In electronics , power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier 's characteristics and performance. The first three classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. This metric is known as conduction angle (θ). A class A amplifier is conducting through the entire period of the signal (θ=360°); Class B only for one-half the input period (θ=180°), class C for much less than half the input period (θ<180°). Class D amplifiers operate their output device in a switching manner; the fraction of the time that the device is conducting may be adjusted so a pulse-width modulation output (or other frequency based modulation) can be obtained from the stage.
122-623: Class C may refer to: Class C amplifier , a category of electronic amplifier Class C (baseball) , a defunct class in minor league baseball in North America Class C stellar classification for a carbon star Class C drugs, under the Misuse of Drugs Act (disambiguation) of multiple Commonwealth Nations Class C drug , as defined by the UK's Misuse of Drugs Act 1971 Class C network,
244-398: A bipolar junction transistor is shown as the amplifying device. However, the same attributes are found with MOSFETs or vacuum tubes . In a class-A amplifier, 100% of the input signal is used (conduction angle θ = 360°). The active element remains conducting all of the time. Amplifying devices operating in class A conduct over the entire range of the input cycle. A class-A amplifier
366-593: A digital-to-analog converter (DAC) to convert the signal to analog form first. If the signal source is in digital form, such as in a digital media player or computer sound card , the digital circuitry can convert the binary digital signal directly to a pulse-width modulation signal that is applied to the amplifier, simplifying the circuitry considerably and reducing opportunities for noise ingress. A class-D amplifier with moderate output power can be constructed using regular CMOS logic process, making it suitable for integration with other types of digital circuitry. Thus it
488-520: A bandwidth of no higher than 150 Hz, switching speed for the amplifier does not have to be as high as for a full range amplifier, allowing simpler designs. Class-D amplifiers for driving subwoofers are relatively inexpensive in comparison to class-AB amplifiers. The letter D used to designate this amplifier class is simply the next letter after C and, although occasionally used as such, does not stand for digital . Class-D and class-E amplifiers are sometimes mistakenly described as "digital" because
610-404: A beam of electrons for display purposes (such as the television picture tube, in electron microscopy , and in electron beam lithography ); X-ray tubes ; phototubes and photomultipliers (which rely on electron flow through a vacuum where electron emission from the cathode depends on energy from photons rather than thermionic emission ). A vacuum tube consists of two or more electrodes in
732-401: A bed over the driver's cab See also [ edit ] C class (disambiguation) C (disambiguation) Class (disambiguation) C series (disambiguation) Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Class C . If an internal link led you here, you may wish to change the link to point directly to
854-550: A blower, or water-jacket. Klystrons and magnetrons often operate their anodes (called collectors in klystrons) at ground potential to facilitate cooling, particularly with water, without high-voltage insulation. These tubes instead operate with high negative voltages on the filament and cathode. Except for diodes, additional electrodes are positioned between the cathode and the plate (anode). These electrodes are referred to as grids as they are not solid electrodes but sparse elements through which electrons can pass on their way to
976-649: A blue glow. Finnish inventor Eric Tigerstedt significantly improved on the original triode design in 1914, while working on his sound-on-film process in Berlin, Germany. Tigerstedt's innovation was to make the electrodes concentric cylinders with the cathode at the centre, thus greatly increasing the collection of emitted electrons at the anode. Irving Langmuir at the General Electric research laboratory ( Schenectady, New York ) had improved Wolfgang Gaede 's high-vacuum diffusion pump and used it to settle
1098-401: A certain sound or tone). Not all electronic circuit valves or electron tubes are vacuum tubes. Gas-filled tubes are similar devices, but containing a gas, typically at low pressure, which exploit phenomena related to electric discharge in gases , usually without a heater. One classification of thermionic vacuum tubes is by the number of active electrodes . A device with two active elements
1220-468: A class AB with just the 80 V supplies in place of the 40 V supplies, the T1 and T3 transistors would need to be in conduction throughout the 0 V to 80 V signal with the corresponding losses all through the wave period - not just the brief high energy bursts. To achieve this rail tracking control, T2 and T4 act as current amplifiers, each in series with its low voltage counterpart T1 and T3. The purpose of T2 and T3
