The Canadian Illustrated News was a weekly Canadian illustrated magazine published in Montreal from 1869 to 1883. It was published by George Desbarats .
75-405: The magazine was notable for being the first in the world to consistently produce photographs at a successful rate. This was possible with the financial backing of George Desbarats, as well as the invention of half-tone photoengraving by William Leggo . The Canadian federal MP Fabien Vanasse was one of the notable journalists of the publication. More than 15,000 illustrations were published during
150-621: A PCB had holes drilled for each wire of each component. The component leads were then inserted through the holes and soldered to the copper PCB traces. This method of assembly is called through-hole construction . In 1949, Moe Abramson and Stanislaus F. Danko of the United States Army Signal Corps developed the Auto-Sembly process in which component leads were inserted into a copper foil interconnection pattern and dip soldered . The patent they obtained in 1956
225-426: A PCB may have a coating that protects the copper from corrosion and reduces the chances of solder shorts between traces or undesired electrical contact with stray bare wires. For its function in helping to prevent solder shorts, the coating is called solder resist or solder mask . The pattern to be etched into each copper layer of a PCB is called the "artwork". The etching is usually done using photoresist which
300-460: A flat, narrow part of the copper foil that remains after etching. Its resistance , determined by its width, thickness, and length, must be sufficiently low for the current the conductor will carry. Power and ground traces may need to be wider than signal traces . In a multi-layer board one entire layer may be mostly solid copper to act as a ground plane for shielding and power return. For microwave circuits, transmission lines can be laid out in
375-418: A general estimate of the board complexity. Using more layers allow for more routing options and better control of signal integrity, but are also time-consuming and costly to manufacture. Likewise, selection of the vias for the board also allow fine tuning of the board size, escaping of signals off complex ICs, routing, and long term reliability, but are tightly coupled with production complexity and cost. One of
450-423: A lens may be used to project an image directly onto it. Typically, the photoresist is hardened where it receives sufficient exposure to light, but some photoresists are initially hard and are then softened by exposure. A solvent is used to wash away the soft parts, laying bare the underlying material, which is then bathed in or sprayed with the acid or other etchant. The remaining photoresist is usually removed after
525-786: A liquid ink that contains electronic functionalities. HDI (High Density Interconnect) technology allows for a denser design on the PCB and thus potentially smaller PCBs with more traces and components in a given area. As a result, the paths between components can be shorter. HDIs use blind/buried vias, or a combination that includes microvias. With multi-layer HDI PCBs the interconnection of several vias stacked on top of each other (stacked vías, instead of one deep buried via) can be made stronger, thus enhancing reliability in all conditions. The most common applications for HDI technology are computer and mobile phone components as well as medical equipment and military communication equipment. A 4-layer HDI microvia PCB
600-421: A mirror finish. Methods were soon devised for differentially etching the image grains and the ground so that the daguerreotype could be used as a printing plate. In some instances, very pleasing results were obtained, but exceptional skill and care were required and the very fine structure of the image limited the useful life of each plate to a few hundred prints at best. Henry Fox Talbot is usually credited with
675-409: A pattern of etchant-resistant material is applied to the deep parts of the engraving. The resist for the background may be another photoengraving or may be randomly splashed on. The engraving is etched again for a short time to produce a raised pattern in the background. Decorative engravings of this type may also be spray-painted and sanded as in the previous method. In traditional print shop practice,
750-446: A planar form such as stripline or microstrip with carefully controlled dimensions to assure a consistent impedance . In radio-frequency and fast switching circuits the inductance and capacitance of the printed circuit board conductors become significant circuit elements, usually undesired; conversely, they can be used as a deliberate part of the circuit design, as in distributed-element filters , antennae , and fuses , obviating
