Misplaced Pages

STS-3xx

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#408591

169-403: Space Shuttle missions designated STS-3xx (officially called Launch On Need (LON) missions) were rescue missions which would have been mounted to rescue the crew of a Space Shuttle if their vehicle was damaged and deemed unable to make a successful reentry. Such a mission would have been flown if Mission Control determined that the heat shielding tiles and reinforced carbon-carbon panels of

338-622: A Multi-Purpose Logistics Module filled with supplies to replenish the station. The Senate authorized STS-135 as a regular flight on 5 August 2010, followed by the House on 29 September 2010, and later signed by President Obama on 11 October 2010. However funding for the mission remained dependent on a subsequent appropriations bill. Nonetheless NASA converted STS-335, the final Launch On Need mission, into an operational mission (STS-135) on 20 January 2011. On 13 February 2011, program managers told their workforce that STS-135 would fly "regardless" of

507-492: A NASA engineer who had worked to design the Mercury capsule, patented a design for a two-stage fully recoverable system with a straight-winged orbiter mounted on a larger straight-winged booster. The Air Force Flight Dynamics Laboratory argued that a straight-wing design would not be able to withstand the high thermal and aerodynamic stresses during reentry, and would not provide the required cross-range capability. Additionally,

676-589: A crew aboard. Landing was carried out by an onboard, automatic system. As of March 2011 the Boeing X-37 extended duration robotic spaceplane has demonstrated autonomous orbital flight, reentry and landing. The X-37 was originally intended for launch from the Shuttle payload bay, but following the Columbia disaster , it was launched in a shrouded configuration on an Atlas V . Had a LON mission been required,

845-497: A crewed spaceflight engineer on both STS-51-C and STS-51-J to serve as a military representative for a National Reconnaissance Office payload. A Space Shuttle crew typically had seven astronauts, with STS-61-A flying with eight. The crew compartment comprised three decks and was the pressurized, habitable area on all Space Shuttle missions. The flight deck consisted of two seats for the commander and pilot, as well as an additional two to four seats for crew members. The mid-deck

1014-488: A currently flying orbiter were damaged beyond the repair capabilities of the available on-orbit repair methods. These missions were also referred to as Launch on Demand (LOD) and Contingency Shuttle Crew Support . The program was initiated following loss of Space Shuttle Columbia in 2003. No mission of this type was launched during the Space Shuttle program. The orbiter and four of the crew which were due to fly

1183-467: A future reusable shuttle: Class I would have a reusable orbiter mounted on expendable boosters, Class II would use multiple expendable rocket engines and a single propellant tank (stage-and-a-half), and Class III would have both a reusable orbiter and a reusable booster. In September 1969, the Space Task Group, under the leadership of U.S. Vice President Spiro Agnew , issued a report calling for

1352-598: A glider. Its three-part fuselage provided support for the crew compartment, cargo bay, flight surfaces, and engines. The rear of the orbiter contained the Space Shuttle Main Engines (SSME), which provided thrust during launch, as well as the Orbital Maneuvering System (OMS), which allowed the orbiter to achieve, alter, and exit its orbit once in space. Its double- delta wings were 18 m (60 ft) long, and were swept 81° at

1521-482: A mobile platform for astronauts conducting an EVA. The RMS was built by the Canadian company Spar Aerospace and was controlled by an astronaut inside the orbiter's flight deck using their windows and closed-circuit television. The RMS allowed for six degrees of freedom and had six joints located at three points along the arm. The original RMS could deploy or retrieve payloads up to 29,000 kg (65,000 lb), which

1690-484: A pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen . The Space Shuttle was launched vertically , like a conventional rocket, with the two SRBs operating in parallel with the orbiter's three main engines , which were fueled from the ET. The SRBs were jettisoned before the vehicle reached orbit, while the main engines continued to operate, and

1859-534: A partial-pressure version of the high-altitude pressure suits with a helmet. In 1994, the LES was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which improved the safety of the astronauts in an emergency situation. Columbia originally had modified SR-71 zero-zero ejection seats installed for the ALT and first four missions, but these were disabled after STS-4 and removed after STS-9 . The flight deck

SECTION 10

#1732781019409

2028-530: A partially reusable system would be the most cost-effective solution. The head of the NASA Office of Manned Space Flight, George Mueller , announced the plan for a reusable shuttle on August 10, 1968. NASA issued a request for proposal (RFP) for designs of the Integral Launch and Reentry Vehicle (ILRV) on October 30, 1968. Rather than award a contract based upon initial proposals, NASA announced

2197-495: A phased approach for the Space Shuttle contracting and development; Phase A was a request for studies completed by competing aerospace companies, Phase B was a competition between two contractors for a specific contract, Phase C involved designing the details of the spacecraft components, and Phase D was the production of the spacecraft. In December 1968, NASA created the Space Shuttle Task Group to determine

2366-481: A port-side hatch that the crew used for entry and exit while on Earth. The airlock is a structure installed to allow movement between two spaces with different gas components, conditions, or pressures. Continuing on the mid-deck structure, each orbiter was originally installed with an internal airlock in the mid-deck. The internal airlock was installed as an external airlock in the payload bay on Discovery , Atlantis , and Endeavour to improve docking with Mir and

2535-675: A result of an O-ring failing at low temperature, the SRBs were redesigned to provide a constant seal regardless of the ambient temperature. The Space Shuttle's operations were supported by vehicles and infrastructure that facilitated its transportation, construction, and crew access. The crawler-transporters carried the MLP and the Space Shuttle from the VAB to the launch site. The Shuttle Carrier Aircraft (SCA) were two modified Boeing 747s that could carry an orbiter on its back. The original SCA (N905NA)

2704-671: A second orbiter. Later that month, Rockwell began converting STA-099 to OV-099, later named Challenger . On January 29, 1979, NASA ordered two additional orbiters, OV-103 and OV-104, which were named Discovery and Atlantis . Construction of OV-105, later named Endeavour , began in February 1982, but NASA decided to limit the Space Shuttle fleet to four orbiters in 1983. After the loss of Challenger , NASA resumed production of Endeavour in September 1987. After it arrived at Edwards AFB, Enterprise underwent flight testing with

2873-675: A secondary site. In 2010, manufacturing work began on the second X-37B which conducted its maiden mission in March 2011. On 8 October 2014, NASA confirmed that X-37B vehicles would be housed at Kennedy Space Center in Orbiter Processing Facilities (OPF) 1 and 2, hangars previously occupied by the Space Shuttle. Boeing had said the space planes would use OPF-1 in January 2014, and the Air Force had previously said it

3042-670: A separate central processing unit (CPU) and input/output processor (IOP), and non-volatile solid-state memory . From 1991 to 1993, the orbiter vehicles were upgraded to the AP-101S, which improved the memory and processing capabilities, and reduced the volume and weight of the computers by combining the CPU and IOP into a single unit. Four of the GPCs were loaded with the Primary Avionics Software System (PASS), which

3211-537: A site already used to support shuttle landings, was the prime RCO landing site for the first missions carrying the equipment; however Vandenberg was later selected as the prime site as it is nearer the coast, and the shuttle can be ditched in the Pacific should a problem develop that would make landing dangerous. White Sands Missile Range in New Mexico is a likely alternate site. A major consideration in determining

3380-410: A speech. After STS-4, NASA declared its Space Transportation System (STS) operational. The Space Shuttle was the first operational orbital spacecraft designed for reuse . Each Space Shuttle orbiter was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. At launch, it consisted of the orbiter , which contained the crew and payload,

3549-600: A system of reusable spacecraft where it was the only item funded for development. The first ( STS-1 ) of four orbital test flights occurred in 1981, leading to operational flights ( STS-5 ) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on a total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida . Operational missions launched numerous satellites , interplanetary probes , and

SECTION 20

#1732781019409

3718-517: A time over the next year. That contingency was not required. Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program . Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for

3887-412: A timeline would have been developed similar to the following: STS-400 was the Space Shuttle contingency support (Launch On Need) flight that would have been launched using Space Shuttle Endeavour if a major problem occurred on Space Shuttle Atlantis during STS-125 , the final Hubble Space Telescope servicing mission (HST SM-4). Due to the much lower orbital inclination of

