Misplaced Pages

Cephalocarida

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In biological classification , class ( Latin : classis ) is a taxonomic rank , as well as a taxonomic unit, a taxon , in that rank. It is a group of related taxonomic orders. Other well-known ranks in descending order of size are life , domain , kingdom , phylum , order , family , genus , and species , with class ranking between phylum and order.

#563436

30-650: The Cephalocarida are a class in the subphylum Crustacea comprising only 12 species . Both the nauplii and the adults are benthic . They were discovered in 1955 by Howard L. Sanders , and are commonly referred to as horseshoe shrimp . They have been grouped together with the Remipedia in the Xenocarida . Although a second family , Lightiellidae, is sometimes used, all cephalocaridans are generally considered to belong in just one family: Hutchinsoniellidae . Fossil records of cephalocaridans have been found in

60-466: A convenient "artificial key" according to his Systema Sexuale , largely based on the arrangement of flowers. In botany, classes are now rarely discussed. Since the first publication of the APG system in 1998, which proposed a taxonomy of the flowering plants up to the level of orders, many sources have preferred to treat ranks higher than orders as informal clades . Where formal ranks have been assigned,

90-519: A kingdom is the second highest taxonomic rank , just below domain . Kingdoms are divided into smaller groups called phyla (singular phylum). Traditionally, textbooks from Canada and the United States have used a system of six kingdoms ( Animalia , Plantae , Fungi , Protista , Archaea /Archaebacteria, and Bacteria or Eubacteria), while textbooks in other parts of the world, such as Bangladesh, Brazil, Greece, India, Pakistan, Spain, and

120-416: A telson . In the larva, all the trunk segments are ring-shaped, but more dorsoventrally flattened than in the adults. During growth the anterior segments turns into the thorax and the posterior segments which makes up the abdomen remains ring-shaped. No eyes have been observed in either the adult or larval stages, presumably because of their muddy natural habitat. The second pair of antennae is located behind

150-585: A distinct nucleus ( prokaryotes ) and organisms whose cells do have a distinct nucleus ( eukaryotes ). In 1937 Édouard Chatton introduced the terms "prokaryote" and "eukaryote" to differentiate these organisms. In 1938, Herbert F. Copeland proposed a four-kingdom classification by creating the novel Kingdom Monera of prokaryotic organisms; as a revised phylum Monera of the Protista, it included organisms now classified as Bacteria and Archaea . Ernst Haeckel, in his 1904 book The Wonders of Life , had placed

180-721: A third kingdom of life, the Protista , for "neutral organisms" or "the kingdom of primitive forms", which were neither animal nor plant; he did not include the Regnum Lapideum in his scheme. Haeckel revised the content of this kingdom a number of times before settling on a division based on whether organisms were unicellular (Protista) or multicellular (animals and plants). Kingdom Protista or Protoctista Kingdom Plantae Kingdom Animalia Regnum Lapideum (minerals) The development of microscopy revealed important distinctions between those organisms whose cells do not have

210-489: A traditional two-kingdom system of animals and plants, dividing the plant kingdom into subkingdoms Prokaryota (bacteria and cyanobacteria), Mycota (fungi and supposed relatives), and Chlorota (algae and land plants). Kingdom Monera Kingdom Protista or Protoctista Kingdom Plantae Kingdom Fungi Kingdom Animalia Kingdom Monera Kingdom Protista Kingdom Plantae Kingdom Fungi Kingdom Animalia In 1977, Carl Woese and colleagues proposed

240-563: Is commonly used in recent US high school biology textbooks, but has received criticism for compromising the current scientific consensus. But the division of prokaryotes into two kingdoms remains in use with the recent seven kingdoms scheme of Thomas Cavalier-Smith, although it primarily differs in that Protista is replaced by Protozoa and Chromista . Kingdom Eubacteria (Bacteria) Kingdom Archaebacteria (Archaea) Kingdom Protista or Protoctista Kingdom Plantae Kingdom Fungi Kingdom Animalia Thomas Cavalier-Smith supported

270-521: Is to say a particular layout of organ systems. This said, the composition of each class is ultimately determined by the subjective judgment of taxonomists . In the first edition of his Systema Naturae (1735), Carl Linnaeus divided all three of his kingdoms of nature ( minerals , plants , and animals ) into classes. Only in the animal kingdom are Linnaeus's classes similar to the classes used today; his classes and orders of plants were never intended to represent natural groups, but rather to provide