825-743: A print by Henri Julien of the Royal Military College of Canada Uniform of Cadets, is in the Canadian War Museum in Ottawa , Ontario . A print by Arthur William Moore (1863–1909), a landscape artist, of the Royal Military College of Canada Kingston, Ontario "The Canadian Military College, From the Walls of Fort Henry c. 17 June 1876" is in the Library and Archives Canada . This news magazine or journal-related article
SECTION 10
#1732780443516900-649: A print-and- etch method in the UK, and in the United States Max Schoop obtained a patent to flame-spray metal onto a board through a patterned mask. Charles Ducas in 1925 patented a method of electroplating circuit patterns. Predating the printed circuit invention, and similar in spirit, was John Sargrove 's 1936–1947 Electronic Circuit Making Equipment (ECME) that sprayed metal onto a Bakelite plastic board. The ECME could produce three radio boards per minute. The Austrian engineer Paul Eisler invented
975-600: A proposal which met the requirements: a ceramic plate would be screenprinted with metallic paint for conductors and carbon material for resistors , with ceramic disc capacitors and subminiature vacuum tubes soldered in place. The technique proved viable, and the resulting patent on the process, which was classified by the U.S. Army, was assigned to Globe Union. It was not until 1984 that the Institute of Electrical and Electronics Engineers (IEEE) awarded Harry W. Rubinstein its Cledo Brunetti Award for early key contributions to
1050-422: A sloped edge; a single dot will end up as a cone -shaped mound protruding from the etched area. This method is used for printing plates (the shoulder supports the printing surface), foil stamping dies and embossing dies. Decorative engravings made by this method may go through a second process to produce a decorative background. The raised parts and their shoulders are painted with an etchant-resistant material and
1125-458: A special very- large-format camera is used to image the source material either directly onto the photosensitive coating, or onto a sheet of photographic film which is then developed and contact-printed onto the coated plate. In large-scale commercial printing, computer-driven optoelectronic equivalents began to replace these methods in the 1970s. In the case of line cuts (graphics in solid blacks and whites without gradations of gray or color),
1200-434: A thin coating of bitumen hardens (polymerizes) where it is exposed to light. The unexposed parts can then be rinsed away with a solvent, baring the underlying material, which can then be etched to the desired depth. Niépce's process lay dormant for many years, but it was revived in the 1850s and bitumen was widely used as a photoresist far into the 20th century. Very long exposures in bright light were required, but bitumen had
1275-440: Is cotton paper impregnated with phenolic resin , often tan or brown. When a PCB has no components installed, it is less ambiguously called a printed wiring board ( PWB ) or etched wiring board . However, the term "printed wiring board" has fallen into disuse. A PCB populated with electronic components is called a printed circuit assembly ( PCA ), printed circuit board assembly or PCB assembly ( PCBA ). In informal usage,
1350-455: Is fire retardant , the dielectric constant (e r ), the loss tangent (tan δ), the tensile strength , the shear strength , the glass transition temperature (T g ), and the Z-axis expansion coefficient (how much the thickness changes with temperature). There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of
1425-480: Is a stub . You can help Misplaced Pages by expanding it . Photoengraving Photoengraving is a process that uses a light-sensitive photoresist applied to the surface to be engraved to create a mask that protects some areas during a subsequent operation which etches, dissolves, or otherwise removes some or all of the material from the unshielded areas of a substrate. Normally applied to metal, it can also be used on glass, plastic and other materials. A photoresist
1500-437: Is a common engineering error in high-frequency digital design; it increases the cost of the boards without a corresponding benefit. Signal degradation by loss tangent and dielectric constant can be easily assessed by an eye pattern . Moisture absorption occurs when the material is exposed to high humidity or water. Both the resin and the reinforcement may absorb water; water also may be soaked by capillary forces through voids in
1575-477: Is about 73, compared to about 4 for common circuit board materials. Absorbed moisture can also vaporize on heating, as during soldering , and cause cracking and delamination , the same effect responsible for "popcorning" damage on wet packaging of electronic parts. Careful baking of the substrates may be required to dry them prior to soldering. Often encountered materials: Less-often encountered materials: Copper thickness of PCBs can be specified directly or as
SECTION 20
