744-427: A relatively small surge tank to maintain a steady loading on the pump. For hydroelectric power uses, a surge tank is an additional storage space or reservoir fitted between the main storage reservoir and the powerhouse (as close to the powerhouse as possible). Surge tanks are usually provided in high or medium- head plants when there is a considerable distance between the water source and the power unit, necessitating
806-540: A result of climate change . One study from the Colorado River in the United States suggest that modest climate changes, such as an increase in temperature in 2 degree Celsius resulting in a 10% decline in precipitation, might reduce river run-off by up to 40%. Brazil in particular is vulnerable due to its heavy reliance on hydroelectricity, as increasing temperatures, lower water flow and alterations in
868-448: A small TV/radio). Even smaller turbines of 200–300 W may power a few homes in a developing country with a drop of only 1 m (3 ft). A Pico-hydro setup is typically run-of-the-river , meaning that dams are not used, but rather pipes divert some of the flow, drop this down a gradient, and through the turbine before returning it to the stream. An underground power station is generally used at large facilities and makes use of
930-455: A source of low-cost renewable energy. Alternatively, small hydro projects may be built in isolated areas that would be uneconomic to serve from a grid, or in areas where there is no national electrical distribution network. Since small hydro projects usually have minimal reservoirs and civil construction work, they are seen as having a relatively low environmental impact compared to large hydro. This decreased environmental impact depends strongly on
992-414: A start-up time of the order of a few minutes. Although battery power is quicker its capacity is tiny compared to hydro. It takes less than 10 minutes to bring most hydro units from cold start-up to full load; this is quicker than nuclear and almost all fossil fuel power. Power generation can also be decreased quickly when there is a surplus power generation. Hence the limited capacity of hydropower units
1054-581: A total of 1,500 terawatt-hours (TWh) of electrical energy in one full cycle" which was "about 170 times more energy than the global fleet of pumped storage hydropower plants". Battery storage capacity is not expected to overtake pumped storage during the 2020s. When used as peak power to meet demand, hydroelectricity has a higher value than baseload power and a much higher value compared to intermittent energy sources such as wind and solar. Hydroelectric stations have long economic lives, with some plants still in service after 50–100 years. Operating labor cost
1116-486: A year's worth of rain fell within 24 hours (see 1975 Banqiao Dam failure ). The resulting flood resulted in the deaths of 26,000 people, and another 145,000 from epidemics. Millions were left homeless. The creation of a dam in a geologically inappropriate location may cause disasters such as 1963 disaster at Vajont Dam in Italy, where almost 2,000 people died. Surge tank In mining technology, ore pulp pumps use
1178-452: Is hydroelectric power on a scale serving a small community or industrial plant. The definition of a small hydro project varies but a generating capacity of up to 10 megawatts (MW) is generally accepted as the upper limit. This may be stretched to 25 MW and 30 MW in Canada and the United States. Small hydro stations may be connected to conventional electrical distribution networks as
1240-635: Is also usually low, as plants are automated and have few personnel on site during normal operation. Where a dam serves multiple purposes, a hydroelectric station may be added with relatively low construction cost, providing a useful revenue stream to offset the costs of dam operation. It has been calculated that the sale of electricity from the Three Gorges Dam will cover the construction costs after 5 to 8 years of full generation. However, some data shows that in most countries large hydropower dams will be too costly and take too long to build to deliver
1302-470: Is highest in the winter when solar energy is at a minimum. Pico hydro is hydroelectric power generation of under 5 kW . It is useful in small, remote communities that require only a small amount of electricity. For example, the 1.1 kW Intermediate Technology Development Group Pico Hydro Project in Kenya supplies 57 homes with very small electric loads (e.g., a couple of lights and a phone charger, or
SECTION 20
#17327725170961364-445: Is initially produced during construction of the project, and some methane is given off annually by reservoirs, hydro has one of the lowest lifecycle greenhouse gas emissions for electricity generation. The low greenhouse gas impact of hydroelectricity is found especially in temperate climates . Greater greenhouse gas emission impacts are found in the tropical regions because the reservoirs of power stations in tropical regions produce
