Colonial Spanish horse is a term for a group of horse breed and feral populations descended from the original Iberian horse stock brought from Spain to the Americas . The ancestral type from which these horses descend was a product of the horse populations that blended between the Iberian horse and the North African Barb . The term encompasses many strains or breeds now found primarily in North America . The status of the Colonial Spanish horse is considered threatened overall with seven individual strains specifically identified. The horses are registered by several entities .
77-756: The Colonial Spanish horse, a general classification popularized by D. Philip Sponenberg, is not synonymous with the Spanish Mustang , the name given to a specific standardized breed derived from the first concerted effort of conservationists in the United States to preserve horses of Colonial Spanish Type. Colonial Spanish horse blood markers have been found in some mustang populations. Small groups of horses of Colonial Spanish horse type have been located in various groups of ranch-bred, mission , and Native American horses, mostly among those in private ownership. Colonial Spanish horses are generally small;
154-507: A circular mitochondrial genome. Medusozoa and calcarea clades however include species with linear mitochondrial chromosomes. With a few exceptions, animals have 37 genes in their mitochondrial DNA: 13 for proteins , 22 for tRNAs , and 2 for rRNAs . Mitochondrial genomes for animals average about 16,000 base pairs in length. The anemone Isarachnanthus nocturnus has the largest mitochondrial genome of any animal at 80,923 bp. The smallest known mitochondrial genome in animals belongs to
231-593: A database) to determine maternal lineage. Most often, the comparison is made with the revised Cambridge Reference Sequence . Vilà et al. have published studies tracing the matrilineal descent of domestic dogs from wolves. The concept of the Mitochondrial Eve is based on the same type of analysis, attempting to discover the origin of humanity by tracking the lineage back in time. Entities subject to uniparental inheritance and with little to no recombination may be expected to be subject to Muller's ratchet ,
308-500: A donor female, and nuclear DNA from the mother and father. In the spindle transfer procedure, the nucleus of an egg is inserted into the cytoplasm of an egg from a donor female which has had its nucleus removed, but still contains the donor female's mtDNA. The composite egg is then fertilized with the male's sperm. The procedure is used when a woman with genetically defective mitochondria wishes to procreate and produce offspring with healthy mitochondria. The first known child to be born as
385-569: A few BLM managed herds. In 1985, the BLM awarded a grant to the University of California, Davis, to conduct a three-year study on mustang genetics, including the percentage of original Spanish blood. Ann T. Bowling and R. W. Touchberry did not find much evidence of Spanish genetics in the Great Basin horses tested, but follow up work by Gus Cothran, then of University of Kentucky , carried on
462-435: A finding that has been rejected by other scientists. In sexual reproduction , mitochondria are normally inherited exclusively from the mother; the mitochondria in mammalian sperm are usually destroyed by the egg cell after fertilization. Also, mitochondria are present solely in the midpiece, which is used for propelling the sperm cells, and sometimes the midpiece, along with the tail, is lost during fertilization. In 1999 it
539-434: A genome suggests that complete gene loss is possible, and transferring mitochondrial genes to the nucleus has several advantages. The difficulty of targeting remotely-produced hydrophobic protein products to the mitochondrion is one hypothesis for why some genes are retained in mtDNA; colocalisation for redox regulation is another, citing the desirability of localised control over mitochondrial machinery. Recent analysis of
616-545: A healthy human sperm has been reported to contain on average 5 molecules), degradation of sperm mtDNA in the male genital tract and in the fertilized egg; and, at least in a few organisms, failure of sperm mtDNA to enter the egg. Whatever the mechanism, this single parent ( uniparental inheritance ) pattern of mtDNA inheritance is found in most animals, most plants and also in fungi. In a study published in 2018, human babies were reported to inherit mtDNA from both their fathers and their mothers resulting in mtDNA heteroplasmy ,