#17327804435161650-447: Is also the same method used for printed circuit boards . The engraving is usually made in copper or brass . The process can be done in open trays but is much more effective if the etchant (often ferric chloride ) is sprayed onto the metal. When ferric chloride is used as the etchant, no metal parts other than titanium can be used in the etching equipment. Decorative engraving is often filled by spray-painting then sanding to remove
1725-468: Is an important consideration especially with ball grid array (BGA) and naked die technologies, and glass fiber offers the best dimensional stability. FR-4 is by far the most common material used today. The board stock with unetched copper on it is called "copper-clad laminate". With decreasing size of board features and increasing frequencies, small nonhomogeneities like uneven distribution of fiberglass or other filler, thickness variations, and bubbles in
1800-655: Is available to do much of the work of layout. Mass-producing circuits with PCBs is cheaper and faster than with other wiring methods, as components are mounted and wired in one operation. Large numbers of PCBs can be fabricated at the same time, and the layout has to be done only once. PCBs can also be made manually in small quantities, with reduced benefits. PCBs can be single-sided (one copper layer), double-sided (two copper layers on both sides of one substrate layer), or multi-layer (outer and inner layers of copper, alternating with layers of substrate). Multi-layer PCBs allow for much higher component density, because circuit traces on
1875-451: Is coated onto the PCB, then exposed to light projected in the pattern of the artwork. The resist material protects the copper from dissolution into the etching solution. The etched board is then cleaned. A PCB design can be mass-reproduced in a way similar to the way photographs can be mass-duplicated from film negatives using a photographic printer . FR-4 glass epoxy is the most common insulating substrate. Another substrate material
1950-418: Is equivalent in quality to an 8-layer through-hole PCB, so HDI technology can reduce costs. HDI PCBs are often made using build-up film such as ajinomoto build-up film, which is also used in the production of flip chip packages. Some PCBs have optical waveguides, similar to optical fibers built on the PCB. A basic PCB consists of a flat sheet of insulating material and a layer of copper foil , laminated to
2025-632: Is estimated to reach $ 79 billion by 2024. Before the development of printed circuit boards, electrical and electronic circuits were wired point-to-point on a chassis. Typically, the chassis was a sheet metal frame or pan, sometimes with a wooden bottom. Components were attached to the chassis, usually by insulators when the connecting point on the chassis was metal, and then their leads were connected directly or with jumper wires by soldering , or sometimes using crimp connectors, wire connector lugs on screw terminals, or other methods. Circuits were large, bulky, heavy, and relatively fragile (even discounting
2100-410: Is possible. In these applications, it is properly called photochemical machining , but the terms photochemical milling, chemical milling and photoetching are sometimes used. A similar process called photolithography is used to make integrated circuits . One method of photoengraving produces a shallow depression in the metal . This is used for intaglio printing plates or for decorative purposes. It
2175-441: Is selected which is resistant to the particular acid or other etching compound to be used. It may be a liquid applied by brushing, spraying, pouring or other means and then allowed to set, or it may come in sheet form and be applied by laminating. It is then exposed to light—usually strong ultraviolet (UV) light—through a photographic , mechanically printed, or manually created image or pattern on transparent film. Alternatively,
2250-471: Is the most common thickness; 2 oz (70 μm) and 0.5 oz (17.5 μm) thickness is often an option. Less common are 12 and 105 μm, 9 μm is sometimes available on some substrates. Flexible substrates typically have thinner metalization. Metal-core boards for high power devices commonly use thicker copper; 35 μm is usual but also 140 and 400 μm can be encountered. In the US, copper foil thickness
2325-549: Is usually credited with the first commercially successful process that was compatible with ordinary letterpress printing, so that halftone blocks could be printed along with blocks of text in books, periodicals and newspapers. His process came into widespread use during the 1890s, largely replacing the hand-engraved wood and metal blocks that had previously served to provide illustrations. As in many other fields of invention, there are conflicting claims of priority, instances of simultaneous invention, and variously nuanced definitions of
Canadian Illustrated News - Misplaced Pages Continue