1426-462: Is not an energy source, and appears as a negative number in listings. Run-of-the-river hydroelectric stations are those with small or no reservoir capacity, so that only the water coming from upstream is available for generation at that moment, and any oversupply must pass unused. A constant supply of water from a lake or existing reservoir upstream is a significant advantage in choosing sites for run-of-the-river. A tidal power station makes use of
1488-452: Is not generally used to produce base power except for vacating the flood pool or meeting downstream needs. Instead, it can serve as backup for non-hydro generators. The major advantage of conventional hydroelectric dams with reservoirs is their ability to store water at low cost for dispatch later as high value clean electricity. In 2021, the IEA estimated that the "reservoirs of all existing conventional hydropower plants combined can store
1550-410: Is often higher (that is, closer to 1) with larger and more modern turbines. Annual electric energy production depends on the available water supply. In some installations, the water flow rate can vary by a factor of 10:1 over the course of a year. Hydropower is a flexible source of electricity since stations can be ramped up and down very quickly to adapt to changing energy demands. Hydro turbines have
1612-414: Is unusual in that it does not use a dam like most other hydroelectric facilities. Lake Coleridge is a natural lake that runs alongside a natural river, but at a much higher elevation. Water is fed to the station from two inlets at the lake, which is elevated 165 metres (541 ft) above the station's turbine hall . The newer No. 1 inlet is visible up at the lake as a whirlpool on calm days, with some of
1674-679: The Bonneville Dam in 1937 and being recognized by the Flood Control Act of 1936 as the premier federal flood control agency. Hydroelectric power stations continued to become larger throughout the 20th century. Hydropower was referred to as "white coal". Hoover Dam 's initial 1,345 MW power station was the world's largest hydroelectric power station in 1936; it was eclipsed by the 6,809 MW Grand Coulee Dam in 1942. The Itaipu Dam opened in 1984 in South America as
1736-549: The Industrial Revolution would drive development as well. In 1878, the world's first hydroelectric power scheme was developed at Cragside in Northumberland , England, by William Armstrong . It was used to power a single arc lamp in his art gallery. The old Schoelkopf Power Station No. 1 , US, near Niagara Falls , began to produce electricity in 1881. The first Edison hydroelectric power station,
1798-806: The International Exhibition of Hydropower and Tourism , with over one million visitors 1925. By 1920, when 40% of the power produced in the United States was hydroelectric, the Federal Power Act was enacted into law. The Act created the Federal Power Commission to regulate hydroelectric power stations on federal land and water. As the power stations became larger, their associated dams developed additional purposes, including flood control , irrigation and navigation . Federal funding became necessary for large-scale development, and federally owned corporations, such as
1860-637: The Southern Alps via Arthur's Pass to supply the West Coast ). All turbines are of the horizontal Francis type. Hydroelectric Hydroelectricity , or hydroelectric power , is electricity generated from hydropower (water power). Hydropower supplies 15% of the world's electricity , almost 4,210 TWh in 2023, which is more than all other renewable sources combined and also more than nuclear power . Hydropower can provide large amounts of low-carbon electricity on demand, making it
1922-633: The Tennessee Valley Authority (1933) and the Bonneville Power Administration (1937) were created. Additionally, the Bureau of Reclamation which had begun a series of western US irrigation projects in the early 20th century, was now constructing large hydroelectric projects such as the 1928 Hoover Dam . The United States Army Corps of Engineers was also involved in hydroelectric development, completing
Coleridge Power Station - Misplaced Pages Continue
1984-583: The Vulcan Street Plant , began operating September 30, 1882, in Appleton, Wisconsin , with an output of about 12.5 kilowatts. By 1886 there were 45 hydroelectric power stations in the United States and Canada; and by 1889 there were 200 in the United States alone. At the beginning of the 20th century, many small hydroelectric power stations were being constructed by commercial companies in mountains near metropolitan areas. Grenoble , France held