693-405: A mainstay of phylogenetics and evolutionary biology . It also permits tracing the relationships of populations, and so has become important in anthropology and biogeography . Nuclear and mitochondrial DNA are thought to have separate evolutionary origins, with the mtDNA derived from the circular genomes of bacteria engulfed by the ancestors of modern eukaryotic cells. This theory is called
770-542: A mutation in mtDNA has been used to help diagnose prostate cancer in patients with negative prostate biopsy . mtDNA alterations can be detected in the bio-fluids of patients with cancer. mtDNA is characterized by the high rate of polymorphisms and mutations. Some of which are increasingly recognized as an important cause of human pathology such as oxidative phosphorylation (OXPHOS) disorders, maternally inherited diabetes and deafness (MIDD), Type 2 diabetes mellitus, Neurodegenerative disease , heart failure and cancer. Though
847-626: A mutational (contrary to the selective one) explanation for the observation that long-lived species have GC-rich mtDNA: long-lived species become GC-rich simply because of their biased process of mutagenesis. An association between mtDNA mutational spectrum and species-specific life-history traits in mammals opens a possibility to link these factors together discovering new life-history-specific mutagens in different groups of organisms. Deletion breakpoints frequently occur within or near regions showing non-canonical (non-B) conformations, namely hairpins, cruciforms and cloverleaf-like elements. Moreover, there
SECTION 10
#1732771768143924-552: A nose that is straight or slightly convex. The muzzle is usually very fine, and from the side the upper lip is usually longer than the lower, although the teeth meet evenly. Nostrils are usually small and crescent shaped. They typically have narrow but deep chests, with the front legs leaving the body fairly close together. When viewed from the front, the front legs join the chest in an "A" shape rather than straight across as in most other modern breeds that have wider chests. The withers are usually sharp instead of low and meaty. The croup
1001-697: A number of different Associations. While some bands of modern mustangs have evidence of ancestry from the original Spanish imports, genetic analysis indicates that many free-ranging horses in the Great Basin descend from later breeds of draft horse, cavalry mounts, and other saddle horses . Where they have been found to have descended from the original Spanish horses, the Bureau of Land Management (BLM) and other agencies attempt to preserve them. Blood typing, along with phenotype and historical documentation have been used to confirm significant Spanish ancestry of
1078-525: A result of mitochondrial donation was a boy born to a Jordanian couple in Mexico on 6 April 2016. The concept that mtDNA is particularly susceptible to reactive oxygen species generated by the respiratory chain due to its proximity remains controversial. mtDNA does not accumulate any more oxidative base damage than nuclear DNA. It has been reported that at least some types of oxidative DNA damage are repaired more efficiently in mitochondria than they are in
1155-510: A role in the mitochondrial bottleneck, exploiting cell-to-cell variability to ameliorate the inheritance of damaging mutations. According to Justin St. John and colleagues, "At the blastocyst stage, the onset of mtDNA replication is specific to the cells of the trophectoderm . In contrast, the cells of the inner cell mass restrict mtDNA replication until they receive the signals to differentiate to specific cell types." The two strands of
1232-435: A species and also for identifying and quantifying the phylogeny (evolutionary relationships; see phylogenetics ) among different species. To do this, biologists determine and then compare the mtDNA sequences from different individuals or species. Data from the comparisons is used to construct a network of relationships among the sequences, which provides an estimate of the relationships among the individuals or species from which
1309-630: A stabilisation or reduction in mutant load between generations. The mechanism underlying the bottleneck is debated, with a recent mathematical and experimental metastudy providing evidence for a combination of the random partitioning of mtDNAs at cell divisions and the random turnover of mtDNA molecules within the cell. Male mitochondrial DNA inheritance has been discovered in Plymouth Rock chickens . Evidence supports rare instances of male mitochondrial inheritance in some mammals as well. Specifically, documented occurrences exist for mice, where
1386-448: A wide range of mtDNA genomes suggests that both these features may dictate mitochondrial gene retention. Across all organisms, there are six main mitochondrial genome types, classified by structure (i.e. circular versus linear), size, presence of introns or plasmid like structures , and whether the genetic material is a singular molecule or collection of homogeneous or heterogeneous molecules. In many unicellular organisms (e.g.,
