Misplaced Pages

Eastern Carpathian Foothills

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Eastern Carpathian Foothills as a geographical term designates transitional region in the western parts of Ukraine and northeastern parts of Romania , between Eastern Carpathian Mountains to the southwest and number of plain regions to the east and north (bordering Moldavian Plateau to the southeast and east, Podillia Upland to the northeast and east, Roztochia Upland to the north, Sian Lowland to the northwest). Its average elevation is around 300–500 m (980–1,640 ft) above sea level . The region stretches across Lviv , Ivano-Frankivsk and Chernivtsi Oblasts and Suceava County .

#535464

45-598: The region represents a portion of a large foredeep ( Carpathian Foredeep ) that formed during the Miocene epoch in front of the folding Carpathian Mountains . The outer zone of the foredeep has as its foundation the Podolian Platform ; the inner zone consists of severely dislocated flysch deposits. The foredeep itself is filled with thick Miocene deposits of clays, argillites , calcareous clays , and sandstones covered by diluvial and alluvial deposits . At

90-449: A lacustrine environment or in a restricted marine environment, although not all rifts contain such sequences. Reservoir rocks may be developed in pre-rift, syn-rift and post-rift sequences. Effective regional seals may be present within the post-rift sequence if mudstones or evaporites are deposited. Just over half of estimated oil reserves are found associated with rifts containing marine syn-rift and post-rift sequences, just under

135-429: A mountain belt . Foreland basins form because the immense mass created by crustal thickening associated with the evolution of a mountain belt causes the lithosphere to bend, by a process known as lithospheric flexure . The width and depth of the foreland basin is determined by the flexural rigidity of the underlying lithosphere, and the characteristics of the mountain belt. The foreland basin receives sediment that

180-405: A rift valley , which may be filled by water forming a rift lake . The axis of the rift area may contain volcanic rocks , and active volcanism is a part of many, but not all, active rift systems. Major rifts occur along the central axis of most mid-ocean ridges , where new oceanic crust and lithosphere is created along a divergent boundary between two tectonic plates . Failed rifts are

225-403: A kind of orogeneses in extensional settings, which is referred as to rifting orogeny. Once rifting ceases, the mantle beneath the rift cools and this is accompanied by a broad area of post-rift subsidence. The amount of subsidence is directly related to the amount of thinning during the rifting phase calculated as the beta factor (initial crustal thickness divided by final crustal thickness), but

270-438: A mid-oceanic ridge and a set of conjugate margins separated by an oceanic basin. Rifting may be active, and controlled by mantle convection . It may also be passive, and driven by far-field tectonic forces that stretch the lithosphere. Margin architecture develops due to spatial and temporal relationships between extensional deformation phases. Margin segmentation eventually leads to the formation of rift domains with variations of

315-607: A regime's tectonic origin and development as well as the lithospheric mechanics. Migrating fluids originate from the sediments of the foreland basin and migrate in response to deformation. As a result, brine can migrate over great distances. Evidence of long-range migration includes: 1) correlation of petroleum to distant source rocks , 2) ore bodies deposited from metal-bearing brines, 3) anomalous thermal histories for shallow sediments, 4) regional potassium metasomatism and 5) epigenetic dolomite cements in ore bodies and deep aquifers. Fluids carrying heat, minerals, and petroleum, have

360-717: A simple relay ramp at the overlap between two major faults of the same polarity, to zones of high structural complexity, particularly where the segments have opposite polarity. Accommodation zones may be located where older crustal structures intersect the rift axis. In the Gulf of Suez rift, the Zaafarana accommodation zone is located where a shear zone in the Arabian-Nubian Shield meets the rift. Rift flanks or shoulders are elevated areas around rifts. Rift shoulders are typically about 70 km wide. Contrary to what

405-510: A thorough definition of the foreland basin system. Foreland basin systems comprise three characteristic properties: The wedge-top sits on top of the moving thrust sheets and contains all the sediments charging from the active tectonic thrust wedge. This is where piggyback basins form. The foredeep is the thickest sedimentary zone and thickens toward the orogen. Sediments are deposited via distal fluvial, lacustrine, deltaic, and marine depositional systems. The forebulge and backbulge are

450-454: A vast impact on the tectonic regime within the foreland basin. Before deformation, sediment layers are porous and full of fluids, such as water and hydrated minerals. Once these sediments are buried and compacted, the pores become smaller and some of the fluids, about ⁠ 1 / 3 ⁠ , leave the pores. This fluid has to go somewhere. Within the foreland basin, these fluids potentially can heat and mineralize materials, as well as mix with