2400-449: The glass transition temperature the resin in the composite softens and significantly increases thermal expansion; exceeding T g then exerts mechanical overload on the board components - e.g. the joints and the vias. Below T g the thermal expansion of the resin roughly matches copper and glass, above it gets significantly higher. As the reinforcement and copper confine the board along the plane, virtually all volume expansion projects to
2475-399: The signal propagation speed , frequency dependence introduces phase distortion in wideband applications; as flat a dielectric constant vs frequency characteristics as is achievable is important here. The impedance of transmission lines decreases with frequency, therefore faster edges of signals reflect more than slower ones. Dielectric breakdown voltage determines the maximum voltage gradient
2550-558: The PCB surface, instead of wire leads to pass through holes. Components became much smaller and component placement on both sides of the board became more common than with through-hole mounting, allowing much smaller PCB assemblies with much higher circuit densities. Surface mounting lends itself well to a high degree of automation, reducing labor costs and greatly increasing production rates compared with through-hole circuit boards. Components can be supplied mounted on carrier tapes. Surface mount components can be about one-quarter to one-tenth of
2625-431: The advantage that it was superbly resistant to strong acids. The use of photoengraving for a halftone process that could be used to print grayscale photographic images dates back to the 1839 introduction of the daguerreotype , the first practical photographic process. The daguerreotype image consisted of a microscopically fine granular structure on the surface of a silver-plated copper sheet that had been polished to
2700-453: The back of the board in opposite directions to improve the part's mechanical strength), soldering the leads, and trimming off the ends. Leads may be soldered either manually or by a wave soldering machine. Surface-mount technology emerged in the 1960s, gained momentum in the early 1980s, and became widely used by the mid-1990s. Components were mechanically redesigned to have small metal tabs or end caps that could be soldered directly onto
2775-437: The board and soldered onto copper traces on the other side. Boards may be single-sided, with an unplated component side, or more compact double-sided boards, with components soldered on both sides. Horizontal installation of through-hole parts with two axial leads (such as resistors, capacitors, and diodes) is done by bending the leads 90 degrees in the same direction, inserting the part in the board (often bending leads located on
2850-519: The breakable glass envelopes of the vacuum tubes that were often included in the circuits), and production was labor-intensive, so the products were expensive. Development of the methods used in modern printed circuit boards started early in the 20th century. In 1903, a German inventor, Albert Hanson, described flat foil conductors laminated to an insulating board, in multiple layers. Thomas Edison experimented with chemical methods of plating conductors onto linen paper in 1904. Arthur Berry in 1913 patented
2925-524: The ceramic substrate. In 1948, the US released the invention for commercial use. Printed circuits did not become commonplace in consumer electronics until the mid-1950s, after the Auto-Sembly process was developed by the United States Army. At around the same time in the UK work along similar lines was carried out by Geoffrey Dummer , then at the RRDE . Motorola was an early leader in bringing
3000-539: The circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known pre-preg materials used in the PCB industry are FR-2 (phenolic cotton paper), FR-3 (cotton paper and epoxy), FR-4 (woven glass and epoxy), FR-5 (woven glass and epoxy), FR-6 (matte glass and polyester), G-10 (woven glass and epoxy), CEM-1 (cotton paper and epoxy), CEM-2 (cotton paper and epoxy), CEM-3 (non-woven glass and epoxy), CEM-4 (woven glass and epoxy), CEM-5 (woven glass and polyester). Thermal expansion
3075-488: The components to the board. Another manufacturing process adds vias , drilled holes that allow electrical interconnections between conductive layers. Printed circuit boards are used in nearly all electronic products. Alternatives to PCBs include wire wrap and point-to-point construction , both once popular but now rarely used. PCBs require additional design effort to lay out the circuit, but manufacturing and assembly can be automated. Electronic design automation software
Canadian Illustrated News - Misplaced Pages Continue
3150-431: The components, test points , or identifying text. Originally, silkscreen printing was used for this purpose, but today other, finer quality printing methods are usually used. Normally the legend does not affect the function of a PCBA. A printed circuit board can have multiple layers of copper which almost always are arranged in pairs. The number of layers and the interconnection designed between them (vias, PTHs) provide