1463-532: Is a linear genome made up of homogeneous DNA molecules (type 5). Great variation in mtDNA gene content and size exists among fungi and plants, although there appears to be a core subset of genes present in all eukaryotes (except for the few that have no mitochondria at all). In Fungi, however, there is no single gene shared among all mitogenomes. Some plant species have enormous mitochondrial genomes, with Silene conica mtDNA containing as many as 11,300,000 base pairs. Surprisingly, even those huge mtDNAs contain
1540-467: Is a well-established marker of oxidative DNA damage. In persons with amyotrophic lateral sclerosis (ALS), the enzymes that normally repair 8-oxoG DNA damages in the mtDNA of spinal motor neurons are impaired. Thus oxidative damage to mtDNA of motor neurons may be a significant factor in the etiology of ALS. Over the past decade, an Israeli research group led by Professor Vadim Fraifeld has shown that strong and significant correlations exist between
1617-639: Is an American horse breed descended from horses brought from Spain during the early conquest of the Americas. They are classified within the larger grouping of the Colonial Spanish horse , a type that today is rare in Spain. By the early 20th century, most of the once-vast herds of mustangs that had descended from the Spanish horses had been greatly reduced in size. Seeing that these horses were on
SECTION 20
#17327717681431694-492: Is data supporting the involvement of helix-distorting intrinsically curved regions and long G-tetrads in eliciting instability events. In addition, higher breakpoint densities were consistently observed within GC-skewed regions and in the close vicinity of the degenerate sequence motif YMMYMNNMMHM. Unlike nuclear DNA, which is inherited from both parents and in which genes are rearranged in the process of recombination , there
1771-430: Is mostly attributed to Robert E. Brislawn of Oshoto, Wyoming, and his brother Ferdinand L. Brislawn of Gusher, Utah. Credit for the preservation effort also goes to Gilbert Jones and Ilo Belsky. They gathered horses from feral Mustang herds, Native American herds and ranch stock from throughout the west, chosen because they had a phenotype that indicates Spanish ancestry. Two full brothers, Buckshot and Ute, were among
1848-514: Is observed in bivalve mollusks. In those species, females have only one type of mtDNA (F), whereas males have F type mtDNA in their somatic cells, but M type of mtDNA (which can be as much as 30% divergent) in germline cells. Paternally inherited mitochondria have additionally been reported in some insects such as fruit flies , honeybees , and periodical cicadas . An IVF technique known as mitochondrial donation or mitochondrial replacement therapy (MRT) results in offspring containing mtDNA from
1925-455: Is ridden by some endurance riders . The Spanish Mustang is also used to compete in a variety of English and Western riding events. Mitochondrial DNA Mitochondrial DNA ( mtDNA and mDNA ) is the DNA located in the mitochondria organelles in a eukaryotic cell that converts chemical energy from food into adenosine triphosphate (ATP). Mitochondrial DNA is a small portion of
2002-540: Is severely degraded. Autosomal cells only have two copies of nuclear DNA, but can have hundreds of copies of mtDNA due to the multiple mitochondria present in each cell. This means highly degraded evidence that would not be beneficial for STR analysis could be used in mtDNA analysis. mtDNA may be present in bones, teeth, or hair, which could be the only remains left in the case of severe degradation. In contrast to STR analysis, mtDNA sequencing uses Sanger sequencing . The known sequence and questioned sequence are both compared to
2079-510: Is sloped, and the tail is characteristically set low on the body. From the rear view they are usually "rafter hipped" meaning the muscling of the hip tapers up so the backbone is the highest point. Hooves are small and upright rather than flat. Horses first returned to the Americas with the conquistadors , beginning with Columbus , who imported horses from Spain to the West Indies on his second voyage in 1493. Domesticated horses came to
2156-437: Is strong and horses are to be well balanced and smoothly built with an "uphill" build. The girth is deep, with a well laid back shoulder and fairly pronounced withers. They possess a straight or concave facial profile and wide foreheads. Necks are fairly well crested in mares and geldings and heavily crested in mature stallions. Chests are moderately narrow but well-defined. Chestnuts are small or missing altogether, particularly on