495-410: Is a factor of temperature and time and occurs at shallower depths due to past heat redistribution of migrating brines. Vitrinite reflectance, which typically demonstrates an exponential evolution of organic matter as a function of time, is the best organic indicator for thermal maturation. Studies have shown that present day thermal measurements of heat flow and geothermal gradients closely correspond to

SECTION 10

#1732772755536

540-426: Is a function of topographic relief. For the loading model, the lithosphere is initially stiff, with the basin broad and shallow. Relaxation of the lithosphere allows subsidence near the thrust, narrowing of basin, forebulge toward thrust. During times of thrusting, the lithosphere is stiff and the forebulge broadens. The timing of the thrust deformation is opposite that of the relaxing of the lithosphere. The bending of

585-402: Is also affected by the degree to which the rift basin is filled at each stage, due to the greater density of sediments in contrast to water. The simple 'McKenzie model' of rifting, which considers the rifting stage to be instantaneous, provides a good first order estimate of the amount of crustal thinning from observations of the amount of post-rift subsidence. This has generally been replaced by

630-500: Is eroded off the adjacent mountain belt, filling with thick sedimentary successions that thin away from the mountain belt. Foreland basins represent an endmember basin type, the other being rift basins . Space for sediments (accommodation space) is provided by loading and downflexure to form foreland basins, in contrast to rift basins, where accommodation space is generated by lithospheric extension. Foreland basins can be divided into two categories: DeCelles & Giles (1996) provide

675-495: Is found closer to the orogen and oil is found further away. Rift basin In geology , a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics . Typical rift features are a central linear downfaulted depression, called a graben , or more commonly a half-graben with normal faulting and rift-flank uplifts mainly on one side. Where rifts remain above sea level they form

720-473: The Moho topography, including proximal domain with fault-rotated crustal blocks, necking zone with thinning of crustal basement , distal domain with deep sag basins, ocean-continent transition and oceanic domain. Deformation and magmatism interact during rift evolution. Magma-rich and magma-poor rifted margins may be formed. Magma-rich margins include major volcanic features. Globally, volcanic margins represent

765-517: The Ridges of Bukovina . Among local lowlands there are Upper Dniester Depression , Kalush Depression , Stanislaviv Depression , Halych-Bukachivtsi Basin , Kolomyia-Chernivtsi Basin , Seret Basin . This article about a location in Ukraine is a stub . You can help Misplaced Pages by expanding it . Foredeep A foreland basin is a structural basin that develops adjacent and parallel to

810-488: The Stryi River , carry silt and sand on to Eastern Carpathian Foothills and deposit them in their floodplains. Intervalley ridges rise above the region 80–120 m (260–390 ft) or more. The highest point, Mount Tsetsyna , near Chernivtsi has elevation of 537 m (1,762 ft). Major intervalley ridges include Drohobych Ridge , Middle Pricarpathian Ridge , Southern Pokuttia Ridge , Seret-Prut Ridge , and

855-659: The 'flexural cantilever model', which takes into account the geometry of the rift faults and the flexural isostasy of the upper part of the crust. Some rifts show a complex and prolonged history of rifting, with several distinct phases. The North Sea rift shows evidence of several separate rift phases from the Permian through to the Earliest Cretaceous , a period of over 100 million years. Rifting may lead to continental breakup and formation of oceanic basins. Successful rifting leads to seafloor spreading along

900-402: The active deformation zone with which it is connected. Today GPS measurements provide the rate at which one plate is moving relative to another. It is also important to consider that present day kinematics are unlikely to be the same as when deformation began. Thus, it is crucial to consider non-GPS models to determine the long-term evolution of continental collisions and in how it helped develop

945-399: The adjacent foreland basins. Comparing both modern GPS (Sella et al. 2002) and non-GPS models allows deformation rates to be calculated. Comparing these numbers to the geologic regime helps constrain the number of probable models as well as which model is more geologically accurate within a specific region. Seismicity determines where active zones of seismic activity occur as well as measure

SECTION 20

#1732772755536

990-452: The axis of the rift the position, and in some cases the polarity (the dip direction), of the main rift bounding fault changes from segment to segment. Segment boundaries often have a more complex structure and generally cross the rift axis at a high angle. These segment boundary zones accommodate the differences in fault displacement between the segments and are therefore known as accommodation zones. Accommodation zones take various forms, from

