Misplaced Pages

Continental IO-360

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Continental IO-360 is a family of fuel-injected air-cooled, horizontally opposed six-cylinder aircraft engines manufactured by Continental Motors in the United States of America , now part of AVIC International since 2010.

#351648

58-588: The engine is available in both naturally aspirated, fuel injected IO-360 models and turbocharged TSIO-360 versions. It is also available in both left and right hand rotation versions for use on twin-engined aircraft. There was no carbureted version of this engine, which would have been designation O-360 , therefore the base model is the IO-360 . The IO-360 was first certified by the Federal Aviation Administration on 15 May 1962 to

116-420: A cold start . In order to ensure an adequate supply at all times, carburetors include a reservoir of fuel, called a "float chamber" or "float bowl". Fuel is delivered to the float chamber by a fuel pump . A floating inlet valve regulates the fuel entering the float chamber, assuring a constant level. Unlike in a fuel injected engine, the fuel system in a carbureted engine is not pressurized. For engines where

174-467: A venturi (aka "barrel"). Fuel is introduced into the air stream through small tubes (the main jets ) at the narrowest part of the venturi, where the air is at its highest speed. Downstream of the venturi is a throttle (usually in the form of a butterfly valve ) which is used to control the amount of air entering the carburetor. In a car, this throttle is connected to the vehicle's throttle pedal, which varies engine speed. At lesser throttle openings,

232-571: A Venturi, the expansion and compression of the fluids cause the pressure inside the Venturi to change. This principle can be used in metrology for gauges calibrated for differential pressures. This type of pressure measurement may be more convenient, for example, to measure fuel or combustion pressures in jet or rocket engines. The first large-scale Venturi meters to measure liquid flows were developed by Clemens Herschel who used them to measure small and large flows of water and wastewater beginning at

290-475: A constricted section (or choke) of a pipe. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista Venturi . The effect has various engineering applications, as the reduction in pressure inside the constriction can be used both for measuring the fluid flow and for moving other fluids (e.g. in a vacuum ejector ). In inviscid fluid dynamics , an incompressible fluid's velocity must increase as it passes through

348-498: A constriction in accord with the principle of mass continuity , while its static pressure must decrease in accord with the principle of conservation of mechanical energy ( Bernoulli's principle ) or according to the Euler equations . Thus, any gain in kinetic energy a fluid may attain by its increased velocity through a constriction is balanced by a drop in pressure because of its loss in potential energy . By measuring pressure,

406-429: A flexible diaphragm on one side of the fuel chamber, connected to a needle valve which regulates the fuel entering the chamber. As the flowrate of the air in the chamber (controlled by the throttling valve/butterfly valve) decreases, the diaphragm moves inward (downward), which closes the needle valve to admit less fuel. As the flowrate of the air in the chamber increases, the diaphragm moves outward (upward) which opens

464-448: A further decrease in the downstream pressure environment will not lead to an increase in velocity, unless the fluid is compressed. The mass flow rate for a compressible fluid will increase with increased upstream pressure, which will increase the density of the fluid through the constriction (though the velocity will remain constant). This is the principle of operation of a de Laval nozzle . Increasing source temperature will also increase

522-431: A heat stove around the exhaust manifold. It was connected to the air filter intake via tubing and supplied warmed air to the air filter. A vacuum controlled butterfly valve pre heat tube on the intake horn of the air cleaner would open allowing cooler air when engine load increased. Venturi tube The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows through

580-533: A liquid with a gas. If a pump forces the liquid through a tube connected to a system consisting of a Venturi to increase the liquid speed (the diameter decreases), a short piece of tube with a small hole in it, and last a Venturi that decreases speed (so the pipe gets wider again), the gas will be sucked in through the small hole because of changes in pressure. At the end of the system, a mixture of liquid and gas will appear. See aspirator and pressure head for discussion of this type of siphon . As fluid flows through

638-440: A low-pressure area in the idle passage/port thus causing fuel to flow through the idle jet. The idle jet is set at some constant value by the carburetor manufacturer, thus flowing a specified amount of fuel. Many carburetors use an off-idle circuit, which includes an additional fuel jet which is briefly used as the throttle starts to open. This jet is located in a low-pressure area behind the throttle. The additional fuel it provides

SECTION 10

#1732797833352

696-464: A patent for a "gas or vapor engine", which ran on turpentine mixed with air. The design did not reach production. In 1875 German engineer Siegfried Marcus produced a car powered by the first petrol engine (which also debuted the first magneto ignition system). Karl Benz introduced his single-cylinder four-stroke powered Benz Patent-Motorwagen in 1885. All three of these engines used surface carburetors, which operated by moving air across