3225-471: The desired final thickness and dielectric characteristics. Available standard laminate thickness are listed in ANSI/IPC-D-275. The cloth or fiber material used, resin material, and the cloth to resin ratio determine the laminate's type designation (FR-4, CEM -1, G-10 , etc.) and therefore the characteristics of the laminate produced. Important characteristics are the level to which the laminate
3300-498: The development of printed components and conductors on a common insulating substrate. Rubinstein was honored in 1984 by his alma mater, the University of Wisconsin-Madison , for his innovations in the technology of printed electronic circuits and the fabrication of capacitors. This invention also represents a step in the development of integrated circuit technology, as not only wiring but also passive components were fabricated on
3375-403: The dielectric constant). The reinforcement type defines two major classes of materials: woven and non-woven. Woven reinforcements are cheaper, but the high dielectric constant of glass may not be favorable for many higher-frequency applications. The spatially nonhomogeneous structure also introduces local variations in electrical parameters, due to different resin/glass ratio at different areas of
3450-405: The finished multilayer board) are plated-through, before the layers are laminated together. Only the outer layers need be coated; the inner copper layers are protected by the adjacent substrate layers. "Through hole" components are mounted by their wire leads passing through the board and soldered to traces on the other side. "Surface mount" components are attached by their leads to copper traces on
3525-407: The first workable process for converting a grayscale image into a varying structure of stark black and white that resulted in a reasonably durable printing plate. As with other early halftone processes, the plate could not be combined with ordinary type, so for inclusion in a book or periodical each image had to be printed separately and either bound in or tipped in with an adhesive. Frederic E. Ives
3600-506: The form of a laminated sandwich structure of conductive and insulating layers: each of the conductive layers is designed with a pattern of traces, planes and other features (similar to wires on a flat surface) etched from one or more sheet layers of copper laminated onto or between sheet layers of a non-conductive substrate. Electrical components may be fixed to conductive pads on the outer layers, generally by means of soldering , which both electrically connects and mechanically fastens
3675-485: The highlights. The finer the screen, the finer the detail possible in the printed product. Halftones made with a screen having 65 lines to the inch are considered coarse. Those having 150 lines to the inch are considered fine. The first photoengraving process was developed in the 1820s by Nicéphore Niépce , which used photoresist to make a one-off camera photograph rather than a printing plate. His usual test subjects were paper prints of conventional engravings, and exposure
3750-447: The inner layers would otherwise take up surface space between components. The rise in popularity of multilayer PCBs with more than two, and especially with more than four, copper planes was concurrent with the adoption of surface mount technology . However, multilayer PCBs make repair, analysis, and field modification of circuits much more difficult and usually impractical. The world market for bare PCBs exceeded $ 60.2 billion in 2014 and
3825-427: The internal layers is used as ground plane or power plane, to achieve better signal integrity, higher signaling frequencies, lower EMI, and better power supply decoupling. In multi-layer boards, the layers of material are laminated together in an alternating sandwich: copper, substrate, copper, substrate, copper, etc.; each plane of copper is etched, and any internal vias (that will not extend to both outer surfaces of
SECTION 50
#17327804435163900-541: The magazine's 14 years of existence, before it stopped publication as it accumulated losses. The magazine had a French language counterpart also published by Desbarats called L'Opinion publique , that published many times the English magazine's illustrations and many of its articles translated into French. Many notable prints in Canadian Illustrated News are kept in various museums. For example,
3975-498: The material can be subjected to before suffering a breakdown (conduction, or arcing, through the dielectric). Tracking resistance determines how the material resists high voltage electrical discharges creeping over the board surface. Loss tangent determines how much of the electromagnetic energy from the signals in the conductors is absorbed in the board material. This factor is important for high frequencies. Low-loss materials are more expensive. Choosing unnecessarily low-loss material