1035-436: The basin becomes completely filled. At this point, the basin enters the overfilled stage and deposition of terrestrial clastic sediments occurs. These are known as molasse . Sediment fill within the foredeep acts as an additional load on the continental lithosphere. Although the degree to which the lithosphere relaxes over time is still controversial, most workers accept an elastic or visco-elastic rheology to describe

1080-469: The development of isolated basins. In subaerial rifts, for example, drainage at the onset of rifting is generally internal, with no element of through drainage. As the rift evolves, some of the individual fault segments grow, eventually becoming linked together to form the larger bounding faults. Subsequent extension becomes concentrated on these faults. The longer faults and wider fault spacing leads to more continuous areas of fault-related subsidence along

1125-676: The end of the Pliocene epoch the region was an accumulative-denudational peneplain covered by fluvial deposits of sand, silt , and clay originating from the Carpathians. As a result of an uplift at the end of the Pliocene and the beginning of the Pleistocene epoch the rivers intensified their erosion and sculpted into the surface a number of wide valleys, lowlands, and intervening ridges. The uplift of Eastern Carpathian Foothills

1170-508: The linear zone characteristic of rifts. The individual rift segments have a dominantly half-graben geometry, controlled by a single basin-bounding fault. Segment lengths vary between rifts, depending on the elastic thickness of the lithosphere. Areas of thick colder lithosphere, such as the Baikal Rift have segment lengths in excess of 80 km, while in areas of warmer thin lithosphere, segment lengths may be less than 30 km. Along

1215-497: The lithosphere under the orogenic load controls the drainage pattern of the foreland basin. The flexural tilting of the basin and the sediment supply from the orogen. Strength envelopes indicate that the rheological structure of the lithosphere underneath the foreland and the orogen are very different. The foreland basin typically shows a thermal and rheological structure similar to a rifted continental margin with three brittle layers above three ductile layers. The temperature underneath

1260-458: The lithosphere. Thus, the thrust belt is mobile and the foreland basin system becomes deformed over time. Syntectonic unconformities demonstrate simultaneous subsidence and tectonic activity. Foreland basins are filled with sediments which erode from the adjacent mountain belt. In the early stages, the foreland basin is said to be underfilled . During this stage, deep water and commonly marine sediments, known as flysch , are deposited. Eventually,

1305-425: The lithospheric deformation of the foreland basin. Allen & Allen (2005) describe a moving load system, one in which the deflection moves as a wave through the foreland plate before the load system. The deflection shape is commonly described as an asymmetrical low close to the load along the foreland and a broader uplifted deflection along the forebulge. The transport rate or flux of erosion, as well as sedimentation,

1350-457: The local hydrostatic head. Orogen topography is the major driving force of fluid migration. The heat from the lower crust moves via conduction and groundwater advection . Local hydrothermal areas occur when deep fluid flow moves very quickly. This can also explain very high temperatures at shallow depths. Other minor constraints include tectonic compression, thrusting, and sediment compaction. These are considered minor because they are limited by

1395-567: The majority of passive continental margins. Magma-starved rifted margins are affected by large-scale faulting and crustal hyperextension. As a consequence, upper mantle peridotites and gabbros are commonly exposed and serpentinized along extensional detachments at the seafloor. Many rifts are the sites of at least minor magmatic activity , particularly in the early stages of rifting. Alkali basalts and bimodal volcanism are common products of rift-related magmatism. Recent studies indicate that post-collisional granites in collisional orogens are

Eastern Carpathian Foothills - Misplaced Pages Continue

1440-411: The orogen is much higher and thus greatly weakens the lithosphere. According to Zhou et al. (2003), "under compressional stress the lithosphere beneath the mountain range becomes ductile almost entirely, except a thin (about 6 km in the center) brittle layer near the surface and perhaps a thin brittle layer in the uppermost mantle." This lithospheric weakening underneath the orogenic belt may in part cause

1485-404: The passive margin stage with orogenic loading of previously stretched continental margin during the early stages of convergence. Second, the "early convergence stage defined by deep water conditions", and lastly a "later convergent stage during which a subaerial wedge is flanked with terrestrial or shallow marine foreland basins". The temperature underneath the orogen is much higher and weakens