2233-485: Is the first multicellular organism known to have this absence of aerobic respiration and live completely free of oxygen dependency. There are three different mitochondrial genome types in plants and fungi. The first type is a circular genome that has introns (type 2) and may range from 19 to 1000 kbp in length. The second genome type is a circular genome (about 20–1000 kbp) that also has a plasmid-like structure (1 kb) (type 3). The final genome type found in plants and fungi
2310-452: Is used in an analogous way to determine the patrilineal history.) This is usually accomplished on human mitochondrial DNA by sequencing the hypervariable control regions (HVR1 or HVR2), and sometimes the complete molecule of the mitochondrial DNA, as a genealogical DNA test . HVR1, for example, consists of about 440 base pairs. These 440 base pairs are compared to the same regions of other individuals (either specific people or subjects in
2387-510: Is usually no change in mtDNA from parent to offspring. Although mtDNA also recombines, it does so with copies of itself within the same mitochondrion. Because of this and because the mutation rate of animal mtDNA is higher than that of nuclear DNA, mtDNA is a powerful tool for tracking ancestry through females ( matrilineage ) and has been used in this role to track the ancestry of many species back hundreds of generations. mtDNA testing can be used by forensic scientists in cases where nuclear DNA
Colonial Spanish horse - Misplaced Pages Continue
2464-521: The POLG2 gene. The replisome machinery is formed by DNA polymerase, TWINKLE and mitochondrial SSB proteins . TWINKLE is a helicase , which unwinds short stretches of dsDNA in the 5' to 3' direction. All these polypeptides are encoded in the nuclear genome. During embryogenesis , replication of mtDNA is strictly down-regulated from the fertilized oocyte through the preimplantation embryo. The resulting reduction in per-cell copy number of mtDNA plays
2541-732: The Rio Grande . Over the next one hundred years, horses in the Americas were stolen and traded by the Apache , Comanche , and later the Utes and Shoshone to various tribes across the Great Plains and Rocky Mountains. On the brink of extinction in the early part of this century, the Spanish Mustang is one of the first breeds developed from a planned conservation program to save the descendants of these Spanish horses. This effort
2618-518: The ciliate Tetrahymena and the green alga Chlamydomonas reinhardtii ), and in rare cases also in multicellular organisms (e.g. in some species of Cnidaria ), the mtDNA is linear DNA . Most of these linear mtDNAs possess telomerase -independent telomeres (i.e., the ends of the linear DNA ) with different modes of replication, which have made them interesting objects of research because many of these unicellular organisms with linear mtDNA are known pathogens . Most ( bilaterian ) animals have
2695-499: The endosymbiotic theory . In the cells of extant organisms, the vast majority of the proteins in the mitochondria (numbering approximately 1500 different types in mammals ) are coded by nuclear DNA , but the genes for some, if not most, of them are thought to be of bacterial origin, having been transferred to the eukaryotic nucleus during evolution . The reasons mitochondria have retained some genes are debated. The existence in some species of mitochondrion-derived organelles lacking
2772-589: The feral free-roaming mustang . The latter animals are descended from both Spanish horses and other domesticated horses escaped or released from various sources; many run wild in Herd Management Areas (HMAs) of the western United States, currently managed by the Bureau of Land Management (BLM). Some feral herds also exist in Canada. DNA studies indicate that Spanish breeding and type does still exist in some feral Mustang herds, including those on
2849-605: The Cerbat HMA (near Kingman, Arizona), Pryor Mountain HMA (Montana), Sulphur HMA (Utah), and Kiger HMA (Oregon). The Colonial Spanish Horse developed from animals first brought from the Iberian Peninsula to the Americas during the conquest and establishment of the Spanish colony of New Spain in what today is Mexico. As the conquest of Mexico progressed during the 16th century, horse herds spread north and crossed
2926-595: The DNA contained in a eukaryotic cell; most of the DNA is in the cell nucleus , and, in plants and algae, the DNA also is found in plastids , such as chloroplasts . Human mitochondrial DNA was the first significant part of the human genome to be sequenced. This sequencing revealed that human mtDNA has 16,569 base pairs and encodes 13 proteins . As in other vertebrates, the human mitochondrial genetic code differs slightly from nuclear DNA. Since animal mtDNA evolves faster than nuclear genetic markers, it represents