4056-515: A total of 14 astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour , was built in 1991 to replace Challenger . The three surviving operational vehicles were retired from service following Atlantis ' s final flight on July 21, 2011. The U.S. relied on the Russian Soyuz spacecraft to transport astronauts to the ISS from the last Shuttle flight until the launch of

4225-428: A two-part drag parachute system to slow the orbiter after landing. The orbiter used retractable landing gear with a nose landing gear and two main landing gear, each containing two tires. The main landing gear contained two brake assemblies each, and the nose landing gear contained an electro-hydraulic steering mechanism. The Space Shuttle crew varied per mission. They underwent rigorous testing and training to meet

4394-476: Is a reusable robotic spaceplane . It is an approximately 120-percent-scale derivative of the Boeing X-40 , measuring over 29 feet (8.8 m) in length, and features two angled tail fins. The X-37 launches atop an Atlas V 501 or a SpaceX Falcon 9 or Falcon Heavy rocket. The spaceplane is designed to operate in a speed range of up to Mach 25 on its reentry. The technologies demonstrated in

4563-564: Is a reusable robotic spacecraft . It is boosted into space by a launch vehicle , then re-enters Earth's atmosphere and lands as a spaceplane . The X-37 is operated by the Department of the Air Force Rapid Capabilities Office , in collaboration with United States Space Force , for orbital spaceflight missions intended to demonstrate reusable space technologies . It is a 120-percent-scaled derivative of

4732-587: Is carried out inside Bays 1 and 2 of the Orbiter Processing Facility (OPF) at Kennedy Space Center in Florida, where the vehicle is loaded with its payload. The X-37 is then placed inside a fairing along with its stage adapter and transported to the launch site. Previous launch sites have included SLC-41 and Kennedy Space Center LC-39A . Landing is done at one of three sites across the US:

4901-452: Is cooled by 1,080 interior lines carrying liquid hydrogen and is thermally protected by insulative and ablative material. The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept

5070-535: Is testing a Hall-effect thruster system for Aerojet Rocketdyne . In July 2019, former United States Secretary of the Air Force Heather Wilson explained that when an X-37B was in an elliptic orbit it could, at perigee , use the thin atmosphere to make an orbit change preventing some observers from discovering the new orbit for a while, permitting secret activities. Processing for the X-37

5239-421: Is the first time the spaceplane has carried a service module, a ring attached to the rear of the vehicle for hosting multiple experiments. The mission hosts more experiments than prior X-37B flights, including two NASA experiments. One is a sample plate evaluating the reaction of select materials to conditions in space. The second studies the effect of ambient space radiation on seeds. A third experiment designed by

STS-3xx - Misplaced Pages Continue

5408-459: The Columbia disaster . Beginning with STS-114 , the orbiter vehicles were equipped with the wing leading edge impact detection system to alert the crew to any potential damage. The entire underside of the orbiter vehicle, as well as the other hottest surfaces, were protected with tiles of high-temperature reusable surface insulation, made of borosilicate glass -coated silica fibers that trapped heat in air pockets and redirected it out. Areas on

5577-579: The Air Force Research Laboratory (AFRL), the small satellite carries five experimental payloads. The spacecraft will test a novel electromagnetic propulsion system, low-weight antenna technology and a commercial reaction wheel to provide attitude control in orbit. According to the United States Air Force Academy, FalconSat-8's experiments include: The mission was completed with the vehicle landing at

5746-576: The Atlas V and Delta IV pads, to protect the newer, taller Ares I rocket from lightning strikes. STS-134 was the last scheduled flight of the Shuttle program. Because no more were planned after this, a special mission was developed as STS-335 to act as the LON mission for this flight. This would have paired Atlantis with ET-122 , which had been refurbished following damage by Hurricane Katrina . Since there would be no next mission, STS-335 would also carry

5915-780: The Crew Dragon Demo-2 mission in May 2020. In the late 1930s, the German government launched the " Amerikabomber " project, and Eugen Sanger 's idea, together with mathematician Irene Bredt , was a winged rocket called the Silbervogel (German for "silver bird"). During the 1950s, the United States Air Force proposed using a reusable piloted glider to perform military operations such as reconnaissance, satellite attack, and air-to-ground weapons employment. In

6084-685: The Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle- Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time was 1,323 days. Space Shuttle components include the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines,

6253-571: The ISS , along with the Orbiter Docking System . The airlock module can be fitted in the mid-bay, or connected to it but in the payload bay. With an internal cylindrical volume of 1.60 metres (5 feet 3 inches) diameter and 2.11 metres (6 feet 11 inches) in length, it can hold two suited astronauts. It has two D-shaped hatchways 1.02 m (40 in) long (diameter), and 0.91 m (36 in) wide. The orbiter

6422-553: The Martin Marietta X-24B . The program tested aerodynamic characteristics that would later be incorporated in design of the Space Shuttle, including unpowered landing from a high altitude and speed. On September 24, 1966, as the Apollo space program neared its design completion, NASA and the Air Force released a joint study concluding that a new vehicle was required to satisfy their respective future demands and that

6591-583: The Naval Research Laboratory (NRL) transforms solar power into radio frequency microwave energy, then studies transmitting that energy to Earth . The X-37B remains a Department of the Air Force asset, but the newly established U.S. Space Force is responsible for the launch, on-orbit operations, and landing. The X-37B released a small, 136 kg (300 lb) satellite named FalconSat-8 (USA-300) around 28 May 2020. Developed by United States Air Force Academy cadets in partnership with

6760-684: The Shuttle Carrier Aircraft , a Boeing 747 that had been modified to carry the orbiter. In February 1977, Enterprise began the Approach and Landing Tests (ALT) and underwent captive flights, where it remained attached to the Shuttle Carrier Aircraft for the duration of the flight. On August 12, 1977, Enterprise conducted its first glide test, where it detached from the Shuttle Carrier Aircraft and landed at Edwards AFB. After four additional flights, Enterprise

6929-853: The Shuttle Landing Facility at KSC, Florida, or to Rogers Dry Lake in Edwards Air Force Base , California. If the landing occurred at Edwards, the orbiter was flown back to the KSC atop the Shuttle Carrier Aircraft (SCA), a specially modified Boeing 747 designed to carry the shuttle above it. The first orbiter, Enterprise , was built in 1976 and used in Approach and Landing Tests (ALT), but had no orbital capability. Four fully operational orbiters were initially built: Columbia , Challenger , Discovery , and Atlantis . Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003 , with

STS-3xx - Misplaced Pages Continue

7098-492: The Shuttle Landing Facility at Kennedy Space Center, Vandenberg Space Force Base , or Edwards Air Force Base . To return to Kennedy Space Center, the X-37 is placed into a payload canister and loaded into a Boeing C-17 cargo plane. Once at Kennedy, the X-37 is unloaded and towed to the OPF, where it is prepared for its next flight. Technicians must wear protective suits due to toxic hypergolic gases. The X-37 Orbital Test Vehicle

7267-633: The Tracking and Data Relay Satellite System and the Spacecraft Tracking and Data Acquisition Network ground stations to communicate with the orbiter throughout its orbit. Additionally, the orbiter deployed a high-bandwidth K u  band radio out of the cargo bay, which could also be utilized as a rendezvous radar. The orbiter was also equipped with two UHF radios for communications with air traffic control and astronauts conducting EVA. The Space Shuttle's fly-by-wire control system

7436-561: The VAB . Initially, STS-125 was retargeted for no earlier than February 2009. This changed the STS-400 vehicle from Endeavour to Discovery . The mission was redesignated STS-401 due to the swap from Endeavour to Discovery . STS-125 was then delayed further, allowing Discovery mission STS-119 to fly beforehand. This resulted in the rescue mission reverting to Endeavour , and the STS-400 designation being reinstated. In January, 2009, it