754-406: A single carburetor shared between all of the cylinders, though some high-performance engines historically had multiple carburetors. The carburetor works on Bernoulli's principle : the static pressure of the intake air reduces at higher speeds, drawing more fuel into the airstream. In most cases (except for the accelerator pump ), the driver pressing the throttle pedal does not directly increase

812-419: Is given by p 1 − p 2 = ρ 2 ( v 2 2 − v 1 2 ) , {\displaystyle p_{1}-p_{2}={\frac {\rho }{2}}(v_{2}^{2}-v_{1}^{2}),} where ρ {\displaystyle \rho } is the density of the fluid, v 1 {\displaystyle v_{1}}

870-415: Is held shut by engine vacuum, is often used to do so. As the airflow through the carburetor increases the reduced manifold vacuum pulls the power valve open, allowing more fuel into the main metering circuit. In a two-stroke engine , the carburetor power valve operates in the opposite manner: in most circumstances the valve allows extra fuel into the engine, then at a certain engine RPM it closes to reduce

928-400: Is limited mainly by the fuel's viscosity so that the fuel flow tends to be proportional to the pressure difference. So jets sized for full power tend to starve the engine at lower speed and part throttle. Most commonly this has been corrected by using multiple jets. In SU and other (e.g. Zenith-Stromberg ) variable jet carburetors, it was corrected by varying the jet size. The orientation of

986-445: Is not tolerable and where maximum accuracy is needed in case of highly viscous liquids. Venturi tubes are more expensive to construct than simple orifice plates , and both function on the same basic principle. However, for any given differential pressure, orifice plates cause significantly more permanent energy loss. Both Venturi tubes and orifice plates are used in industrial applications and in scientific laboratories for measuring

1044-405: Is often used to prevent icing. This system consists of a secondary air intake which passes around the exhaust, in order to heat the air before it enters the carburetor. Typically, the system is operated by the pilot manually switching the intake air to travel via the heated intake path as required. The carburetor heat system reduces the power output (due to the lower density of heated air) and causes

1102-664: Is spelled "carburetor" in American English and "carburettor" in British English . Colloquial abbreviations include carb in the UK and North America or Carby in Australia. Air from the atmosphere enters the carburetor (usually via an air cleaner ), has fuel added within the carburetor, passes into the inlet manifold , then through the inlet valve(s) , and finally into the combustion chamber . Most engines use

1160-415: Is the (slower) fluid velocity where the pipe is wider, and v 2 {\displaystyle v_{2}} is the (faster) fluid velocity where the pipe is narrower (as seen in the figure). The limiting case of the Venturi effect is when a fluid reaches the state of choked flow , where the fluid velocity approaches the local speed of sound . When a fluid system is in a state of choked flow,

1218-399: Is used to compensate for the reduced vacuum that occurs when the throttle is opened, thus smoothing the transition from the idle circuit to the main metering circuit. In a four-stroke engine it is often desirable to provide extra fuel to the engine at high loads (to increase the power output and reduce engine knocking ). A 'power valve', which is a spring-loaded valve in the carburetor that

SECTION 20

#1732797833352

1276-541: The Carter Carburetor WCFB and the identical Rochester 4GC, introduced in various General Motors models for 1952. Oldsmobile referred the new carburetor as the "Quadri-Jet" (original spelling) while Buick called it the "Airpower". In the United States, carburetors were the common method of fuel delivery for most US-made gasoline (petrol) engines until the late 1980s, when fuel injection became

1334-1128: The square root . Note that pressure-, temperature-, and mass-compensation is required for every flow, regardless of the end units or dimensions. Also we see the relations: k Δ P max = 1 ρ ⊖ Q max 2 = ρ ⊖ m ˙ max 2 = C ⊖ 2 ρ ⊖ n ˙ max 2 = C ⊖ M ⊖ n ˙ max 2 . {\displaystyle {\begin{aligned}{\frac {k}{\Delta P_{\max }}}&={\frac {1}{\rho ^{\ominus }Q_{\max }^{2}}}\\&={\frac {\rho ^{\ominus }}{{\dot {m}}_{\max }^{2}}}\\&={\frac {{C^{\ominus }}^{2}}{\rho ^{\ominus }{\dot {n}}_{\max }^{2}}}={\frac {C^{\ominus }}{M^{\ominus }{\dot {n}}_{\max }^{2}}}.\end{aligned}}} The Venturi effect may be observed or used in