3003-572: The Revised Cambridge Reference Sequence to generate their respective haplotypes. If the known sample sequence and questioned sequence originated from the same matriline, one would expect to see identical sequences and identical differences from the rCRS. Cases arise where there are no known samples to collect and the unknown sequence can be searched in a database such as EMPOP. The Scientific Working Group on DNA Analysis Methods recommends three conclusions for describing
3080-543: The accumulation of deleterious mutations until functionality is lost. Animal populations of mitochondria avoid this through a developmental process known as the mtDNA bottleneck . The bottleneck exploits random processes in the cell to increase the cell-to-cell variability in mutant load as an organism develops: a single egg cell with some proportion of mutant mtDNA thus produces an embryo in which different cells have different mutant loads. Cell-level selection may then act to remove those cells with more mutant mtDNA, leading to
3157-419: The accumulation of mtDNA damage in several organs of rats. For example, dietary restriction prevented age-related accumulation of mtDNA damage in the cortex and decreased it in the lung and testis. Increased mt DNA damage is a feature of several neurodegenerative diseases . The brains of individuals with Alzheimer's disease have elevated levels of oxidative DNA damage in both nuclear DNA and mtDNA, but
Colonial Spanish horse - Misplaced Pages Continue
3234-414: The brink of extinction, some horseman began making efforts to find and preserve the remaining "Spanish Mustangs" drawing stock from feral and Native American herds, as well as ranch stock. The breed was one of the first to be part of a concerted preservation effort for horses of Spanish phenotype , and a breed registry was founded in 1957. The Spanish Mustang as a modern domesticated breed differs from
3311-456: The coding instructions for some proteins, which may have an effect on organism metabolism and/or fitness. Mutations of mitochondrial DNA can lead to a number of illnesses including exercise intolerance and Kearns–Sayre syndrome (KSS), which causes a person to lose full function of heart, eye, and muscle movements. Some evidence suggests that they might be major contributors to the aging process and age-associated pathologies . Particularly in
3388-434: The comb jelly Vallicula multiformis , which consist of 9,961 bp. In February 2020, a jellyfish-related parasite – Henneguya salminicola – was discovered that lacks a mitochondrial genome but retains structures deemed mitochondrion-related organelles. Moreover, nuclear DNA genes involved in aerobic respiration and in mitochondrial DNA replication and transcription were either absent or present only as pseudogenes . This
3465-718: The context of disease, the proportion of mutant mtDNA molecules in a cell is termed heteroplasmy . The within-cell and between-cell distributions of heteroplasmy dictate the onset and severity of disease and are influenced by complicated stochastic processes within the cell and during development. Mutations in mitochondrial tRNAs can be responsible for severe diseases like the MELAS and MERRF syndromes. Mutations in nuclear genes that encode proteins that mitochondria use can also contribute to mitochondrial diseases. These diseases do not follow mitochondrial inheritance patterns, but instead follow Mendelian inheritance patterns. Recently
3542-403: The differences between a known mtDNA sequence and a questioned mtDNA sequence: exclusion for two or more differences between the sequences, inconclusive if there is one nucleotide difference, or cannot exclude if there are no nucleotide differences between the two sequences. The rapid mutation rate (in animals) makes mtDNA useful for assessing genetic relationships of individuals or groups within
3619-626: The differences in animal species maximum life spans in a multiplicative manner (i.e., species maximum life span = their mtDNA GC% * metabolic rate). To support the scientific community in carrying out comparative analyses between mtDNA features and longevity across animals, a dedicated database was built named MitoAge . De novo mutations arise either due to mistakes during DNA replication or due to unrepaired damage caused in turn by endogenous and exogenous mutagens. It has been long believed that mtDNA can be particularly sensitive to damage caused by reactive oxygen species (ROS), however G>T substitutions,