1342-478: A class-C amplifier, less than 50% of the input signal is used (conduction angle θ < 180°). Distortion is high and practical use requires a tuned circuit as load. Efficiency can reach 80% in radio-frequency applications. The usual application for class-C amplifiers is in RF transmitters operating at a single fixed carrier frequency , where the distortion is controlled by a tuned load on the amplifier. The input signal
SECTION 10
#17327980105211464-457: A class-D amplifier's lower losses permit the use of smaller heat sinks for the MOSFETs while also reducing the amount of input power required, allowing for a lower-capacity power supply design. Therefore, class-D amplifiers are typically smaller than an equivalent class-AB amplifier. Another advantage of the class-D amplifier is that it can operate from a digital signal source without requiring
1586-427: A class-D amplifier, the output filter blocks all harmonics; i.e., the harmonics see an open load. So even small currents in the harmonics suffice to generate a voltage square wave. The current is in phase with the voltage applied to the filter, but the voltage across the transistors is out of phase. Therefore, there is a minimal overlap between current through the transistors and voltage across the transistors. The sharper
1708-501: A combination of a triode with a hexode and even an octode have been used for this purpose. The additional grids include control grids (at a low potential) and screen grids (at a high voltage). Many designs use such a screen grid as an additional anode to provide feedback for the oscillator function, whose current adds to that of the incoming radio frequency signal. The pentagrid converter thus became widely used in AM receivers, including
1830-466: A common circuit (which can be AC without inducing hum) while allowing the cathodes in different tubes to operate at different voltages. H. J. Round invented the indirectly heated tube around 1913. The filaments require constant and often considerable power, even when amplifying signals at the microwatt level. Power is also dissipated when the electrons from the cathode slam into the anode (plate) and heat it; this can occur even in an idle amplifier due to
1952-475: A continuous fashion, respectively) following the input signal. Wasted heat on the output devices can be reduced as excess voltage is kept to a minimum. The amplifier that is fed with these rails itself can be of any class. These kinds of amplifiers are more complex, and are mainly used for specialized applications, such as very high-power units. Also, class-E and class-F amplifiers are commonly described in literature for radio-frequency applications where efficiency of
2074-586: A far superior and versatile technology for use in radio transmitters and receivers. At the end of the 19th century, radio or wireless technology was in an early stage of development and the Marconi Company was engaged in development and construction of radio communication systems. Guglielmo Marconi appointed English physicist John Ambrose Fleming as scientific advisor in 1899. Fleming had been engaged as scientific advisor to Edison Telephone (1879), as scientific advisor at Edison Electric Light (1882), and
2196-423: A fixed amplitude, the switching elements (usually MOSFETs , but vacuum tubes and bipolar transistors have also been used) are switched completely on or completely off, rather than operating in linear mode. A MOSFET generally operates with the lowest on-state resistance when fully on and thus (excluding when fully off) has the lowest power dissipation when in that condition. Compared to an equivalent class-AB device,
2318-453: A full description of class-E operation may be found in the 1964 doctoral thesis of Gerald D. Ewing. Interestingly, analytical design equations only recently became known. In push–pull amplifiers and in CMOS, the even harmonics of both transistors just cancel. Experiment shows that a square wave can be generated by those amplifiers. Theoretically square waves consist of odd harmonics only. In
2440-418: A high vacuum between electrodes to which an electric potential difference has been applied. The type known as a thermionic tube or thermionic valve utilizes thermionic emission of electrons from a hot cathode for fundamental electronic functions such as signal amplification and current rectification . Non-thermionic types such as a vacuum phototube , however, achieve electron emission through
2562-400: A low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Formation of beams also reduces screen grid current. In some cylindrically symmetrical beam power tubes, the cathode is formed of narrow strips of emitting material that are aligned with the apertures of
SECTION 20
#17327980105212684-408: A matched temperature coefficient.) Another approach (often used with thermally tracking bias voltages) is to include small value resistors in series with the emitters. Class AB sacrifices some efficiency over class B in favor of linearity, thus is less efficient (below 78.5% for full-amplitude sine waves in transistor amplifiers, typically; much less is common in class-AB vacuum-tube amplifiers). It