300-523: The Nomenclature Codes , in 1735. He distinguished two kingdoms of living things: Regnum Animale (' animal kingdom') and Regnum Vegetabile ('vegetable kingdom', for plants ). Linnaeus also included minerals in his classification system , placing them in a third kingdom, Regnum Lapideum . Regnum Animale (animals) Regnum Vegetabile ('vegetables'/plants) Regnum Lapideum (minerals) In 1674, Antonie van Leeuwenhoek , often called

330-651: The Ordovician Castle Bank site. These are hermaphroditic and pigmentless crustaceans with an elongated and translucent body that measures 2 to 4 mm (0.079 to 0.157 in) in length. A heart is present, and their exopods and pseudepipodites appears to be used for gas exchange. They have a large head, the hind edge of which covers the first thoracic segment. The thorax consists of nine limb-bearing segments (thoracic limb VIII absent in Lightiella), followed by 10 limbless abdominal segments and

SECTION 10

#1732772637564

360-469: The two-empire system of prokaryotes and eukaryotes. The two-empire system would later be expanded to the three-domain system of Archaea, Bacteria, and Eukaryota. Kingdom Monera Kingdom Protista or Protoctista Kingdom Plantae Kingdom Animalia The differences between fungi and other organisms regarded as plants had long been recognised by some; Haeckel had moved the fungi out of Plantae into Protista after his original classification, but

390-466: The "father of microscopy", sent the Royal Society of London a copy of his first observations of microscopic single-celled organisms. Until then, the existence of such microscopic organisms was entirely unknown. Despite this, Linnaeus did not include any microscopic creatures in his original taxonomy. At first, microscopic organisms were classified within the animal and plant kingdoms. However, by

420-502: The 21st century, funga (for fungi) are also used for life present in a particular region or time. When Carl Linnaeus introduced the rank-based system of nomenclature into biology in 1735, the highest rank was given the name "kingdom" and was followed by four other main or principal ranks: class , order , genus and species . Later two further main ranks were introduced, making the sequence kingdom, phylum or division , class , order , family , genus and species . In 1990,

450-476: The United Kingdom have used five kingdoms (Animalia, Plantae, Fungi, Protista and Monera ). Some recent classifications based on modern cladistics have explicitly abandoned the term kingdom , noting that some traditional kingdoms are not monophyletic , meaning that they do not consist of all the descendants of a common ancestor . The terms flora (for plants), fauna (for animals), and, in

480-502: The blue-green algae (or Phycochromacea) in Monera; this would gradually gain acceptance, and the blue-green algae would become classified as bacteria in the phylum Cyanobacteria . In the 1960s, Roger Stanier and C. B. van Niel promoted and popularized Édouard Chatton's earlier work, particularly in their paper of 1962, "The Concept of a Bacterium"; this created, for the first time, a rank above kingdom—a superkingdom or empire —with

510-512: The classification of Cavalier-Smith. The classification of living things into animals and plants is an ancient one. Aristotle (384–322 BC) classified animal species in his History of Animals , while his pupil Theophrastus ( c.  371 – c.  287 BC ) wrote a parallel work, the Historia Plantarum , on plants. Carl Linnaeus (1707–1778) laid the foundations for modern biological nomenclature , now regulated by

540-420: The classification of plants that appeared in his Eléments de botanique of 1694. Insofar as a general definition of a class is available, it has historically been conceived as embracing taxa that combine a distinct grade of organization—i.e. a 'level of complexity', measured in terms of how differentiated their organ systems are into distinct regions or sub-organs—with a distinct type of construction, which

570-436: The consensus at that time, that the difference between Eubacteria and Archaebacteria was so great (particularly considering the genetic distance of ribosomal genes) that the prokaryotes needed to be separated into two different kingdoms. He then divided Eubacteria into two subkingdoms: Negibacteria ( Gram-negative bacteria ) and Posibacteria ( Gram-positive bacteria ). Technological advances in electron microscopy allowed

600-625: The fundamental subdivision of the prokaryotes into the Eubacteria (later called the Bacteria) and Archaebacteria (later called the Archaea), based on ribosomal RNA structure; this would later lead to the proposal of three "domains" of life , of Bacteria, Archaea, and Eukaryota. Combined with the five-kingdom model, this created a six-kingdom model, where the kingdom Monera is replaced by the kingdoms Bacteria and Archaea. This six-kingdom model