3696-781: The expected Iberian blood markers. Conversely, some horses that lack Spanish type, such as certain strains of the American Quarter Horse , may have blood markers but not the proper phenotype. Colonial Spanish horses include numerous strains, which may be feral populations or standardized breeds: A number of breeds in Latin America with Iberian DNA markers are of Spanish type and origin. Many of these breeds come from different North American foundation bloodstock , and some have haplotypes not found in North America. Spanish Mustang The Spanish Mustang
3773-623: The first foundation stallions, sired by a buckskin stallion named Monty and out of Ute Reservation blood on the dam's side. Monty, captured in 1927 in Utah, escaped back to the wild in 1944, taking his mares with him. He was never recaptured. Ultimately, the Brislawns and Lawrence P. Richards formed a registry , the Spanish Mustang Registry, incorporated in 1957. Due to assorted differences of opinion on what horses to accept into
3850-403: The genetic distances of distantly related species. Statistical models that treat substitution rates among codon positions separately, can thus be used to simultaneously estimate phylogenies that contain both closely and distantly related species Mitochondrial DNA was admitted into evidence for the first time ever in a United States courtroom in 1996 during State of Tennessee v. Paul Ware . In
3927-477: The hallmark of the oxidative damage in the nuclear genome, are very rare in mtDNA and do not increase with age. Comparing the mtDNA mutational spectra of hundreds of mammalian species, it has been recently demonstrated that species with extended lifespans have an increased rate of A>G substitutions on single-stranded heavy chain. This discovery led to the hypothesis that A>G is a mitochondria-specific marker of age-associated oxidative damage. This finding provides
SECTION 50
#17327717681434004-421: The human mitochondrial DNA are distinguished as the heavy strand and the light strand. The heavy strand is rich in guanine and encodes 12 subunits of the oxidative phosphorylation system, two ribosomal RNAs (12S and 16S), and 14 transfer RNAs (tRNAs). The light strand encodes one subunit, and 8 tRNAs. So, altogether mtDNA encodes for two rRNAs, 22 tRNAs, and 13 protein subunits , all of which are involved in
4081-524: The idea is controversial, some evidence suggests a link between aging and mitochondrial genome dysfunction. In essence, mutations in mtDNA upset a careful balance of reactive oxygen species (ROS) production and enzymatic ROS scavenging (by enzymes like superoxide dismutase , catalase , glutathione peroxidase and others). However, some mutations that increase ROS production (e.g., by reducing antioxidant defenses) in worms increase, rather than decrease, their longevity. Also, naked mole rats , rodents about
4158-466: The initiation of the transcription of the heavy and light strands are located in the main non-coding region of the mtDNA called the displacement loop, the D-loop . There is evidence that the transcription of the mitochondrial rRNAs is regulated by the heavy-strand promoter 1 (HSP1), and the transcription of the polycistronic transcripts coding for the protein subunits are regulated by HSP2. Measurement of
4235-415: The levels of the mtDNA-encoded RNAs in bovine tissues has shown that there are major differences in the expression of the mitochondrial RNAs relative to total tissue RNA. Among the 12 tissues examined the highest level of expression was observed in heart, followed by brain and steroidogenic tissue samples. As demonstrated by the effect of the trophic hormone ACTH on adrenal cortex cells, the expression of
4312-443: The longevity of species. The application of a mitochondrial-specific ROS scavenger, which lead to a significant longevity of the mice studied, suggests that mitochondria may still be well-implicated in ageing. Extensive research is being conducted to further investigate this link and methods to combat ageing. Presently, gene therapy and nutraceutical supplementation are popular areas of ongoing research. Bjelakovic et al. analyzed
4389-603: The mainland with the arrival of Cortés in 1519. By 1525, Cortés had imported enough horses to create a nucleus of horse-breeding in Mexico. Horses arrived in South America beginning in 1531, and by 1538 there were horses in Florida. From these origins, horses spread throughout the Americas. By one estimate there were at least 10,000 free-roaming horses in Mexico by 1553. In 2010, the Colonial Spanish mustang