1392-414: The 1970s. EEC legislation required all vehicles sold and produced in member countries to have a catalytic converter after December 1992. This legislation had been in the pipeline for some time, with many cars becoming available with catalytic converters or fuel injection from around 1990. A significant concern for aircraft engines is the formation of ice inside the carburetor. The temperature of air within

1450-550: The CAR 13 certification standard, effective June 15, 1956, as amended by 13-1 thru 13–3. The engine is produced by Continental under Production Certificate No. 508. The turbocharged TSIO-360 series was first certified on 11 October 1966 to the Federal Aviation Regulations Part 33 standard effective February 1, 1965, as amended by 33–1. This series is manufactured under Production Certificate No. 7, except

1508-515: The TSIO-360-D which is under Production Certificate No. 508. Data from TYPE CERTIFICATE DATA SHEET NO. E1CE Carburetor A carburetor (also spelled carburettor or carburetter ) is a device used by a gasoline internal combustion engine to control and mix air and fuel entering the engine. The primary method of adding fuel to the intake air is through the Venturi tube in

1566-413: The air speed through the venturi is insufficient to maintain the fuel flow, therefore the fuel is instead supplied by the carburetor's idle and off-idle circuits . At greater throttle openings, the speed of air passing through the venturi increases, which lowers the pressure of the air and draws more fuel into the airstream. At the same time, the reduced manifold vacuum results in less fuel flow through

1624-450: The barrels consist of "primary" barrel(s) used for lower load situations and secondary barrel(s) activating when required to provide additional air/fuel at higher loads. The primary and secondary venturi are often sized differently and incorporate different features to suit the situations in which they are used. Many four-barrel carburetors use two primary and two secondary barrels. A four-barrel design of two primary and two secondary barrels

1682-420: The carburetor can be reduced by up to 40 °C (72 °F), due to a combination of the reduced air pressure in the venturi and the latent heat of the evaporating fuel. The conditions during the descent to landing are particularly conducive to icing, since the engine is run at idle for a prolonged period with the throttle closed. Icing can also occur in cruise conditions at altitude. A carburetor heat system

1740-548: The carburetor is a key design consideration. Older engines used updraft carburetors, where the air enters from below the carburetor and exits through the top. From the late 1930s, downdraft carburetors become more commonly used (especially in the United States), along with side draft carburetors (especially in Europe). The main metering circuit consists of a pipe which reduces to a narrows before widening again, forming

1798-466: The choke based on the temperature of the engine's coolant liquid, an electrical resistance heater to do so, or air drawn through a tube connected to an engine exhaust source. A choke left closed after the engine has warmed up increases the engine's fuel consumption and exhaust gas emissions, and causes the engine to run rough and lack power due to an over-rich fuel mixture. However, excessive fuel can flood an engine and prevent it from starting. To remove

Continental IO-360 - Misplaced Pages Continue

1856-408: The compression-based combustion of diesel requires the greater precision and pressure of fuel-injection. The name "carburetor" is derived from the verb carburet , which means "to combine with carbon", or, in particular, "to enrich a gas by combining it with carbon or hydrocarbons ". Thus a carburetor mixes intake air with hydrocarbon-based fuel, such as petrol or AutoGas (LPG). The name

1914-975: The definitions of density ( m = ρ V {\displaystyle m=\rho V} ), molar concentration ( n = C V {\displaystyle n=CV} ), and molar mass ( m = M n {\displaystyle m=Mn} ), one can also derive mass flow or molar flow (i.e. standard volume flow): Δ P = k ρ Q 2 = k 1 ρ m ˙ 2 = k ρ C 2 n ˙ 2 = k M C n ˙ 2 . {\displaystyle {\begin{aligned}\Delta P&=k\,\rho \,Q^{2}\\&=k{\frac {1}{\rho }}\,{\dot {m}}^{2}\\&=k{\frac {\rho }{C^{2}}}\,{\dot {n}}^{2}=k{\frac {M}{C}}\,{\dot {n}}^{2}.\end{aligned}}} However, measurements outside