2046-506: The potential energy of dammed water driving a water turbine and generator . The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head . A large pipe (the " penstock ") delivers water from the reservoir to the turbine. This method produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand,
2108-400: The water frame , and continuous production played a significant part in the development of the factory system, with modern employment practices. In the 1840s, hydraulic power networks were developed to generate and transmit hydro power to end users. By the late 19th century, the electrical generator was developed and could now be coupled with hydraulics. The growing demand arising from
2170-463: The IEA released a main-case forecast of 141 GW generated by hydropower over 2022–2027, which is slightly lower than deployment achieved from 2017–2022. Because environmental permitting and construction times are long, they estimate hydropower potential will remain limited, with only an additional 40 GW deemed possible in the accelerated case. In 2021 the IEA said that major modernisation refurbishments are required. Most hydroelectric power comes from
2232-464: The ability to transport particles heavier than itself downstream. This has a negative effect on dams and subsequently their power stations, particularly those on rivers or within catchment areas with high siltation. Siltation can fill a reservoir and reduce its capacity to control floods along with causing additional horizontal pressure on the upstream portion of the dam. Eventually, some reservoirs can become full of sediment and useless or over-top during
2294-595: The balance between stream flow and power production. Micro hydro means hydroelectric power installations that typically produce up to 100 kW of power. These installations can provide power to an isolated home or small community, or are sometimes connected to electric power networks. There are many of these installations around the world, particularly in developing nations as they can provide an economical source of energy without purchase of fuel. Micro hydro systems complement photovoltaic solar energy systems because in many areas water flow, and thus available hydro power,
2356-431: The chamber, hence reducing the surge pressures experienced in the pipeline. Upon closure of the valve, the fluid continues to flow, passing into the surge tank causing the water level in the tank to rise. The level in the tank will continue to rise until the additional head due to the height of fluid in the tank balances the surge pressure in the pipeline. At this point the flow in the tank and pipeline will reverse causing
2418-404: The daily rise and fall of ocean water due to tides; such sources are highly predictable, and if conditions permit construction of reservoirs, can also be dispatchable to generate power during high demand periods. Less common types of hydro schemes use water's kinetic energy or undammed sources such as undershot water wheels . Tidal power is viable in a relatively small number of locations around
2480-505: The dams, sometimes destroying biologically rich and productive lowland and riverine valley forests, marshland and grasslands. Damming interrupts the flow of rivers and can harm local ecosystems, and building large dams and reservoirs often involves displacing people and wildlife. The loss of land is often exacerbated by habitat fragmentation of surrounding areas caused by the reservoir. Hydroelectric projects can be disruptive to surrounding aquatic ecosystems both upstream and downstream of
2542-705: The effect of forest decay. Another disadvantage of hydroelectric dams is the need to relocate the people living where the reservoirs are planned. In 2000, the World Commission on Dams estimated that dams had physically displaced 40–80 million people worldwide. Because large conventional dammed-hydro facilities hold back large volumes of water, a failure due to poor construction, natural disasters or sabotage can be catastrophic to downriver settlements and infrastructure. During Typhoon Nina in 1975 Banqiao Dam in Southern China failed when more than
Coleridge Power Station - Misplaced Pages Continue
2604-399: The excess generation capacity is used to pump water into the higher reservoir, thus providing demand side response . When the demand becomes greater, water is released back into the lower reservoir through a turbine. In 2021 pumped-storage schemes provided almost 85% of the world's 190 GW of grid energy storage and improve the daily capacity factor of the generation system. Pumped storage