4466-424: The male-inherited mitochondria were subsequently rejected. It has also been found in sheep, and in cloned cattle. Rare cases of male mitochondrial inheritance have been documented in humans. Although many of these cases involve cloned embryos or subsequent rejection of the paternal mitochondria, others document in vivo inheritance and persistence under lab conditions. Doubly uniparental inheritance of mtDNA
4543-525: The mitochondrial genes may be strongly regulated by external factors, apparently to enhance the synthesis of mitochondrial proteins necessary for energy production. Interestingly, while the expression of protein-encoding genes was stimulated by ACTH, the levels of the mitochondrial 16S rRNA showed no significant change. In most multicellular organisms , mtDNA is inherited from the mother (maternally inherited). Mechanisms for this include simple dilution (an egg contains on average 200,000 mtDNA molecules, whereas
4620-480: The mtDNA base composition and animal species-specific maximum life spans. As demonstrated in their work, higher mtDNA guanine + cytosine content ( GC% ) strongly associates with longer maximum life spans across animal species. An additional observation is that the mtDNA GC% correlation with the maximum life spans is independent of the well-known correlation between animal species metabolic rate and maximum life spans. The mtDNA GC% and resting metabolic rate explain
4697-838: The mtDNA has approximately 10-fold higher levels than nuclear DNA. It has been proposed that aged mitochondria is the critical factor in the origin of neurodegeneration in Alzheimer's disease. Analysis of the brains of AD patients suggested an impaired function of the DNA repair pathway, which would cause reduce the overall quality of mtDNA. In Huntington's disease , mutant huntingtin protein causes mitochondrial dysfunction involving inhibition of mitochondrial electron transport , higher levels of reactive oxygen species and increased oxidative stress . Mutant huntingtin protein promotes oxidative damage to mtDNA, as well as nuclear DNA, that may contribute to Huntington's disease pathology . The DNA oxidation product 8-oxoguanine (8-oxoG)
SECTION 60
#17327717681434774-558: The mtDNAs were taken. mtDNA can be used to estimate the relationship between both closely related and distantly related species. Due to the high mutation rate of mtDNA in animals, the 3rd positions of the codons change relatively rapidly, and thus provide information about the genetic distances among closely related individuals or species. On the other hand, the substitution rate of mt-proteins is very low, thus amino acid changes accumulate slowly (with corresponding slow changes at 1st and 2nd codon positions) and thus they provide information about
4851-472: The nucleus. mtDNA is packaged with proteins which appear to be as protective as proteins of the nuclear chromatin. Moreover, mitochondria evolved a unique mechanism which maintains mtDNA integrity through degradation of excessively damaged genomes followed by replication of intact/repaired mtDNA. This mechanism is not present in the nucleus and is enabled by multiple copies of mtDNA present in mitochondria. The outcome of mutation in mtDNA may be an alteration in
4928-487: The oxidative phosphorylation process. Between most (but not all) protein-coding regions, tRNAs are present (see the human mitochondrial genome map ). During transcription, the tRNAs acquire their characteristic L-shape that gets recognized and cleaved by specific enzymes. With the mitochondrial RNA processing, individual mRNA, rRNA, and tRNA sequences are released from the primary transcript. Folded tRNAs therefore act as secondary structure punctuations. The promoters for
5005-466: The plant and fungal genomes also exist in some protists, as do two unique genome types. One of these unique types is a heterogeneous collection of circular DNA molecules (type 4) while the other is a heterogeneous collection of linear molecules (type 6). Genome types 4 and 6 each range from 1–200 kbp in size. The smallest mitochondrial genome sequenced to date is the 5,967 bp mtDNA of the parasite Plasmodium falciparum . Endosymbiotic gene transfer,
5082-499: The process by which genes that were coded in the mitochondrial genome are transferred to the cell's main genome, likely explains why more complex organisms such as humans have smaller mitochondrial genomes than simpler organisms such as protists. Mitochondrial DNA is replicated by the DNA polymerase gamma complex which is composed of a 140 kDa catalytic DNA polymerase encoded by the POLG gene and two 55 kDa accessory subunits encoded by
5159-444: The rear legs. Ergots are small or absent. Feet are round and hard and legs are to be of correct conformation , though hind legs may be set under a bit. Cannons are short and bone is rounded. Some individuals are gaited , with a range of different footfalls accepted. Paddling or winging out are not a fault unless there is interference or it is caused by a lack of straightness in the leg. Spanish Mustangs exist in many colors , due to