7605-540: The external tank (ET), and the two solid rocket boosters (SRBs). Responsibility for the Space Shuttle components was spread among multiple NASA field centers. The KSC was responsible for launch, landing, and turnaround operations for equatorial orbits (the only orbit profile actually used in the program). The U.S. Air Force at the Vandenberg Air Force Base was responsible for launch, landing, and turnaround operations for polar orbits (though this

7774-484: The qualification requirements for their roles. The crew was divided into three categories: Pilots, Mission Specialists, and Payload Specialists. Pilots were further divided into two roles: Space Shuttle Commanders and Space Shuttle Pilots. The test flights only had two members each, the commander and pilot, who were both qualified pilots that could fly and land the orbiter. The on-orbit operations, such as experiments, payload deployment, and EVAs, were conducted primarily by

7943-416: The solid rocket boosters (SRB) began on 11 July 2008. One month later, the external tank arrived at KSC and was mated with the SRBs on 29 August 2008. Endeavour joined the stack on 12 September 2008 and was rolled out to Pad 39B one week later. Since STS-126 launched before STS-125, Atlantis was rolled back to the VAB on 20 October, and Endeavour rolled around to Launch Pad 39A on 23 October. When it

8112-448: The 2195 aluminum-lithium alloy, which was 40% stronger and 10% less dense than its predecessor, 2219 aluminum-lithium alloy. The SLWT weighed 3,400 kg (7,500 lb) less than the LWT, which allowed the Space Shuttle to deliver heavy elements to ISS's high inclination orbit. The Solid Rocket Boosters (SRB) provided 71.4% of the Space Shuttle's thrust during liftoff and ascent, and were

8281-678: The Air Force announced that one experiment flying is the Advanced Structurally Embedded Thermal Spreader II (ASETS-II), which measures the performance of an oscillating heat pipe. The mission was completed with the vehicle landing at the Shuttle Landing Facility on 27 October 2019 at 07:51 UTC. The sixth X-37B mission (OTV-6), U.S. Space Force 7 (formerly known as AFSPC 7), launched on an Atlas V 501 rocket from Cape Canaveral SLC-41 on 17 May 2020 at 13:14:00 UTC. This mission

8450-452: The Air Force required a larger payload capacity than Faget's design allowed. In January 1971, NASA and Air Force leadership decided that a reusable delta-wing orbiter mounted on an expendable propellant tank would be the optimal design for the Space Shuttle. After they established the need for a reusable, heavy-lift spacecraft, NASA and the Air Force determined the design requirements of their respective services. The Air Force expected to use

8619-495: The California branch of Boeing's Phantom Works . Over a four-year period, a total of $ 192 million was spent on the project, with NASA contributing $ 109 million, the U.S. Air Force $ 16 million, and Boeing $ 67 million. In late 2002, a new $ 301 million contract was awarded to Boeing as part of NASA's Space Launch Initiative framework. The aerodynamic design of the X-37 was derived from the larger Space Shuttle orbiter , hence

SECTION 50

#1732781019409

8788-404: The ET was jettisoned after main engine cutoff and just before orbit insertion , which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to deorbit and reenter the atmosphere . The orbiter was protected during reentry by its thermal protection system tiles, and it glided as a spaceplane to a runway landing, usually to

8957-542: The HST compared to the ISS, the shuttle crew would have been unable to use the International Space Station as a "safe haven", and NASA would not have been able to follow the usual plan of recovering the crew with another shuttle at a later date. Instead, NASA developed a plan to conduct a shuttle-to-shuttle rescue mission, similar to proposed rescue missions for pre-ISS flights . The rescue mission would have been launched only three days after call-up and as early as seven days after

9126-680: The IMU, INS, and TACAN systems, which first flew on STS-118 in August 2007. While in orbit, the crew primarily communicated using one of four S band radios, which provided both voice and data communications. Two of the ;band radios were phase modulation transceivers , and could transmit and receive information. The other two S band radios were frequency modulation transmitters and were used to transmit data to NASA. As S band radios can operate only within their line of sight , NASA used

9295-470: The IMUs while in orbit. The star trackers are deployed while in orbit, and can automatically or manually align on a star. In 1991, NASA began upgrading the inertial measurement units with an inertial navigation system (INS), which provided more accurate location information. In 1993, NASA flew a GPS receiver for the first time aboard STS-51 . In 1997, Honeywell began developing an integrated GPS/INS to replace

9464-411: The ISS may have been capable of descending to meet the shuttle. Such a procedure was known as a joint underspeed recovery. * – originally scheduled to be Endeavour , changed to Discovery for contamination issues. To save weight, and to allow the combined crews of both shuttles to return to Earth safely, many shortcuts would have to be made, and the risks of launching another orbiter without resolving

9633-405: The KSC. The Space Shuttle was prepared for launch primarily in the VAB at the KSC. The SRBs were assembled and attached to the external tank on the MLP. The orbiter vehicle was prepared at the Orbiter Processing Facility (OPF) and transferred to the VAB, where a crane was used to rotate it to the vertical orientation and mate it to the external tank. Once the entire stack was assembled, the MLP

9802-567: The Mission Control Center to the unmanned shuttle to control the following systems: The RCO IFM cable first flew aboard STS-121 and was transferred to the ISS for storage during the mission. The cable remained aboard the ISS until the end of the Shuttle program. Prior to STS-121 the plan was for the damaged shuttle to be abandoned and allowed to burn up on reentry. The prime landing site for an RCO orbiter would be Vandenberg Air Force Base in California. Edwards Air Force Base ,

9971-671: The RCO in-flight maintenance (IFM) cable to extend existing auto-land capabilities of the shuttle to allow remaining tasks to be completed from the ground. The purpose of the RCO IFM cable was to provide an electrical signal connection between the Ground Command Interface Logic (GCIL) and the flight deck panel switches. The cable is approximately 28 feet (8.5 m) long, weighs over 5 lb (2.3 kg), and has 16 connectors. With this system, signals could be sent from

10140-463: The RMS system should malfunction. The damaged orbiter would have been commanded by the ground to deorbit and go through landing procedures over the Pacific, with the impact area being north of Hawaii. On flight day five, Endeavour would have had a full heat shield inspection, and land on flight day eight. This mission could have marked the end of the Space Shuttle program, as it is considered unlikely that

10309-528: The RS-25 experienced multiple nozzle failures, as well as broken turbine blades. Despite the problems during testing, NASA ordered the nine RS-25 engines needed for its three orbiters under construction in May 1978. NASA experienced significant delays in the development of the Space Shuttle's thermal protection system . Previous NASA spacecraft had used ablative heat shields, but those could not be reused. NASA chose to use ceramic tiles for thermal protection, as

SECTION 60

#1732781019409

10478-505: The SRBs provided structural support for the orbiter vehicle and ET, as they were the only system that was connected to the mobile launcher platform (MLP). At the time of launch, the SRBs were armed at T−5 minutes, and could only be electrically ignited once the RS-25 engines had ignited and were without issue. They each provided 12,500 kN (2,800,000 lbf) of thrust, which was later improved to 13,300 kN (3,000,000 lbf) beginning on STS-8 . After expending their fuel,

10647-558: The SRBs were jettisoned approximately two minutes after launch at an altitude of approximately 46 km (150,000 ft). Following separation, they deployed drogue and main parachutes, landed in the ocean, and were recovered by the crews aboard the ships MV Freedom Star and MV Liberty Star . Once they were returned to Cape Canaveral, they were cleaned and disassembled. The rocket motor, igniter, and nozzle were then shipped to Thiokol to be refurbished and reused on subsequent flights. The SRBs underwent several redesigns throughout

10816-439: The Shuttle Landing Facility on 12 November 2022 at 10:22 UTC. The fourth flight of second X-37B and seventh overall X-37B mission was planned to be launched on SpaceX's Falcon Heavy on 12 December 2023. This was rescheduled for 28 December 2023, when it was successfully launched at 8:07 pm EST (01:07:00 UTC on December 29). The orbit is higher than any spaceplane, in a highly elliptical HEO orbit. In October 2024, OTV-7