630-547: The inner side, used in locomotion, a forked inner branch and two outer lobes - referred to as the "pseudoepipod" and the "exopod". The structural and functional similarity between the maxillae and the legs may be a sign of primitive organization; the maxillae are not specialized, as they are in other crustaceans. Cephalocaridans are found from the intertidal zone down to a depth of 1,500 m (4,900 ft), in all kinds of sediments . Cephalocaridans feed on marine detritus . To bring in food particles, they generate currents with

SECTION 20

#1732772637564

660-478: The mid–19th century, it had become clear to many that "the existing dichotomy of the plant and animal kingdoms [had become] rapidly blurred at its boundaries and outmoded". In 1860 John Hogg proposed the Protoctista , a third kingdom of life composed of "all the lower creatures, or the primary organic beings"; he retained Regnum Lapideum as a fourth kingdom of minerals. In 1866, Ernst Haeckel also proposed

690-426: The mouth; in all other crustaceans the antennae are in front of the mouth at the adult stage, and only their larvae have antennae that have the same location as adult cephalocaridans. The mouth is located behind the large upper lip, flanked by mandibles . The first pair of maxillae is very small, and the second pair has the same structure as the following thoracic legs: a large basal part, equipped with outgrowths on

720-507: The rank of domain was introduced above kingdom. Prefixes can be added so subkingdom ( subregnum ) and infrakingdom (also known as infraregnum ) are the two ranks immediately below kingdom. Superkingdom may be considered as an equivalent of domain or empire or as an independent rank between kingdom and domain or subdomain. In some classification systems the additional rank branch (Latin: ramus ) can be inserted between subkingdom and infrakingdom, e.g., Protostomia and Deuterostomia in

750-432: The ranks have been reduced to a very much lower level, e.g. class Equisitopsida for the land plants, with the major divisions within the class assigned to subclasses and superorders. The class was considered the highest level of the taxonomic hierarchy until George Cuvier 's embranchements , first called Phyla by Ernst Haeckel , were introduced in the early nineteenth century. Kingdom (biology) In biology ,

780-480: The result of the endosymbiosis of a proteobacterium , it was thought that these amitochondriate eukaryotes were primitively so, marking an important step in eukaryogenesis . As a result, these amitochondriate protists were separated from the protist kingdom, giving rise to the, at the same time, superkingdom and kingdom Archezoa . This superkingdom was opposed to the Metakaryota superkingdom, grouping together

810-595: The separation of the Chromista from the Plantae kingdom. Indeed, the chloroplast of the chromists is located in the lumen of the endoplasmic reticulum instead of in the cytosol . Moreover, only chromists contain chlorophyll c . Since then, many non-photosynthetic phyla of protists, thought to have secondarily lost their chloroplasts, were integrated into the kingdom Chromista. Finally, some protists lacking mitochondria were discovered. As mitochondria were known to be

840-428: The thoracic appendages like the branchiopods and the malacostracans . Food particles are then passed anteriorly along a ventral groove, leading to the mouthparts . Class (biology) The class as a distinct rank of biological classification having its own distinctive name – and not just called a top-level genus (genus summum) – was first introduced by French botanist Joseph Pitton de Tournefort in

870-561: The two empire system. In the Whittaker system, Plantae included some algae. In other systems, such as Lynn Margulis 's system of five kingdoms, the plants included just the land plants ( Embryophyta ), and Protoctista has a broader definition. Following publication of Whittaker's system, the five-kingdom model began to be commonly used in high school biology textbooks. But despite the development from two kingdoms to five among most scientists, some authors as late as 1975 continued to employ

900-724: Was largely ignored in this separation by scientists of his time. Robert Whittaker recognized an additional kingdom for the Fungi . The resulting five-kingdom system, proposed in 1969 by Whittaker, has become a popular standard and with some refinement is still used in many works and forms the basis for new multi-kingdom systems. It is based mainly upon differences in nutrition ; his Plantae were mostly multicellular autotrophs , his Animalia multicellular heterotrophs , and his Fungi multicellular saprotrophs . The remaining two kingdoms, Protista and Monera, included unicellular and simple cellular colonies. The five kingdom system may be combined with

#563436