2806-466: A new letter symbol is also used by a manufacturer to promote its proprietary design. By December 2010, AB and D classes dominated nearly all of audio amplifier market with the former being favored in portable music players, home audio and cell phone owing to lower cost of class AB chips. Power amplifier circuits (output stages) are classified as A, B, AB and C for linear designs—and class D and E for switching designs. The classes are generally based on
2928-414: A pair of beam deflection electrodes which deflected the current towards either of two anodes. They were sometimes known as the 'sheet beam' tubes and used in some color TV sets for color demodulation . The similar 7360 was popular as a balanced SSB (de)modulator . A beam tetrode (or "beam power tube") forms the electron stream from the cathode into multiple partially collimated beams to produce
3050-421: A parallel-tuned circuit consisting of an inductor and capacitor in parallel, whose components are chosen to resonate at the frequency of the input signal. Power can be coupled to a load by transformer action with a secondary coil wound on the inductor. The average voltage at the collector is then equal to the supply voltage, and the signal voltage appearing across the tuned circuit varies from near zero to near twice
3172-412: A printing instrument was needed. As a result of experiments conducted on Edison effect bulbs, Fleming developed a vacuum tube that he termed the oscillation valve because it passed current in only one direction. The cathode was a carbon lamp filament, heated by passing current through it, that produced thermionic emission of electrons. Electrons that had been emitted from the cathode were attracted to
3294-403: A related modulation technique before being applied to the amplifier. The time average power value of the pulses is directly proportional to the analog signal, so after amplification the signal can be converted back to an analog signal by a passive low-pass filter . The purpose of the output filter is to smooth the pulse stream to an analog signal, removing the high-frequency spectral components of
3416-509: A relatively low-value resistor is connected between the cathode and ground. This makes the cathode positive with respect to the grid, which is at ground potential for DC. However C batteries continued to be included in some equipment even when the "A" and "B" batteries had been replaced by power from the AC mains. That was possible because there was essentially no current draw on these batteries; they could thus last for many years (often longer than all
3538-407: A simple oscillator only requiring connection of the plate to a resonant LC circuit to oscillate. The dynatron oscillator operated on the same principle of negative resistance as the tunnel diode oscillator many years later. The dynatron region of the screen grid tube was eliminated by adding a grid between the screen grid and the plate to create the pentode . The suppressor grid of the pentode
3660-419: A small-signal vacuum tube are 1 to 10 millisiemens. It is one of the three 'constants' of a vacuum tube, the other two being its gain μ and plate resistance R p or R a . The Van der Bijl equation defines their relationship as follows: g m = μ R p {\displaystyle g_{m}={\mu \over R_{p}}} The non-linear operating characteristic of
3782-446: A tuned reactive network between the switch and the load. The circuit obtains high efficiency by only operating the switching element at points of zero current (on to off switching) or zero voltage (off to on switching) which minimizes power lost in the switch, even when the switching time of the devices is long compared to the frequency of operation. The class-E amplifier is frequently cited to have been first reported in 1975. However,
Class C - Misplaced Pages Continue
3904-679: A type of IP address on a Classful network Class C, an airspace class as defined by the ICAO Class C, a type of driver's license in the United States Class C, a large goods vehicle driving licence in the United Kingdom Class C, from the List of North American broadcast station classes Class C, a type of smooth function in mathematics Class C motorhome, a type of recreational vehicle which has
4026-464: A vacuum inside an airtight envelope. Most tubes have glass envelopes with a glass-to-metal seal based on kovar sealable borosilicate glasses , although ceramic and metal envelopes (atop insulating bases) have been used. The electrodes are attached to leads which pass through the envelope via an airtight seal. Most vacuum tubes have a limited lifetime, due to the filament or heater burning out or other failure modes, so they are made as replaceable units;
4148-429: A wide range of frequencies. To combat the stability problems of the triode as a radio frequency amplifier due to grid-to-plate capacitance, the physicist Walter H. Schottky invented the tetrode or screen grid tube in 1919. He showed that the addition of an electrostatic shield between the control grid and the plate could solve the problem. This design was refined by Hull and Williams. The added grid became known as