4050-495: The materials and along the reinforcement. Epoxies of the FR-4 materials are not too susceptible, with absorption of only 0.15%. Teflon has very low absorption of 0.01%. Polyimides and cyanate esters, on the other side, suffer from high water absorption. Absorbed water can lead to significant degradation of key parameters; it impairs tracking resistance, breakdown voltage, and dielectric parameters. Relative dielectric constant of water
4125-498: The need for additional discrete components. High density interconnects (HDI) PCBs have tracks or vias with a width or diameter of under 152 micrometers. Laminates are manufactured by curing layers of cloth or paper with thermoset resin under pressure and heat to form an integral final piece of uniform thickness. They can be up to 4 by 8 feet (1.2 by 2.4 m) in width and length. Varying cloth weaves (threads per inch or cm), cloth thickness, and resin percentage are used to achieve
4200-698: The operation is complete. In the graphic arts, photoengraving is used to make printing plates for various printing processes, reproducing a wide variety of graphics such as lettering, line drawings and photographs. Photogravure and screen printing are examples of such process. The same procedure is used to make printed circuit boards , foil-stamping dies and embossing dies. It is also used to make nameplates , commemorative plaques and other decorative engravings. It can be used to make flat springs, levers, gears and other practical components that would otherwise be fabricated from sheet metal by cutting, drilling, jigsawing or stamping. A very high degree of precision
4275-410: The paint from the raised parts of the engraving. Another method produces a deep engraving with sloped shoulders. In this method, the metal (usually zinc or magnesium ) is held face down and a mixture of nitric acid and a soap-like oil is splashed onto it. As the acid etches the surface, the oil adheres to the edges of the exposed area. This progressively reduces the area being etched, resulting in
4350-403: The photoengraving is done on zinc, and the result is called a zinc etching. In the case of halftone cuts, the work is done on copper. The halftone effect is accomplished by photographing the subject through a wire or glass screen, which breaks the image up into a pattern of dots with sizes corresponding to the local brightness of the image; the larger dots create the darker areas, the smaller dots
4425-471: The point-to-point chassis construction method remained in common use in industry (such as TV and hi-fi sets) into at least the late 1960s. Printed circuit boards were introduced to reduce the size, weight, and cost of parts of the circuitry. In 1960, a small consumer radio receiver might be built with all its circuitry on one circuit board, but a TV set would probably contain one or more circuit boards. Originally, every electronic component had wire leads , and
4500-646: The printed circuit as part of a radio set while working in the UK around 1936. In 1941 a multi-layer printed circuit was used in German magnetic influence naval mines . Around 1943 the United States began to use the technology on a large scale to make proximity fuzes for use in World War II. Such fuzes required an electronic circuit that could withstand being fired from a gun, and could be produced in quantity. The Centralab Division of Globe Union submitted
4575-478: The process into consumer electronics, announcing in August 1952 the adoption of "plated circuits" in home radios after six years of research and a $ 1M investment. Motorola soon began using its trademarked term for the process, PLAcir, in its consumer radio advertisements. Hallicrafters released its first "foto-etch" printed circuit product, a clock-radio, on November 1, 1952. Even as circuit boards became available,
SECTION 60
#17327804435164650-403: The protruding wires are cut off and discarded. From the 1980s onward, small surface mount parts have been used increasingly instead of through-hole components; this has led to smaller boards for a given functionality and lower production costs, but with some additional difficulty in servicing faulty boards. In the 1990s the use of multilayer surface boards became more frequent. As a result, size
4725-441: The resin matrix, and the associated local variations in the dielectric constant, are gaining importance. The circuit-board substrates are usually dielectric composite materials. The composites contain a matrix (usually an epoxy resin ) and a reinforcement (usually a woven, sometimes nonwoven, glass fibers, sometimes even paper), and in some cases a filler is added to the resin (e.g. ceramics; titanate ceramics can be used to increase
4800-478: The same side of the board. A board may use both methods for mounting components. PCBs with only through-hole mounted components are now uncommon. Surface mounting is used for transistors , diodes , IC chips , resistors , and capacitors. Through-hole mounting may be used for some large components such as electrolytic capacitors and connectors. The first PCBs used through-hole technology , mounting electronic components by lead inserted through holes on one side of