1972-1020: The design point must compensate for the effects of temperature, pressure, and molar mass on density and concentration. The ideal gas law is used to relate actual values to design values : C = P R T = ( P P ⊖ ) ( T T ⊖ ) C ⊖ {\displaystyle C={\frac {P}{RT}}={\frac {\left({\frac {P}{P^{\ominus }}}\right)}{\left({\frac {T}{T^{\ominus }}}\right)}}C^{\ominus }} ρ = M P R T = ( M M ⊖ P P ⊖ ) ( T T ⊖ ) ρ ⊖ . {\displaystyle \rho ={\frac {MP}{RT}}={\frac {\left({\frac {M}{M^{\ominus }}}{\frac {P}{P^{\ominus }}}\right)}{\left({\frac {T}{T^{\ominus }}}\right)}}\rho ^{\ominus }.} Substituting these two relations into

2030-1552: The end of the 19th century. While working for the Holyoke Water Power Company , Herschel would develop the means for measuring these flows to determine the water power consumption of different mills on the Holyoke Canal System , first beginning development of the device in 1886, two years later he would describe his invention of the Venturi meter to William Unwin in a letter dated June 5, 1888. Fundamentally, pressure-based meters measure kinetic energy density. Bernoulli's equation (used above) relates this to mass density and volumetric flow: Δ P = 1 2 ρ ( v 2 2 − v 1 2 ) = 1 2 ρ ( ( A 1 A 2 ) 2 − 1 ) v 1 2 = 1 2 ρ ( 1 A 2 2 − 1 A 1 2 ) Q 2 = k ρ Q 2 {\displaystyle \Delta P={\frac {1}{2}}\rho (v_{2}^{2}-v_{1}^{2})={\frac {1}{2}}\rho \left(\left({\frac {A_{1}}{A_{2}}}\right)^{2}-1\right)v_{1}^{2}={\frac {1}{2}}\rho \left({\frac {1}{A_{2}^{2}}}-{\frac {1}{A_{1}^{2}}}\right)Q^{2}=k\,\rho \,Q^{2}} where constant terms are absorbed into k . Using

2088-485: The engine in steady-state conditions, the inertia of fuel (being higher than that of air) causes a temporary shortfall as the throttle is opened. Therefore, an accelerator pump is often used to briefly provide extra fuel as the throttle is opened. When the driver presses the throttle pedal, a small piston or diaphragm pump injects extra fuel directly into the carburetor throat. The accelerator pump can also be used to "prime" an engine with extra fuel prior to attempting

2146-418: The excess fuel, many carburetors with automatic chokes allow it to be held open (by manually, depressing the accelerator pedal to the floor and briefly holding it there while cranking the starter) to allow extra air into the engine until the excess fuel is cleared out. Another method used by carburetors to improve the operation of a cold engine is a fast idle cam , which is connected to the choke and prevents

2204-433: The float chamber is located close to the engine, heat from the engine (including for several hours after the engine is shut off) can cause the fuel to heat up to the point of vaporization. This causes air bubbles in the fuel (similar to the air bubbles that necessitate brake bleeding ), which prevents the flow of fuel and is known as 'vapor lock'. To avoid pressurizing the float chamber, vent tubes allow air to enter and exit

2262-407: The float chamber. These tubes usually extend into the carburetor throat, placed to prevent fuel from sloshing out of them into the carburetor. If an engine must be operated when the carburetor is not in an upright orientation (for example in a chainsaw or airplane), a float chamber and gravity activated float valve would not be suitable. Instead, a diaphragm chamber is typically used. This consists of

2320-414: The flow of air at the entrance to the carburetor. This increases the vacuum in the main metering circuit, causing more fuel to be supplied to the engine via the main jets. Prior to the late 1950s the choke was manually operated by the driver, often using a lever or knob on the dashboard . Since then, automatic chokes became more commonplace. These either use a bimetallic thermostat to automatically regulate

2378-401: The flow rate can be determined, as in various flow measurement devices such as Venturi meters, Venturi nozzles and orifice plates . Referring to the adjacent diagram, using Bernoulli's equation in the special case of steady, incompressible, inviscid flows (such as the flow of water or other liquid, or low-speed flow of gas) along a streamline, the theoretical pressure drop at the constriction