5236-823: The registry, Jones formed the Southwest Spanish Mustang Association in 1977, and other offshoot registries formed later. A 2006 study found that the Spanish Mustang, as well as horses from the Sulphur Springs and Kiger HMAs have DNA haplotypes that indicate origin from horses of the Iberian peninsula . Spanish Mustang stands from 13.2 to 15 hands (54 to 60 inches, 137 to 152 cm) in height, with horses over 15 hands not favored. They weigh between 650 and 1,100 pounds (290 and 500 kg). They are smooth muscled with short backs, rounded rumps and low-set tails. The coupling
5313-409: The results of 78 studies between 1977 and 2012, involving a total of 296,707 participants, and concluded that antioxidant supplements do not reduce all-cause mortality nor extend lifespan, while some of them, such as beta carotene, vitamin E, and higher doses of vitamin A, may actually increase mortality. In a recent study, it was shown that dietary restriction can reverse ageing alterations by affecting
5390-442: The same number and kinds of genes as related plants with much smaller mtDNAs. The genome of the mitochondrion of the cucumber ( Cucumis sativus ) consists of three circular chromosomes (lengths 1556, 84 and 45 kilobases), which are entirely or largely autonomous with regard to their replication . Protists contain the most diverse mitochondrial genomes, with five different types found in this kingdom. Type 2, type 3 and type 5 of
5467-500: The size of mice , live about eight times longer than mice despite having reduced, compared to mice, antioxidant defenses and increased oxidative damage to biomolecules. Once, there was thought to be a positive feedback loop at work (a 'Vicious Cycle'); as mitochondrial DNA accumulates genetic damage caused by free radicals, the mitochondria lose function and leak free radicals into the cytosol . A decrease in mitochondrial function reduces overall metabolic efficiency. However, this concept
5544-469: The study and found Spanish markers in the Pryor Mountain and Cerbat herds outside the Great Basin, and Sulphur Springs herd within it, later confirming the findings for the Sulphur Springs herd through mtDNA sequencing analysis. Some breeders and horse associations have used blood typing results to prove or disprove horses being of Spanish ancestry, but some horses of Spanish phenotype may not carry
5621-399: The usual height is around 14 hands (56 inches, 142 cm), and most vary from 13.2 to 14 hands (54 to 56 inches, 137 to 142 cm). Weight varies with height, but most are around 700 to 800 pounds (320 to 360 kg). Their heads vary somewhat between long, finely made to shorter and deeper, generally having straight to concave (rarely slightly convex) foreheads and
5698-473: The wide range of colors in their Spanish ancestors. They are commonly found in bay , chestnut , black and gray . Other colors seen less commonly include the Appaloosa and paint patterns and solid colors such as grulla , buckskin , palomino , cremello , isabella , roan and perlino . Spanish Mustangs are known for their stamina and hardiness. The breed is known for its long-distance ability, and
5775-410: Was conclusively disproved when it was demonstrated that mice, which were genetically altered to accumulate mtDNA mutations at accelerated rate do age prematurely, but their tissues do not produce more ROS as predicted by the 'Vicious Cycle' hypothesis. Supporting a link between longevity and mitochondrial DNA, some studies have found correlations between biochemical properties of the mitochondrial DNA and
5852-460: Was reported that paternal sperm mitochondria (containing mtDNA) are marked with ubiquitin to select them for later destruction inside the embryo . Some in vitro fertilization techniques, particularly injecting a sperm into an oocyte , may interfere with this. The fact that mitochondrial DNA is mostly maternally inherited enables genealogical researchers to trace maternal lineage far back in time. ( Y-chromosomal DNA , paternally inherited,
5929-559: Was voted the official state horse of North Carolina. Many gaited horse and stock horse breeds in the United States descend from Spanish horses, but only a few bloodlines are considered to be near-pure descendants of original Spanish stock. Though many are described as horse breeds , it can be debated they are separate breeds or multiple strains of a single large breed. The Livestock Conservancy lists them as one breed, but also calls them "a group of closely related breeds" Various bloodlines or groups of Colonial Spanish horses are registered
#142857