10985-399: The Space Shuttle through ascent, orbit, and reentry, but could not support an entire mission. The five GPCs were separated in three separate bays within the mid-deck to provide redundancy in the event of a cooling fan failure. After achieving orbit, the crew would switch some of the GPCs functions from guidance, navigation, and control (GNC) to systems management (SM) and payload (PL) to support

11154-526: The Space Shuttle to launch large satellites, and required it to be capable of lifting 29,000 kg (65,000 lb) to an eastward LEO or 18,000 kg (40,000 lb) into a polar orbit . The satellite designs also required that the Space Shuttle have a 4.6 by 18 m (15 by 60 ft) payload bay. NASA evaluated the F-1 and J-2 engines from the Saturn rockets , and determined that they were insufficient for

11323-583: The Spacelab module through a 2.7 or 5.8 m (8.72 or 18.88 ft) tunnel that connected to the airlock. The Spacelab equipment was primarily stored in pallets, which provided storage for both experiments as well as computer and power equipment. Spacelab hardware was flown on 28 missions through 1999 and studied subjects including astronomy, microgravity, radar, and life sciences. Spacelab hardware also supported missions such as Hubble Space Telescope (HST) servicing and space station resupply. The Spacelab module

11492-571: The U.S. Air Force announced that it would develop its own variant of NASA's X-37A. The Air Force version was designated the X-37B Orbital Test Vehicle (OTV). The OTV program was built on earlier industry and government efforts by DARPA, NASA, and the Air Force under the leadership of the Air Force Rapid Capabilities Office in partnership with NASA and the Air Force Research Laboratory . Boeing

11661-512: The U.S. space shuttle, which had automatic landing capability by the mid-1990s, but never tested it. The X-37 is the smallest and lightest orbital spaceplane flown to date; it has a launch mass of around 11,000 pounds (5,000 kg) and is approximately one quarter the size of the Space Shuttle orbiter . On 13 April 2015, the Space Foundation awarded the X-37 team with the 2015 Space Achievement Award "for significantly advancing

11830-560: The X-37 as part of the independent space policy that the United States Department of Defense has pursued since the 1986 Challenger disaster . The X-37A vehicle that was used as an atmospheric drop test glider had no propulsion system. Instead of an operational vehicle's payload bay doors, it had an enclosed and reinforced upper fuselage structure to allow it to be mated with a mothership . In September 2004, DARPA announced that for its initial atmospheric drop tests

11999-408: The X-37 has a similar lift-to-drag ratio, and a lower cross range at higher altitudes and Mach numbers compared to DARPA's Hypersonic Technology Vehicle . An early requirement for the spacecraft called for a total mission delta-v of 7,000 miles per hour (3.1 km/s) for orbital maneuvers. An early goal for the program was for the X-37 to rendezvous with satellites and perform repairs. The X-37

12168-405: The X-37 include an improved thermal protection system , enhanced avionics , an autonomous guidance system and an advanced airframe . The spaceplane's thermal protection system is built upon previous generations of atmospheric reentry spacecraft, incorporating silica ceramic tiles. The X-37's avionics suite was used by Boeing to develop its CST-100 crewed spacecraft. The development of

12337-424: The X-37 was to "aid in the design and development of NASA's Orbital Space Plane , designed to provide a crew rescue and crew transport capability to and from the International Space Station ", according to a NASA fact sheet. The X-37 for NASA was to be powered by one Aerojet AR2-3 engine using storable propellants, providing thrust of 6,600 pounds-force (29.4 kN). The human-rated AR2-3 engine had been used on

12506-709: The X-37A would be launched from the Scaled Composites White Knight , a high-altitude research aircraft. On 21 June 2005, the X-37A completed a captive-carry flight underneath the White Knight from Mojave Spaceport in Mojave, California . Through the second half of 2005, the X-37A underwent structural upgrades, including the reinforcement of its nose wheel supports. The X-37A's public debut for its first free flight, scheduled for 10 March 2006,

12675-474: The X-37B could be used as a spy satellite or to deliver weapons from space. The Pentagon subsequently denied claims that the X-37B's test missions supported the development of space-based weapons. In January 2012, allegations were made that the X-37B was being used to spy on China's Tiangong-1 space station module. Former U.S. Air Force orbital analyst Brian Weeden later rejected this claim, emphasizing that

12844-585: The aft seating location, and also controlled the data on the HUD. In 1998, Atlantis was upgraded with the Multifunction Electronic Display System (MEDS), which was a glass cockpit upgrade to the flight instruments that replaced the eight MCDS display units with 11 multifunction colored digital screens. MEDS was flown for the first time in May 2000 on STS-101 , and the other orbiter vehicles were upgraded to it. The aft section of

13013-403: The arrival of Hurricane Irma . The launch vehicle was a Falcon 9 rocket, and a number of small satellites also shared the ride. The spacecraft was inserted at a higher inclination orbit than previous missions, further expanding the X-37B's envelope. During the flight, the spacecraft modified its orbit using an on-board propulsion system. While the complete payload for OTV-5 is classified,

13182-401: The associated propellant tanks. The AJ10 engines used monomethylhydrazine (MMH) oxidized by dinitrogen tetroxide (N 2 O 4 ). The pods carried a maximum of 2,140 kg (4,718 lb) of MMH and 3,526 kg (7,773 lb) of N 2 O 4 . The OMS engines were used after main engine cut-off (MECO) for orbital insertion. Throughout the flight, they were used for orbit changes, as well as

13351-562: The built-in hold at T−9 minutes, the countdown was automatically controlled by the Ground Launch Sequencer (GLS) at the LCC, which stopped the countdown if it sensed a critical problem with any of the Space Shuttle's onboard systems. At T−3 minutes 45 seconds, the engines began conducting gimbal tests, which were concluded at T−2 minutes 15 seconds. The ground Launch Processing System handed off

13520-461: The bulk of the ET, and was 29 m (96.7 ft) tall. The orbiter vehicle was attached to the ET at two umbilical plates, which contained five propellant and two electrical umbilicals, and forward and aft structural attachments. The exterior of the ET was covered in orange spray-on foam to allow it to survive the heat of ascent. The ET provided propellant to the Space Shuttle Main Engines from liftoff until main engine cutoff. The ET separated from

13689-550: The contract to build the orbiter to North American Rockwell. In August 1973, the external tank contract to Martin Marietta , and in November the solid-rocket booster contract to Morton Thiokol . On June 4, 1974, Rockwell began construction on the first orbiter, OV-101, dubbed Constitution, later to be renamed Enterprise . Enterprise was designed as a test vehicle, and did not include engines or heat shielding. Construction

13858-477: The control to the orbiter vehicle's GPCs at T−31 seconds. At T−16 seconds, the GPCs armed the SRBs, the sound suppression system (SPS) began to drench the MLP and SRB trenches with 1,100,000 L (300,000 U.S. gal) of water to protect the orbiter vehicle from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift-off. At T−10 seconds, hydrogen igniters were activated under each engine bell to quell

14027-413: The damaged orbiter. This mission plan would result in heavy fuel consumption. The third concept would be for the damaged orbiter to grapple the rescue orbiter using its RMS, eliminating the need for station-keeping. The rescue orbiter would then transfer crew using its RMS, as in the second option, and would be more fuel efficient than the station-keeping option. The concept that was eventually decided upon

14196-410: The damaged shuttle. It was unclear whether this would be practical, as the forward structure of either orbiter could collide with the payload bay of the other, resulting in damage to both orbiters. The second option that was evaluated, would be for the rescue orbiter to rendezvous with the damaged orbiter, and perform station-keeping while using its Remote Manipulator System (RMS) to transfer crew from

14365-421: The deorbit burn prior to reentry. Each OMS engine produced 27,080 N (6,087 lbf) of thrust, and the entire system could provide 305 m/s (1,000 ft/s) of velocity change . The orbiter was protected from heat during reentry by the thermal protection system (TPS), a thermal soaking protective layer around the orbiter. In contrast with previous US spacecraft, which had used ablative heat shields,