2666-536: The facility, in 1998 the facility was purchased for $ 90.6 million by both Alpine Energy and Trustpower . Alpine Energy was only involved in the deal to circumvent a rule that the station could only be sold to a South Island company, with Alpine withdrawing from the scheme in 1998. The facility has been owned by Trustpower (now Manawa Energy ) since. As of 2020, the station has a generation capacity of 39 megawatts (52,000 hp) of electricity, and annual generation averages 270 gigawatt-hours (970 TJ). Coleridge
2728-419: The fluid will continue to flow at the original velocity. In order to counteract the momentum of the fluid, the pressure will rise significantly (pressure surge) just upstream of the control valve and may result in damage to the pipe system. If a surge chamber is connected to the pipeline just upstream of the valve, on valve closure, the fluid, instead of being stopped suddenly by the valve, will flow upwards into
2790-534: The forest is inundated, substantial amounts of greenhouse gases may be emitted. Construction of a hydroelectric complex can have significant environmental impact, principally in loss of arable land and population displacement. They also disrupt the natural ecology of the river involved, affecting habitats and ecosystems, and siltation and erosion patterns. While dams can ameliorate the risks of flooding, dam failure can be catastrophic. In 2021, global installed hydropower electrical capacity reached almost 1,400 GW,
2852-506: The highest among all renewable energy technologies. Hydroelectricity plays a leading role in countries like Brazil, Norway and China. but there are geographical limits and environmental issues. Tidal power can be used in coastal regions. China added 24 GW in 2022, accounting for nearly three-quarters of global hydropower capacity additions. Europe added 2 GW, the largest amount for the region since 1990. Meanwhile, globally, hydropower generation increased by 70 TWh (up 2%) in 2022 and remains
2914-512: The hill above-ground to the turbine hall. The older No. 2 surge chamber is 12 metres (39 ft) in diameter and connects to the original set of 1.32 metres (4 ft 4 in) diameter penstock pipes. Originally there were four of these pipes, however only two remain in use, with the other two disconnected half way up the hill. The newer No.1 surge chamber is 19 metres (62 ft) in diameter and connects to an additional set of three penstock pipes that taper from 2.14 metres (7 ft 0 in) at
2976-519: The largest renewable energy source, surpassing all other technologies combined. Hydropower has been used since ancient times to grind flour and perform other tasks. In the late 18th century hydraulic power provided the energy source needed for the start of the Industrial Revolution . In the mid-1700s, French engineer Bernard Forest de Bélidor published Architecture Hydraulique , which described vertical- and horizontal-axis hydraulic machines, and in 1771 Richard Arkwright 's combination of water power ,
3038-750: The largest, producing 14 GW , but was surpassed in 2008 by the Three Gorges Dam in China at 22.5 GW . Hydroelectricity would eventually supply some countries, including Norway , Democratic Republic of the Congo , Paraguay and Brazil , with over 85% of their electricity. In 2021 the International Energy Agency (IEA) said that more efforts are needed to help limit climate change . Some countries have highly developed their hydropower potential and have very little room for growth: Switzerland produces 88% of its potential and Mexico 80%. In 2022,
3100-471: The level in the tank to drop. This oscillation in tank height and flow will continue for some time but its magnitude will dissipate due to the effects of friction. The surge tank is utilized in automotive applications to ensure that the inlet to the fuel pump is never starved for fuel. It is typically used in vehicles with electronic fuel injection or that will be sustaining high lateral acceleration loads for extended periods. Aircraft surge tanks are used on
3162-542: The most part it was built by hand, with some heavier work done by steam shovels . Following its initial construction, the twin 66 kV transmission lines connecting the power station with Christchurch's Addington substation were the highest voltage in New Zealand, and the longest at over 100 kilometres (62 mi) long. In the early years of the station, demand for electricity in Christchurch grew rapidly and
SECTION 50
#17327725170963224-427: The older No. 2 inlet visible on the shore near to it. These inlets supply water to two horseshoe-shaped tunnels which run almost horizontally (grade of 1:1000) through approximately 2.2 kilometres (1.4 mi) of the hill between the lake and the power station. These tunnels terminate in large concrete surge chambers above the power station, which in turn connect to the distinctive steel penstock pipes that run down