4270-445: Is a current . Compare this to the behavior of the bipolar junction transistor , in which the controlling signal is a current and the output is also a current. For vacuum tubes, transconductance or mutual conductance ( g m ) is defined as the change in the plate(anode)/cathode current divided by the corresponding change in the grid to cathode voltage, with a constant plate(anode) to cathode voltage. Typical values of g m for
4392-489: Is a diode , usually used for rectification . Devices with three elements are triodes used for amplification and switching . Additional electrodes create tetrodes , pentodes , and so forth, which have multiple additional functions made possible by the additional controllable electrodes. Other classifications are: Vacuum tubes may have other components and functions than those described above, and are described elsewhere. These include as cathode-ray tubes , which create
4514-454: Is because the D1 and D3 diodes which are intended to provide a path for the output voltage back into the upper devices are always reverse biased. They are drawn backwards. In place of these diodes, a voltage amplifier with gain which uses vout as its input would be needed in an actual design. There is another reason for this gain requirement between vout and T2 base in an actual class H design and that
4636-680: Is commonly found in System-on-Chips with integrated audio when the amplifier shares a die with the main processor or DSP. While class-D amplifiers are widely used to control motors , they are also used as power amplifiers. Though if the signal is not already in a pulse modulated format prior to amplification, it must first be converted, which may require additional circuitry. Switching power supplies have even been modified into crude class-D amplifiers (though typically these only reproduce low-frequencies with acceptable accuracy). High-quality class-D audio power amplifiers are readily available on
4758-437: Is distinguished by the output stage devices being biased for class A operation. Subclass A2 is sometimes used to refer to vacuum-tube class-A stages that drive the grid slightly positive on signal peaks for slightly more power than normal class A (A1; where the grid is always negative ). This, however, incurs higher signal distortion . Because transistors biased for class A essentially always have drain current, their efficiency
4880-423: Is done by modulating the supply rails so that the rails are only a few volts larger than the output signal "tracking" it at any given time. The output stage operates at its maximum efficiency all the time. This is due to the circuit ability to keep the rail transistors (T2 and T4) in cutoff until a music voltage peak is of a sufficient magnitude to require the additional voltage from the + and - 80 V supplies. Refer to
5002-487: Is low efficiency and high heat dissipation. In a class-B amplifier, the active device conducts for 180 degrees of the cycle (conduction angle θ = 180°). Because only half the waveform is amplified, significant harmonic distortion is directly present in the output signal. Therefore, class-B amplifiers are generally operated with tuned loading - where harmonics are shorted to ground by a series of resonators. Another method of reducing distortion, especially at audio frequencies,
Class C - Misplaced Pages Continue
5124-426: Is mostly in the first harmonic, it looks like a sine. That means that in the middle of the square the maximum of current has to flow, so it may make sense to have a dip in the square or in other words to allow some overswing of the voltage square wave. A class-F load network by definition has to transmit below a cutoff frequency and reflect above. Any frequency lying below the cutoff and having its second harmonic above
5246-399: Is no signal) makes a large difference to the level of distortion (and to the risk of thermal runaway , which may damage the devices). Often, bias voltage applied to set this quiescent current must be adjusted with the temperature of the output transistors. (For example, in the circuit shown at right, the diodes would be mounted physically close to the output transistors, and specified to have
5368-410: Is not important since they are simply re-captured by the plate. But in a tetrode they can be captured by the screen grid since it is also at a positive voltage, robbing them from the plate current and reducing the amplification of the tube. Since secondary electrons can outnumber the primary electrons over a certain range of plate voltages, the plate current can decrease with increasing plate voltage. This
5490-629: Is poor and heat is generated in the transistor. Class-A power amplifier designs have largely been superseded by more efficient designs, though their simplicity makes them popular with some hobbyists. There is a market for expensive high fidelity class-A amps considered a "cult item" among audiophiles mainly for their absence of crossover distortion and reduced odd-harmonic and high-order harmonic distortion . Class A power amplifiers are also used in some "boutique" guitar amplifiers due to their unique tonal quality and for reproducing vintage tones. Some hobbyists who prefer class-A amplifiers also prefer