14534-516: The development of a space shuttle to bring people and cargo to low Earth orbit (LEO), as well as a space tug for transfers between orbits and the Moon, and a reusable nuclear upper stage for deep space travel. After the release of the Space Shuttle Task Group report, many aerospace engineers favored the Class III, fully reusable design because of perceived savings in hardware costs. Max Faget ,

14703-487: The different orbits of the two spacecraft precluded any practical surveillance flybys. In October 2014, The Guardian reported the claims of security experts that the X-37B was being used "to test reconnaissance and spy sensors, particularly how they hold up against radiation and other hazards of orbit". In November 2016, the International Business Times speculated that the U.S. government

14872-475: The dual-power NF-104A astronaut training vehicle and was given a new flight certification for use on the X-37 with hydrogen peroxide/ JP-8 propellants. This was reportedly changed to a hypergolic nitrogen-tetroxide/hydrazine propulsion system. The X-37 lands automatically upon returning from orbit and is the third reusable spacecraft to have such a capability, after the Soviet Buran shuttle and

15041-528: The earlier Boeing X-40 . The X-37 began as a NASA project in 1999, before being transferred to the United States Department of Defense in 2004. Until 2019, the program was managed by Air Force Space Command . An X-37 first flew during a drop test in 2006; its first orbital mission was launched in April 2010 on an Atlas V rocket, and returned to Earth in December 2010. Subsequent flights gradually extended

15210-567: The ease of refurbishing them for reuse after they landed in the ocean. In January 1972, President Richard Nixon approved the Shuttle, and NASA decided on its final design in March. The development of the Space Shuttle Main Engine (SSME) remained the responsibility of Rocketdyne, and the contract was issued in July 1971, and updated SSME specifications were submitted to Rocketdyne in that April. That August, NASA awarded

15379-492: The effects of aerodynamic and thermal stresses during launch and reentry. The beginning of the development of the RS-25 Space Shuttle Main Engine was delayed for nine months while Pratt & Whitney challenged the contract that had been issued to Rocketdyne. The first engine was completed in March 1975, after issues with developing the first throttleable, reusable engine. During engine testing,

15548-512: The engines during powered flight and fly the orbiter during unpowered flight. Both seats also had rudder controls, to allow rudder movement in flight and nose-wheel steering on the ground. The orbiter vehicles were originally installed with the Multifunction CRT Display System (MCDS) to display and control flight information. The MCDS displayed the flight information at the commander and pilot seats, as well as at

15717-537: The failure which caused the previous orbiter to become disabled would have to be faced. A number of pieces of Launch on Need flight hardware were built in preparation for a rescue mission including: The Remote Control Orbiter (RCO), also known as the Autonomous Orbiter Rapid Prototype (AORP), was a term used by NASA to describe a shuttle that could perform entry and landing without a human crew on board via remote control. NASA developed

15886-605: The feasibility of reusable boosters. This became the basis for the aerospaceplane , a fully reusable spacecraft that was never developed beyond the initial design phase in 1962–1963. Beginning in the early 1950s, NASA and the Air Force collaborated on developing lifting bodies to test aircraft that primarily generated lift from their fuselages instead of wings, and tested the NASA M2-F1 , Northrop M2-F2 , Northrop M2-F3 , Northrop HL-10 , Martin Marietta X-24A , and

16055-672: The final decision to scrub a launch was announced. In addition to the weather at the launch site, conditions had to be acceptable at one of the Transatlantic Abort Landing sites and the SRB recovery area. The mission crew and the Launch Control Center (LCC) personnel completed systems checks throughout the countdown. Two built-in holds at T−20 minutes and T−9 minutes provided scheduled breaks to address any issues and additional preparation. After

16224-435: The first EVA, Megan McArthur, Andrew Feustel and John Grunsfeld would have set up a tether between the airlocks. They would have also transferred a large size Extravehicular Mobility Unit (EMU) and, after McArthur had repressurized, transferred McArthur's EMU back to Atlantis . Afterwards they would have repressurized on Endeavour , ending flight day two activities. The final two EVA were planned for flight day three. During

16393-521: The first US autonomous orbital landing onto a runway. This was the first such landing since the Soviet Buran shuttle in 1988. In all, OTV-1 spent 224 days and 9 hours in space. OTV-1 suffered a tire blowout during landing and sustained minor damage to its underside. The second X-37B launched on its inaugural mission, designated OTV-2/ USA-226 , aboard an Atlas V rocket from Cape Canaveral SLC-41 on 5 March 2011 at 22:46 UTC. The mission

16562-531: The first X-37B, OTV-3 was originally scheduled to launch on 25 October 2012, but was postponed because of an engine issue with the Atlas V launch vehicle. It was successfully launched from Cape Canaveral SLC-41 on 11 December 2012 at 18:03 UTC. Once in orbit, the spacecraft was designated USA-240 . Landing occurred at Vandenberg AFB on 17 October 2014 at 16:24 UTC, after a total time in orbit of 674 days and 22 hours. The fourth X-37B mission, OTV-4,

16731-532: The first four Shuttle missions, astronauts wore modified U.S. Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5 , until the loss of Challenger , the crew wore one-piece light blue nomex flight suits and partial-pressure helmets. After the Challenger disaster, the crew members wore the Launch Entry Suit (LES),

16900-481: The first time NASA performed a crewed first-flight of a spacecraft. On April 12, 1981, the Space Shuttle launched for the first time, and was piloted by John Young and Robert Crippen . During the two-day mission, Young and Crippen tested equipment on board the shuttle, and found several of the ceramic tiles had fallen off the top side of the Columbia . NASA coordinated with the Air Force to use satellites to image

17069-441: The first, Grunsfeld would have depressurized on Endeavour in order to assist Gregory Johnson and Michael Massimino in transferring an EMU to Atlantis . He and Johnson would then repressurize on Endeavour , and Massimino would have gone back to Atlantis . He, along with Scott Altman and Michael Good would have taken the rest of the equipment and themselves to Endeavour during the final EVA. They would have been standing by in case

17238-635: The flight deck contained windows looking into the payload bay, as well as an RHC to control the Remote Manipulator System during cargo operations. Additionally, the aft flight deck had monitors for a closed-circuit television to view the cargo bay. The mid-deck contained the crew equipment storage, sleeping area, galley, medical equipment, and hygiene stations for the crew. The crew used modular lockers to store equipment that could be scaled depending on their needs, as well as permanently installed floor compartments. The mid-deck contained

17407-502: The forward separation motors and the parachute systems that were used during recovery. The rocket nozzles could gimbal up to 8° to allow for in-flight adjustments. The rocket motors were each filled with a total 500,000 kg (1,106,640 lb) of solid rocket propellant ( APCP + PBAN ), and joined in the Vehicle Assembly Building (VAB) at KSC. In addition to providing thrust during the first stage of launch,

17576-461: The funding situation via a continuing resolution. Finally the U.S. government budget approved in mid-April 2011 called for $ 5.5 billion for NASA's space operations division, including the Space Shuttle and space station programs. According to NASA, the budget running through 30 September 2011 ended all concerns about funding the STS-135 mission. With the successful completion of STS-134, STS-335

17745-402: The inner leading edge and 45° at the outer leading edge. Each wing had an inboard and outboard elevon to provide flight control during reentry, along with a flap located between the wings, below the engines to control pitch . The orbiter's vertical stabilizer was swept backwards at 45° and contained a rudder that could split to act as a speed brake . The vertical stabilizer also contained

17914-494: The landing site would be the desire to perform a high-risk re-entry far away from populated areas. The flight resource book, and flight rules in force during STS-121 suggest that the damaged shuttle would reenter on a trajectory such that if it should break up, it would do so with debris landing in the South Pacific Ocean. The Soviet Buran shuttle was also remotely controlled during its entire maiden flight without

18083-504: The largest solid-propellant motors ever flown. Each SRB was 45 m (149.2 ft) tall and 3.7 m (12.2 ft) wide, weighed 68,000 kg (150,000 lb), and had a steel exterior approximately 13 mm (.5 in) thick. The SRB's subcomponents were the solid-propellant motor, nose cone, and rocket nozzle. The solid-propellant motor comprised the majority of the SRB's structure. Its casing consisted of 11 steel sections which made up its four main segments. The nose cone housed