3286-633: The plant site. Generation of hydroelectric power changes the downstream river environment. Water exiting a turbine usually contains very little suspended sediment, which can lead to scouring of river beds and loss of riverbanks. The turbines also will kill large portions of the fauna passing through, for instance 70% of the eel passing a turbine will perish immediately. Since turbine gates are often opened intermittently, rapid or even daily fluctuations in river flow are observed. Drought and seasonal changes in rainfall can severely limit hydropower. Water may also be lost by evaporation. When water flows it has
3348-450: The rainfall regime, could reduce total energy production by 7% annually by the end of the century. Lower positive impacts are found in the tropical regions. In lowland rainforest areas, where inundation of a part of the forest is necessary, it has been noted that the reservoirs of power plants produce substantial amounts of methane . This is due to plant material in flooded areas decaying in an anaerobic environment and forming methane,
3410-591: The top of the run to 1.5 metres (4 ft 11 in) at the bottom, which are used to power the newer and larger set of turbines. The water is discharged to the Rakaia River . While it initially started with 3 turbines, this was increased to 9 by 1930 with a total power output of 34.5 megawatts (46,300 hp). Currently only 5 turbines are operational, but despite having four fewer turbines than in 1930 they produce 75 gigawatt-hours (270 TJ) more energy due to modern redesign and refurbishment using computational fluid dynamics modelling, completed in 2008. Coleridge
3472-540: The transmission system extended to reach Rangiora in the north and Oamaru in the south. The limited capacity at Coleridge resulted in regular interruptions to supply. To remedy this the fourth generator was connected in April 1917, with two more connected in November 1921 and March 1922. The turbine hall was extended in 1924 to make room for additional larger turbines. By the early 1930s, Coleridge had reached capacity, and
3534-524: The world are hydroelectric power stations, with some hydroelectric facilities capable of generating more than double the installed capacities of the current largest nuclear power stations . Although no official definition exists for the capacity range of large hydroelectric power stations, facilities from over a few hundred megawatts are generally considered large hydroelectric facilities. Currently, only seven facilities over 10 GW ( 10,000 MW ) are in operation worldwide, see table below. Small hydro
3596-539: The world. The classification of hydropower plants starts with two top-level categories: The classification of a plant as an SHP or LHP is primarily based on its nameplate capacity , the threshold varies by the country, but in any case a plant with the capacity of 50 MW or more is considered an LHP. As an example, for China, SHP power is below 25 MW, for India - below 15 MW, most of Europe - below 10 MW. The SHP and LHP categories are further subdivided into many subcategories that are not mutually exclusive. For example,
3658-586: Was allowed to provide irrigation and power to citizens (in addition to aluminium power) after the war. In Suriname , the Brokopondo Reservoir was constructed to provide electricity for the Alcoa aluminium industry. New Zealand 's Manapouri Power Station was constructed to supply electricity to the aluminium smelter at Tiwai Point . Since hydroelectric dams do not use fuel, power generation does not produce carbon dioxide . While carbon dioxide
3720-965: Was built and initially owned by the New Zealand Government through the Hydro Electric Branch of the Public Works Department, which this branch later became the State Hydro Electric Department in 1946, which in turn became the New Zealand Electricity Department (NZED) in 1958, which then became the Electricity Division of the Ministry of Energy in 1978. In 1987, the government dissolved its responsibility for electricity to create
3782-730: Was supplemented in 1934 by the commissioning of the Waitaki Dam and in 1935 by extending transmission lines south to join Coleridge/Waitaki to Dunedin's Waipori scheme. Water supply was a challenge, and so three river diversions were made to increase the amount of water available in the lake: the Harper River in 1922, the Acheron River in 1930, and later the Wilberforce River in 1977. The station
SECTION 60
#17327725170963844-541: Was the first station in the world to use aerated draft tubes on the turbines, invented on-site by Silston Cory-Wright to solve an issue with heavy thumping when under load. It was also the first to be built on glacial morraine , which caused significant issues with stability of the turbine hall. The open-air switching yard supplies 66kV lines that run both east (connecting to the Transpower switch yard at Hororata and from there on to Christchurch ) and west (across
#95904