1530-404: The product of rifting magmatism at converged plate margins. The sedimentary rocks associated with continental rifts host important deposits of both minerals and hydrocarbons . SedEx mineral deposits are found mainly in continental rift settings. They form within post-rift sequences when hydrothermal fluids associated with magmatic activity are expelled at the seabed. Continental rifts are

1575-498: The regional lithospheric flexure behavior. Foreland basins are considered to be hypothermal basins (cooler than normal), with low geothermal gradient and heat flow . Heat flow values average between 1 and 2 HFU (40–90 mWm . Rapid subsidence may be responsible for these low values. Over time sedimentary layers become buried and lose porosity. This can be due to sediment compaction or the physical or chemical changes, such as pressure or cementation . Thermal maturation of sediments

1620-408: The result of continental rifting that failed to continue to the point of break-up. Typically the transition from rifting to spreading develops at a triple junction where three converging rifts meet over a hotspot . Two of these evolve to the point of seafloor spreading, while the third ultimately fails, becoming an aulacogen . Most rifts consist of a series of separate segments that together form

1665-484: The rift axis. Significant uplift of the rift shoulders develops at this stage, strongly influencing drainage and sedimentation in the rift basins. During the climax of lithospheric rifting, as the crust is thinned, the Earth's surface subsides and the Moho becomes correspondingly raised. At the same time, the mantle lithosphere becomes thinned, causing a rise of the top of the asthenosphere. This brings high heat flow from

1710-521: The sites of significant oil and gas accumulations, such as the Viking Graben and the Gulf of Suez Rift . Thirty percent of giant oil and gas fields are found within such a setting. In 1999 it was estimated that there were 200 billion barrels of recoverable oil reserves hosted in rifts. Source rocks are often developed within the sediments filling the active rift ( syn-rift ), forming either in

1755-401: The slow rates of tectonic deformation, lithology and depositional rates, on the order of 0–10 cm yr , but more likely closer to 1 or less than 1 cm yr . Overpressured zones might allow for faster migration, when 1 kilometer or more of shaley sediments accumulate per 1 million years. Bethke & Marshak (1990) state that "groundwater that recharges at high elevation migrates through

1800-441: The subsurface in response to its high potential energy toward areas where the water table is lower." Bethke & Marshak (1990) explain that petroleum migrates not only in response to the hydrodynamic forces that drive groundwater flow, but to the buoyancy and capillary effects of the petroleum moving through microscopic pores. Migration patterns flow away from the orogenic belt and into the cratonic interior. Frequently, natural gas

1845-429: The thinnest and most distal zones and are not always present. When present, they are defined by regional unconformities as well as aeolian and shallow-marine deposits. Sedimentation is most rapid near the moving thrust sheet. Sediment transport within the foredeep is generally parallel to the strike of the thrust fault and basin axis. The motion of the adjacent plates of the foreland basin can be determined by studying

Eastern Carpathian Foothills - Misplaced Pages Continue

1890-449: The total fault displacements and the timing of the onset of deformation. Foreland basins form because as the mountain belt grows, it exerts a significant mass on the Earth's crust, which causes it to bend, or flex, downwards. This occurs so that the weight of the mountain belt can be compensated by isostasy at the upflex of the forebulge. The plate tectonic evolution of a peripheral foreland basin involves three general stages. First,

1935-491: The upwelling asthenosphere into the thinning lithosphere, heating the orogenic lithosphere for dehydration melting, typically causing extreme metamorphism at high thermal gradients of greater than 30 °C. The metamorphic products are high to ultrahigh temperature granulites and their associated migmatite and granites in collisional orogens, with possible emplacement of metamorphic core complexes in continental rift zones but oceanic core complexes in spreading ridges. This leads to

1980-655: Was not uniform, however, and the relief features are partly of tectonic origin. In the Dnieper glacial phase the northeastern part of Eastern Carpathian Foothills was occupied by a lobe of the European continental glacier , and the meltwaters temporarily ponded. By the end of the Pleistocene epoch the region was covered by deposits of loess . At present the rivers from the Carpathian Mountains, most notably

2025-549: Was previously thought, elevated passive continental margins (EPCM) such as the Brazilian Highlands , the Scandinavian Mountains and India's Western Ghats , are not rift shoulders. The formation of rift basins and strain localization reflects rift maturity. At the onset of rifting, the upper part of the lithosphere starts to extend on a series of initially unconnected normal faults , leading to

#535464