18252-519: The late 1950s, the Air Force began developing the partially reusable X-20 Dyna-Soar . The Air Force collaborated with NASA on the Dyna-Soar and began training six pilots in June 1961. The rising costs of development and the prioritization of Project Gemini led to the cancellation of the Dyna-Soar program in December 1963. In addition to the Dyna-Soar, the Air Force had conducted a study in 1957 to test

18421-472: The launch of STS-125, since the crew of Atlantis would only have about three weeks of consumables after launch. The mission was first rolled out in September 2008 to Launch Complex 39B two weeks after the STS-125 shuttle was rolled out to Launch Complex 39A , creating a rare scenario in which two shuttles were on launch pads at the same time. In October 2008, however, STS-125 was delayed and rolled back to

18590-490: The launch pad, the Space Shuttle was used to verify the proper positioning of the launch complex hardware. Enterprise was taken back to California in August 1979, and later served in the development of the SLC-6 at Vandenberg AFB in 1984. On November 24, 1980, Columbia was mated with its external tank and solid-rocket boosters, and was moved to LC-39 on December 29. The first Space Shuttle mission, STS-1 , would be

18759-487: The limiting factor. Within NASA, this plan for maintaining the shuttle crew at the ISS is known as Contingency Shuttle Crew Support (CSCS) operations. Up to STS-121 all rescue missions were to be designated STS-300 . In the case of an abort to orbit, where the shuttle could have been unable to reach the ISS orbit and the thermal protection system inspections suggested that the shuttle could not have returned to Earth safely,

18928-710: The main doors of OPF-1 were marked with the message "Home of the X-37B" by this point. Most of the activities of the X-37B project are secret. The official Air Force statement is that the project is "an experimental test program to demonstrate technologies for a reliable, reusable, uncrewed space test platform for the U.S. Air Force". The primary objectives of the X-37B are twofold: reusable spacecraft technology and operating experiments which can be returned to Earth. The Air Force states that this includes testing avionics , flight systems, guidance and navigation, thermal protection, insulation, propulsion, and re-entry systems. In May 2010, Tom Burghardt speculated on Space Daily that

19097-501: The members on the NASA mission management team said at the time (2009) that single-pad operations were possible, but the decision was made to use both pads. The crew assigned to this mission was a subset of the STS-126 crew: Three different concept mission plans were evaluated: The first would be to use a shuttle-to-shuttle docking, where the rescue shuttle docks with the damaged shuttle, by flying upside down and backwards, relative to

19266-493: The mission duration, reaching 780 days in orbit for the fifth mission, the first to launch on a Falcon 9 rocket. The sixth mission launched on an Atlas V on 17 May 2020 and concluded on 12 November 2022, reaching a total of 908 days in orbit. The seventh mission launched on 28 December 2023 on a Falcon Heavy rocket, entering a highly elliptical high Earth orbit . In 1999, NASA selected Boeing Integrated Defense Systems to design and develop an orbital vehicle, built by

19435-437: The mission specialists who were specifically trained for their intended missions and systems. Early in the Space Shuttle program, NASA flew with payload specialists, who were typically systems specialists who worked for the company paying for the payload's deployment or operations. The final payload specialist, Gregory B. Jarvis , flew on STS-51-L , and future non-pilots were designated as mission specialists. An astronaut flew as

19604-424: The next planned mission would be retasked to the rescue mission. The planning and training processes for a rescue flight would allow NASA to launch the mission within a period of 40 days of its being called up. During that time the damaged (or disabled) shuttle's crew would have to take refuge on the International Space Station (ISS). The ISS is able to support both crews for around 80 days, with oxygen supply being

19773-434: The operational mission. The Space Shuttle was not launched if its flight would run from December to January, as its flight software would have required the orbiter vehicle's computers to be reset at the year change. In 2007, NASA engineers devised a solution so Space Shuttle flights could cross the year-end boundary. Space Shuttle missions typically brought a portable general support computer (PGSC) that could integrate with

19942-424: The optimal design for a reusable spacecraft, and issued study contracts to General Dynamics , Lockheed , McDonnell Douglas , and North American Rockwell . In July 1969, the Space Shuttle Task Group issued a report that determined the Shuttle would support short-duration crewed missions and space station, as well as the capabilities to launch, service, and retrieve satellites. The report also created three classes of

20111-436: The orange foam itself was sufficiently protected, and the ET was no longer covered in latex paint beginning on STS-3. A light-weight tank (LWT) was first flown on STS-6, which reduced tank weight by 4,700 kg (10,300 lb). The LWT's weight was reduced by removing components from the hydrogen tank and reducing the thickness of some skin panels. In 1998, a super light-weight ET (SLWT) first flew on STS-91 . The SLWT used

20280-437: The orbiter vehicle 18 seconds after engine cutoff and could be triggered automatically or manually. At the time of separation, the orbiter vehicle retracted its umbilical plates, and the umbilical cords were sealed to prevent excess propellant from venting into the orbiter vehicle. After the bolts attached at the structural attachments were sheared, the ET separated from the orbiter vehicle. At the time of separation, gaseous oxygen

20449-467: The orbiter vehicle and would be removed and replaced in between flights. The RS-25 is a staged-combustion cycle cryogenic engine that used liquid oxygen and hydrogen and had a higher chamber pressure than any previous liquid-fueled rocket. The original main combustion chamber operated at a maximum pressure of 226.5 bar (3,285 psi). The engine nozzle is 287 cm (113 in) tall and has an interior diameter of 229 cm (90.3 in). The nozzle

20618-510: The orbiter vehicle's computers and communication suite, as well as monitor scientific and payload data. Early missions brought the Grid Compass , one of the first laptop computers, as the PGSC, but later missions brought Apple and Intel laptops. The payload bay comprised most of the orbiter vehicle's fuselage , and provided the cargo-carrying space for the Space Shuttle's payloads. It

20787-549: The orbiter vehicle's heat, and were opened upon reaching orbit for heat rejection. The orbiter could be used in conjunction with a variety of add-on components depending on the mission. This included orbital laboratories, boosters for launching payloads farther into space, the Remote Manipulator System (RMS), and optionally the EDO pallet to extend the mission duration. To limit the fuel consumption while

20956-528: The orbiter was docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was developed to convert and transfer station power to the orbiter. The SSPTS was first used on STS-118, and was installed on Discovery and Endeavour . The Remote Manipulator System (RMS), also known as Canadarm, was a mechanical arm attached to the cargo bay. It could be used to grasp and manipulate payloads, as well as serve as

21125-549: The originally specified thrust at 100%, but had the RS-25 operate at higher thrust. RS-25 upgrade versions were denoted as Block I and Block II. 109% thrust level was achieved with the Block II engines in 2001, which reduced the chamber pressure to 207.5 bars (3,010 psi), as it had a larger throat area. The normal maximum throttle was 104 percent, with 106% or 109% used for mission aborts. The Orbital Maneuvering System (OMS) consisted of two aft-mounted AJ10-190 engines and

21294-530: The payload bay of the Space Shuttle, but after the Space Shuttle Columbia disaster , it was transferred to a Delta II 7920 . The X-37B was subsequently transferred to a shrouded configuration on the Atlas V rocket, due to concerns over the unshrouded spacecraft's aerodynamic properties during launch. Following their missions, X-37B spacecraft primarily land on a runway at Vandenberg Air Force Base , California, with Edwards Air Force Base as

21463-426: The performance of various materials in space for at least 200 days. The vehicle spent what was then a record-breaking 717 days and 20 hours in orbit before landing at Kennedy Space Center 's Shuttle Landing Facility on 7 May 2017 at 11:47 UTC. The fifth X-37B mission, designated USA-277 in orbit, was launched from Kennedy Space Center Launch Complex 39A on 7 September 2017 at 14:00 UTC, just before