Continental IO-360 - Misplaced Pages Continue

2436-1396: The flow rate of liquids. A Venturi can be used to measure the volumetric flow rate , Q {\displaystyle \scriptstyle Q} , using Bernoulli's principle . Since Q = v 1 A 1 = v 2 A 2 p 1 − p 2 = ρ 2 ( v 2 2 − v 1 2 ) {\displaystyle {\begin{aligned}Q&=v_{1}A_{1}=v_{2}A_{2}\\[3pt]p_{1}-p_{2}&={\frac {\rho }{2}}\left(v_{2}^{2}-v_{1}^{2}\right)\end{aligned}}} then Q = A 1 2 ρ ⋅ p 1 − p 2 ( A 1 A 2 ) 2 − 1 = A 2 2 ρ ⋅ p 1 − p 2 1 − ( A 2 A 1 ) 2 {\displaystyle Q=A_{1}{\sqrt {{\frac {2}{\rho }}\cdot {\frac {p_{1}-p_{2}}{\left({\frac {A_{1}}{A_{2}}}\right)^{2}-1}}}}=A_{2}{\sqrt {{\frac {2}{\rho }}\cdot {\frac {p_{1}-p_{2}}{1-\left({\frac {A_{2}}{A_{1}}}\right)^{2}}}}}} A Venturi can also be used to mix

2494-426: The fuel entering the engine. Instead, the airflow through the carburetor increases, which in turn increases the amount of fuel drawn into the intake mixture. The main disadvantage of basing a carburetor's operation on Bernoulli's Principle is that being a fluid dynamic device, the pressure reduction in a venturi tends to be proportional to the square of the intake airspeed. The fuel jets are much smaller and fuel flow

2552-465: The fuel entering the engine. This is done in order to extend the engine's maximum RPM, since many two-stroke engines can temporarily achieve higher RPM with a leaner air-fuel ratio. This is not to be confused with the unrelated exhaust power valve arrangements used on two-stroke engines. A metering rod or step-up rod system is sometimes used as an alternative to a power valve in a four-stroke engine in order to supply extra fuel at high loads. One end of

2610-424: The idle and off-idle circuits. During cold weather fuel vaporizes less readily and tends to condense on the walls of the intake manifold, starving the cylinders of fuel and making cold starts difficult. Additional fuel is required (for a given amount of air) to start and run the engine until it warms up, provided by a choke valve . While the engine is warming up the choke valve is partially closed, restricting

2668-409: The intake air filter to be bypassed, therefore the system is only used when there is a risk of icing. If the engine is operating at idle RPM, another method to prevent icing is to periodically open the throttle, which increases the air temperature within the carburetor. Carburetor icing also occurs on other applications and various methods have been employed to solve this problem. On inline engines

2726-411: The intake air travelling through the carburetor is pressurized (such as where the carburetor is downstream of a supercharger ) the entire carburetor must be contained in an airtight pressurized box to operate. However, this is not necessary where the carburetor is upstream of the supercharger. Problems of fuel boiling and vapor lock can occur in carbureted engines, especially in hotter climates. Since

2784-490: The intake and exhaust manifolds are on the same side of the head. Heat from the exhaust is used to warm the intake manifold and in turn the carburetor. On V configurations, exhaust gases were directed from one head through the intake cross over to the other head. One method for regulating the exhaust flow on the cross over for intake warming was a weighted eccentric butterfly valve called a heat riser that remained closed at idle and opened at higher exhaust flow. Some vehicles used

2842-404: The local sonic velocity, thus allowing increased mass flow rate, but only if the nozzle area is also increased to compensate for the resulting decrease in density. The Bernoulli equation is invertible, and pressure should rise when a fluid slows down. Nevertheless, if there is an expansion of the tube section, turbulence will appear, and the theorem will not hold. In all experimental Venturi tubes,

2900-500: The main metering circuit, though various other components are also used to provide extra fuel or air in specific circumstances. Since the 1990s, carburetors have been largely replaced by fuel injection for cars and trucks, but carburetors are still used by some small engines (e.g. lawnmowers, generators, and concrete mixers) and motorcycles. In addition, they are still widely used on piston engine driven aircraft. Diesel engines have always used fuel injection instead of carburetors, as

2958-480: The needle valve to admit more fuel, allowing the engine to generate more power. A balanced state is reached which creates a steady fuel reservoir level, that remains constant in any orientation. Other components that have been used on carburetors include: The basic design for a carburetor consists of a single venturi (main metering circuit), though designs with two or four venturi (two-barrel and four-barrel carburetors respectively) are also quite commonplace. Typically

SECTION 50

#1732797833352

3016-484: The preferred method. One of the last motorsport users of carburetors was NASCAR, which switched to electronic fuel injection after the 2011 Sprint Cup series . NASCAR still uses the four-barrel carburetor in the NASCAR Xfinity Series . In Europe, carburetors were largely replaced by fuel injection in the late 1980s, although fuel injection had been increasingly used in luxury cars and sports cars since