4875-408: The simplest boards to produce is the two-layer board. It has copper on both sides that are referred to as external layers; multi layer boards sandwich additional internal layers of copper and insulation. After two-layer PCBs, the next step up is the four-layer. The four layer board adds significantly more routing options in the internal layers as compared to the two layer board, and often some portion of
4950-414: The size and weight of through-hole components, and passive components much cheaper. However, prices of semiconductor surface mount devices (SMDs) are determined more by the chip itself than the package, with little price advantage over larger packages, and some wire-ended components, such as 1N4148 small-signal switch diodes, are actually significantly cheaper than SMD equivalents. Each trace consists of
5025-422: The substrate. Chemical etching divides the copper into separate conducting lines called tracks or circuit traces , pads for connections, vias to pass connections between layers of copper, and features such as solid conductive areas for electromagnetic shielding or other purposes. The tracks function as wires fixed in place, and are insulated from each other by air and the board substrate material. The surface of
5100-402: The term "printed circuit board" most commonly means "printed circuit assembly" (with components). The IPC preferred term for an assembled board is circuit card assembly ( CCA ), and for an assembled backplane it is backplane assembly . "Card" is another widely used informal term for a "printed circuit assembly". For example, expansion card . A PCB may be printed with a legend identifying
5175-420: The terminology, so sorting out the merits of the "first" claims made on behalf of the many inventors in the field of halftone reproduction—not infrequently biased by nationalistic sentiments—can be very problematic. Circuit board A printed circuit board ( PCB ), also called printed wiring board ( PWB ), is a medium used to connect or "wire" components to one another in a circuit . It takes
5250-419: The thickness and stresses the plated-through holes. Repeated soldering or other exposition to higher temperatures can cause failure of the plating, especially with thicker boards; thick boards therefore require a matrix with a high T g . The materials used determine the substrate's dielectric constant . This constant is also dependent on frequency, usually decreasing with frequency. As this constant determines
5325-511: The weave pattern. Nonwoven reinforcements, or materials with low or no reinforcement, are more expensive but more suitable for some RF/analog applications. The substrates are characterized by several key parameters, chiefly thermomechanical ( glass transition temperature , tensile strength , shear strength , thermal expansion ), electrical ( dielectric constant , loss tangent , dielectric breakdown voltage , leakage current , tracking resistance ...), and others (e.g. moisture absorption ). At
5400-440: The weight of copper per area (in ounce per square foot) which is easier to measure. One ounce per square foot is 1.344 mils or 34 micrometers thickness. Heavy copper is a layer exceeding three ounces of copper per ft , or approximately 0.0042 inches (4.2 mils, 105 μm) thick. Heavy copper layers are used for high current or to help dissipate heat. On the common FR-4 substrates, 1 oz copper per ft (35 μm)
5475-433: Was assigned to the U.S. Army. With the development of board lamination and etching techniques, this concept evolved into the standard printed circuit board fabrication process in use today. Soldering could be done automatically by passing the board over a ripple, or wave, of molten solder in a wave-soldering machine. However, the wires and holes are inefficient since drilling holes is expensive and consumes drill bits and
5550-450: Was by contact under direct sunlight rather than by the use of a camera. Several metals were tried for the printing plate, as well as glass and lithographic stone . His first success came in 1822. The earliest known surviving example of a paper print made from one of his photoengraved plates dates to 1825 and reproduces a 17th-century engraving. Niépce used Bitumen of Judea as the photoresist. Initially soluble in various spirits and oils,
5625-426: Was further minimized and both flexible and rigid PCBs were incorporated in different devices. In 1995 PCB manufacturers began using microvia technology to produce High-Density Interconnect (HDI) PCBs. Recent advances in 3D printing have meant that there are several new techniques in PCB creation. 3D printed electronics (PEs) can be utilized to print items layer by layer and subsequently the item can be printed with
#515484