21632-454: The program would have been able to continue with just two remaining orbiters , Discovery and Endeavour . On Thursday, 21 May 2009, NASA officially released Endeavour from the rescue mission, freeing the orbiter to begin processing for STS-127 . This also allowed NASA to continue processing LC-39B for the upcoming Ares I-X launch, as during the stand-down period, NASA installed a new lightning protection system, similar to those found on

21801-405: The program's lifetime. STS-6 and STS-7 used SRBs 2,300 kg (5,000 lb) lighter due to walls that were 0.10 mm (.004 in) thinner, but were determined to be too thin to fly safely. Subsequent flights until STS-26 used cases that were 0.076 mm (.003 in) thinner than the standard-weight cases, which reduced 1,800 kg (4,000 lb). After the Challenger disaster as

21970-400: The propellant for the Space Shuttle Main Engines, and connected the orbiter vehicle with the solid rocket boosters. The ET was 47 m (153.8 ft) tall and 8.4 m (27.6 ft) in diameter, and contained separate tanks for liquid oxygen and liquid hydrogen. The liquid oxygen tank was housed in the nose of the ET, and was 15 m (49.3 ft) tall. The liquid hydrogen tank comprised

22139-465: The requirements of the Space Shuttle; in July 1971, it issued a contract to Rocketdyne to begin development on the RS-25 engine. NASA reviewed 29 potential designs for the Space Shuttle and determined that a design with two side boosters should be used, and the boosters should be reusable to reduce costs. NASA and the Air Force elected to use solid-propellant boosters because of the lower costs and

22308-685: The reusability of the orbiter required a multi-use heat shield. During reentry, the TPS experienced temperatures up to 1,600 °C (3,000 °F), but had to keep the orbiter vehicle's aluminum skin temperature below 180 °C (350 °F). The TPS primarily consisted of four types of tiles. The nose cone and leading edges of the wings experienced temperatures above 1,300 °C (2,300 °F), and were protected by reinforced carbon-carbon tiles (RCC). Thicker RCC tiles were developed and installed in 1998 to prevent damage from micrometeoroid and orbital debris , and were further improved after RCC damage caused in

22477-523: The same given spot on Earth every four days, and operated at an altitude that is typical for military surveillance satellites. Such an orbit is also common among civilian LEO satellites, and the spaceplane's altitude was the same as that of the ISS and most other crewed spacecraft. The U.S. Air Force announced a 3–6 December landing on 30 November 2010. As scheduled, the X-37B was de-orbited, reentered Earth's atmosphere, and landed successfully at Vandenberg AFB on 3 December 2010, at 09:16 UTC, conducting

22646-529: The shuttle could then be constructed of lightweight aluminum , and the tiles could be individually replaced as needed. Construction began on Columbia on March 27, 1975, and it was delivered to the KSC on March 25, 1979. At the time of its arrival at the KSC, Columbia still had 6,000 of its 30,000 tiles remaining to be installed. However, many of the tiles that had been originally installed had to be replaced, requiring two years of installation before Columbia could fly. On January 5, 1979, NASA commissioned

22815-471: The stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The hydrogen tank's prevalves were opened at T−9.5 seconds in preparation for engine start. Boeing X-37 The Boeing X-37 , also known as the Orbital Test Vehicle ( OTV ),

22984-508: The state of the art for reusable spacecraft and on-orbit operations, with the design, development, test and orbital operation of the X-37B space flight vehicle over three missions totaling 1,367 days in space". The two operational X-37Bs have completed six orbital missions; they have spent a combined 3,774.4 days (10.34 years) in space. The first X-37B launched on its first mission – OTV-1/ USA-212 – on an Atlas V rocket from Cape Canaveral SLC-41 on 22 April 2010 at 23:52 UTC. The spacecraft

23153-418: The underside of Columbia , and determined there was no damage. Columbia reentered the atmosphere and landed at Edwards AFB on April 14. NASA conducted three additional test flights with Columbia in 1981 and 1982. On July 4, 1982, STS-4 , flown by Ken Mattingly and Henry Hartsfield , landed on a concrete runway at Edwards AFB. President Ronald Reagan and his wife Nancy met the crew, and delivered

23322-467: The upper parts of the orbiter vehicle were coated in tiles of white low-temperature reusable surface insulation with similar composition, which provided protection for temperatures below 650 °C (1,200 °F). The payload bay doors and parts of the upper wing surfaces were coated in reusable Nomex felt surface insulation or in beta cloth , as the temperature there remained below 370 °C (700 °F). The Space Shuttle external tank (ET) carried

23491-564: The vehicle's extended downtime for repairs, the program moved from Mojave to Air Force Plant 42 in Palmdale, California , for the remainder of the flight test program. White Knight continued to be based at Mojave, though it was ferried to Plant 42 when test flights were scheduled. Five additional flights were thought to have been performed, two of which resulted in X-37 releases with successful landings. These two free flights occurred on 18 August 2006 and 26 September 2006. On 17 November 2006,

23660-462: Was 18 m (60 ft) long and 4.6 m (15 ft) wide, and could accommodate cylindrical payloads up to 4.6 m (15 ft) in diameter. Two payload bay doors hinged on either side of the bay, and provided a relatively airtight seal to protect payloads from heating during launch and reentry. Payloads were secured in the payload bay to the attachment points on the longerons . The payload bay doors served an additional function as radiators for

23829-499: Was Space Shuttle-specific software that provided control through all phases of flight. During ascent, maneuvering, reentry, and landing, the four PASS GPCs functioned identically to produce quadruple redundancy and would error check their results. In case of a software error that would cause erroneous reports from the four PASS GPCs, a fifth GPC ran the Backup Flight System, which used a different program and could control

23998-641: Was a modified airport jet bridge that was used to assist astronauts to egress from the orbiter after landing, where they would undergo their post-mission medical checkups. The Astrovan transported astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. The NASA Railroad comprised three locomotives that transported SRB segments from the Florida East Coast Railway in Titusville to

24167-447: Was a modified version of the third concept. The rescue orbiter would use its RMS to grapple the end of the damaged orbiter's RMS. After its most recent mission ( STS-123 ), Endeavour was taken to the Orbiter Processing Facility for routine maintenance. Following the maintenance, Endeavour was on stand-by for STS-326 which would have been flown in the case that STS-124 would not have been able to return to Earth safely. Stacking of

24336-584: Was announced that NASA was evaluating conducting both launches from Complex 39A in order to avoid further delays to Ares I-X , which, at the time, was scheduled for launch from LC-39B in the September 2009 timeframe. It was planned that after the STS-125 mission in October 2008, Launch Complex 39B would undergo the conversion for use in Project Constellation for the Ares I-X rocket. Several of

24505-440: Was canceled due to an Arctic storm. The next flight attempt, on 15 March 2006, was canceled due to high winds. On 24 March 2006, the X-37A flew again but a datalink failure prevented a free flight and the vehicle returned to the ground still attached to its White Knight carrier aircraft. On 7 April 2006, the X-37A made its first free glide flight. During landing, the vehicle overran the runway and sustained minor damage. Following

24674-466: Was carried for 5.6 km (3.5 mi) to Launch Complex 39 by one of the crawler-transporters . After the Space Shuttle arrived at one of the two launchpads, it would connect to the Fixed and Rotation Service Structures, which provided servicing capabilities, payload insertion, and crew transportation. The crew was transported to the launch pad at T−3 hours and entered the orbiter vehicle, which

24843-670: Was classified and described by the U.S. military as an effort to test new space technologies. On 29 November 2011, the U.S. Air Force announced that it would extend USA-226 beyond the 270-day baseline duration. In April 2012, General William L. Shelton of the Air Force Space Command declared the ongoing mission a "spectacular success". On 30 May 2012, the Air Force stated that the X-37B would land at Vandenberg AFB in June 2012. The spacecraft landed autonomously on 16 June 2012, having spent 468 days and 14 hours in space. The third mission and second flight of