3074-523: The pressure in the entrance is compared to the pressure in the middle section; the output section is never compared with them. The simplest apparatus is a tubular setup known as a Venturi tube or simply a Venturi (plural: "Venturis" or occasionally "Venturies"). Fluid flows through a length of pipe of varying diameter. To avoid undue aerodynamic drag , a Venturi tube typically has an entry cone of 30 degrees and an exit cone of 5 degrees. Venturi tubes are often used in processes where permanent pressure loss

3132-2804: The pressure-flow equations above yields the fully compensated flows: Δ P = k ( M M ⊖ P P ⊖ ) ( T T ⊖ ) ρ ⊖ Q 2 = Δ P max ( M M ⊖ P P ⊖ ) ( T T ⊖ ) ( Q Q max ) 2 = k ( T T ⊖ ) ( M M ⊖ P P ⊖ ) ρ ⊖ m ˙ 2 = Δ P max ( T T ⊖ ) ( M M ⊖ P P ⊖ ) ( m ˙ m ˙ max ) 2 = k M ( T T ⊖ ) ( P P ⊖ ) C ⊖ n ˙ 2 = Δ P max ( M M ⊖ T T ⊖ ) ( P P ⊖ ) ( n ˙ n ˙ max ) 2 . {\displaystyle {\begin{aligned}\Delta P&=k{\frac {\left({\frac {M}{M^{\ominus }}}{\frac {P}{P^{\ominus }}}\right)}{\left({\frac {T}{T^{\ominus }}}\right)}}\rho ^{\ominus }\,Q^{2}&=\Delta P_{\max }{\frac {\left({\frac {M}{M^{\ominus }}}{\frac {P}{P^{\ominus }}}\right)}{\left({\frac {T}{T^{\ominus }}}\right)}}\left({\frac {Q}{Q_{\max }}}\right)^{2}\\&=k{\frac {\left({\frac {T}{T^{\ominus }}}\right)}{\left({\frac {M}{M^{\ominus }}}{\frac {P}{P^{\ominus }}}\right)\rho ^{\ominus }}}{\dot {m}}^{2}&=\Delta P_{\max }{\frac {\left({\frac {T}{T^{\ominus }}}\right)}{\left({\frac {M}{M^{\ominus }}}{\frac {P}{P^{\ominus }}}\right)}}\left({\frac {\dot {m}}{{\dot {m}}_{\max }}}\right)^{2}\\&=k{\frac {M\left({\frac {T}{T^{\ominus }}}\right)}{\left({\frac {P}{P^{\ominus }}}\right)C^{\ominus }}}{\dot {n}}^{2}&=\Delta P_{\max }{\frac {\left({\frac {M}{M^{\ominus }}}{\frac {T}{T^{\ominus }}}\right)}{\left({\frac {P}{P^{\ominus }}}\right)}}\left({\frac {\dot {n}}{{\dot {n}}_{\max }}}\right)^{2}.\end{aligned}}} Q , m , or n are easily isolated by dividing and taking

3190-497: The rods is tapered, which sits in the main metering jets and acts as a valve for fuel flow in the jets. At high engine loads, the rods are lifted away from the jets (either mechanically or using manifold vacuum), increasing the volume of fuel can flow through the jet. These systems have been used by the Rochester Quadra jet and in the 1950s Carter carburetors. While the main metering circuit can adequately supply fuel to

3248-399: The throttle from closing fully while the choke is in operation. The resulting increase in idle speed provides a more stable idle for a cold engine (by better atomizing the cold fuel) and helps the engine warm up quicker. The system within a carburetor that meters fuel when the engine is running at low RPM. The idle circuit is generally activated by vacuum under the throttle plate, which causes

3306-549: The top of a vessel containing the fuel. The first float-fed carburetor design, which used an atomizer nozzle , was introduced by German engineers Wilhelm Maybach and Gottlieb Daimler in their 1885 Grandfather Clock engine . The Butler Petrol Cycle car—built in England in 1888—also used a float-fed carburetor. The first carburetor for a stationary engine was patented in 1893 by Hungarian engineers János Csonka and Donát Bánki . The first four-barrel carburetors were

3364-530: Was commonly used in V8 engines to conserve fuel at low engine speeds while still affording an adequate supply at high. The use of multiple carburetors (e.g., a carburetor for each cylinder or pair of cylinders) also results in the intake air being drawn through multiple venturi. Some high-performance engines have used multiple two-barrel or four-barrel carburetors, for example six two-barrel carburetors on Ferrari V12s. In 1826, American engineer Samuel Morey received

#351648