25012-565: Was closed at T−2 hours. Liquid oxygen and hydrogen were loaded into the external tank via umbilicals that attached to the orbiter vehicle, which began at T−5 hours 35 minutes. At T−3 hours 45 minutes, the hydrogen fast-fill was complete, followed 15 minutes later by the oxygen tank fill. Both tanks were slowly filled up until the launch as the oxygen and hydrogen evaporated. The launch commit criteria considered precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Space Shuttle

25181-495: Was codenamed AFSPC-5 and designated as USA-261 in orbit. It was the second flight of the second X-37B vehicle. The X-37B launched on an Atlas V rocket from Cape Canaveral SLC-41 on 20 May 2015 at 15:05 UTC. Objectives included a test of Aerojet Rocketdyne's XR-5A Hall-effect thruster in support of the Advanced Extremely High Frequency communications satellite program, and a NASA investigation on

25350-686: Was completed on September 17, 1976, and Enterprise was moved to the Edwards Air Force Base to begin testing. Rockwell constructed the Main Propulsion Test Article (MPTA)-098 , which was a structural truss mounted to the ET with three RS-25 engines attached. It was tested at the National Space Technology Laboratory (NSTL) to ensure that the engines could safely run through the launch profile. Rockwell conducted mechanical and thermal stress tests on Structural Test Article (STA)-099 to determine

25519-415: Was considering consolidating X-37B operations, housed at Vandenberg Air Force Base in California, nearer to their launch site at Cape Canaveral. NASA also stated that the program had completed tests to determine whether the X-37B, one-fourth the size of the Space Shuttle, could land on the former Shuttle runways. NASA furthermore stated that renovations of the two hangars would be completed by the end of 2014;

25688-470: Was due to undertake aerobraking maneuvers to safely dispose of its service module. The X-37A Approach and Landing Test Vehicle (ALTV) was an initial NASA version of the spacecraft used in drop glide tests in 2005 and 2006. The X-37B is a modified version of the NASA X-37A, built for the U.S. Air Force. Two have been built and used for multiple orbital missions. In 2011, Boeing announced plans for

25857-551: Was entirely reliant on its main computer, the Data Processing System (DPS). The DPS controlled the flight controls and thrusters on the orbiter, as well as the ET and SRBs during launch. The DPS consisted of five general-purpose computers (GPC), two magnetic tape mass memory units (MMUs), and the associated sensors to monitor the Space Shuttle components. The original GPC used was the IBM AP-101B , which used

26026-657: Was equipped with an avionics system to provide information and control during atmospheric flight. Its avionics suite contained three microwave scanning beam landing systems , three gyroscopes , three TACANs , three accelerometers , two radar altimeters , two barometric altimeters , three attitude indicators , two Mach indicators , and two Mode C transponders . During reentry, the crew deployed two air data probes once they were traveling slower than Mach 5. The orbiter had three inertial measuring units (IMU) that it used for guidance and navigation during all phases of flight. The orbiter contains two star trackers to align

26195-598: Was first flown in 1975, and was used for the ALT and ferrying the orbiter from Edwards AFB to the KSC on all missions prior to 1991. A second SCA (N911NA) was acquired in 1988, and was first used to transport Endeavour from the factory to the KSC. Following the retirement of the Space Shuttle, N905NA was put on display at the JSC, and N911NA was put on display at the Joe Davies Heritage Airpark in Palmdale, California . The Crew Transport Vehicle (CTV)

26364-403: Was later improved to 270,000 kg (586,000 lb). The Spacelab module was a European-funded pressurized laboratory that was carried within the payload bay and allowed for scientific research while in orbit. The Spacelab module contained two 2.7 m (9 ft) segments that were mounted in the aft end of the payload bay to maintain the center of gravity during flight. Astronauts entered

26533-406: Was located below the flight deck and was where the galley and crew bunks were set up, as well as three or four crew member seats. The mid-deck contained the airlock, which could support two astronauts on an extravehicular activity (EVA), as well as access to pressurized research modules. An equipment bay was below the mid-deck, which stored environmental control and waste management systems. On

26702-617: Was moved to the Marshall Space Flight Center (MSFC) on March 13, 1978. Enterprise underwent shake tests in the Mated Vertical Ground Vibration Test, where it was attached to an external tank and solid rocket boosters, and underwent vibrations to simulate the stresses of launch. In April 1979, Enterprise was taken to the KSC, where it was attached to an external tank and solid rocket boosters, and moved to LC-39 . Once installed at

26871-602: Was never used). The Johnson Space Center (JSC) served as the central point for all Shuttle operations and the MSFC was responsible for the main engines, external tank, and solid rocket boosters. The John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network. The orbiter had design elements and capabilities of both a rocket and an aircraft to allow it to launch vertically and then land as

27040-422: Was not launched under conditions where it could have been struck by lightning , as its exhaust plume could have triggered lightning by providing a current path to ground after launch, which occurred on Apollo 12 . The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 19  km (10 nmi). The Shuttle Launch Weather Officer monitored conditions until

27209-555: Was originally designed to be carried into orbit in the cargo bay of the Space Shuttle, but underwent redesign for launch on a Delta IV or comparable rocket after it was determined that a shuttle flight would be uneconomical. The X-37 was transferred from NASA to the Defense Advanced Research Projects Agency (DARPA) on 13 September 2004. Thereafter, the program became a classified project because of its military applications. DARPA promoted

27378-452: Was placed into low Earth orbit for testing. While the U.S. Air Force revealed few orbital details of the mission, a worldwide network of amateur astronomers claimed to have identified the spacecraft in orbit. On 22 May 2010, the spacecraft was in an inclination of 39.99°, circling the Earth once every 90 minutes on an orbit 249 by 262 miles (401 by 422 km). OTV-1 reputedly passed over

27547-492: Was rendered unnecessary and launch preparations for STS-135 continued as Atlantis neared LC-39A during its rollout as STS-134 landed at the nearby Shuttle Landing Facility . For the STS-135, no shuttle was available for a rescue mission. A different rescue plan was devised, involving the four crew members remaining aboard the International Space Station, and returning aboard Soyuz spacecraft one at

27716-418: Was tested on STS-2 and STS-3, and the first full mission was on STS-9. Three RS-25 engines, also known as the Space Shuttle Main Engines (SSME), were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal ±10.5° in pitch, and ±8.5° in yaw during ascent to change the direction of their thrust to steer the Shuttle. The titanium alloy reusable engines were independent of

27885-517: Was testing a version of the EmDrive electromagnetic microwave thruster on the fourth flight of the X-37B. In 2009, an EmDrive technology transfer contract with Boeing was undertaken via a State Department TAA and a UK export license, approved by the UK Ministry of Defence . Boeing has since stated that it is no longer pursuing this area of research. The U.S. Air Force has stated that the X-37B

28054-466: Was the prime contractor for the OTV program. The X-37B was designed to remain in orbit for up to 270 days at a time. The Secretary of the Air Force stated that the OTV program would focus on "risk reduction, experimentation, and operational concept development for reusable space vehicle technologies, in support of long-term developmental space objectives". The X-37B was originally scheduled for launch in

28223-444: Was the top level of the crew compartment and contained the flight controls for the orbiter. The commander sat in the front left seat, and the pilot sat in the front right seat, with two to four additional seats set up for additional crew members. The instrument panels contained over 2,100 displays and controls, and the commander and pilot were both equipped with a heads-up display (HUD) and a Rotational Hand Controller (RHC) to gimbal

28392-416: Was time to launch STS-125, Atlantis rolled out to pad 39A. The Mission would not have included the extended heatshield inspection normally performed on flight day two. Instead, an inspection would have been performed after the crew was rescued. On flight day two, Endeavour would have performed the rendezvous and grapple with Atlantis . On flight day three, the first EVA would have been performed. During

28561-551: Was vented from the nose to cause the ET to tumble, ensuring that it would break up upon reentry. The ET was the only major component of the Space Shuttle system that was not reused, and it would travel along a ballistic trajectory into the Indian or Pacific Ocean. For the first two missions, STS-1 and STS-2 , the ET was covered in 270 kg (595 lb) of white fire-retardant latex paint to provide protection against damage from ultraviolet radiation. Further research determined that

#408591