5612-564: Is the Loewe 3NF . This 1920s device has three triodes in a single glass envelope together with all the fixed capacitors and resistors required to make a complete radio receiver. As the Loewe set had only one tube socket, it was able to substantially undercut the competition, since, in Germany, state tax was levied by the number of sockets. However, reliability was compromised, and production costs for
5734-416: Is the dynatron region or tetrode kink and is an example of negative resistance which can itself cause instability. Another undesirable consequence of secondary emission is that screen current is increased, which may cause the screen to exceed its power rating. The otherwise undesirable negative resistance region of the plate characteristic was exploited with the dynatron oscillator circuit to produce
5856-407: Is the push–pull stage , such as the very simplified complementary pair arrangement shown at right. Complementary devices are each used for amplifying the opposite halves of the input signal, which is then recombined at the output. This arrangement gives good efficiency, but usually suffers from the drawback that there is a small mismatch in the cross-over region – at the "joins" between
5978-464: Is to allow back-biasing diode D2 when the amplifier output is at a positive peak (above 39.3 V) and back biasing D4 when the output is at negative peak less than -39.3 V. During the musical peaks from 100 to 400 watts, the +/-40 V rails source no current as all the current comes from the +/-80 V rails. This figure is too simplistic, however, as it will not actually control the T2 and T4 transistors at all. This
6100-547: Is to assure that the signal applied to the T2 is always "ahead" of the Vout signal so it can never "catch up" with the rail tracker. The rail tracker amplifier might have a 50 V/μs slew rate while the AB amplifier might have only a 30 V/μs slew rate in order to guarantee this. Vacuum tube A vacuum tube , electron tube , valve (British usage), or tube (North America) is a device that controls electric current flow in
6222-400: Is to use two transistor devices in a push-pull configuration. Each conducts for one half (180°) of the signal cycle, and the device currents are combined so that the load current is continuous. At radio frequency , if the coupling to the load is via a tuned circuit , a single device operating in class B can be used because the stored energy in the tuned circuit supplies the "missing" half of
SECTION 50
#17327980105216344-477: Is typically much more efficient than class A. A vacuum tube amplifier design will sometimes have an additional suffix number for the class, for example, class B1. A suffix 1 indicates that grid current does not flow during any part of the input waveform, where a suffix 2 indicates grid current flows for part of the input waveform. This distinction affects the design of the driver stages for the amplifier. Suffix numbers are not used for semiconductor amplifiers. In
6466-408: Is used to switch the active device, causing pulses of current to flow through a tuned circuit forming part of the load. The class-C amplifier has two modes of operation: tuned and untuned. The diagram shows a waveform from a simple class-C circuit without the tuned load. This is called untuned operation, and the analysis of the waveforms shows the massive distortion that appears in the signal. When
6588-564: The Edison effect , that became well known. Although Edison was aware of the unidirectional property of current flow between the filament and the anode, his interest (and patent ) concentrated on the sensitivity of the anode current to the current through the filament (and thus filament temperature). It was years later that John Ambrose Fleming applied the rectifying property of the Edison effect to detection of radio signals, as an improvement over
6710-636: The plate ( anode ) when the plate was at a positive voltage with respect to the cathode. Electrons could not pass in the reverse direction because the plate was not heated and not capable of thermionic emission of electrons. Fleming filed a patent for these tubes, assigned to the Marconi company, in the UK in November 1904 and this patent was issued in September 1905. Later known as the Fleming valve ,
6832-429: The screen grid or shield grid . The screen grid is operated at a positive voltage significantly less than the plate voltage and it is bypassed to ground with a capacitor of low impedance at the frequencies to be amplified. This arrangement substantially decouples the plate and the control grid , eliminating the need for neutralizing circuitry at medium wave broadcast frequencies. The screen grid also largely reduces
6954-480: The 6GH8 /ECF82 triode-pentode, quite popular in television receivers. The desire to include even more functions in one envelope resulted in the General Electric Compactron which has 12 pins. A typical example, the 6AG11, contains two triodes and two diodes. Some otherwise conventional tubes do not fall into standard categories; the 6AR8, 6JH8 and 6ME8 have several common grids, followed by
7076-482: The 6SN7 , is a "dual triode" which performs the functions of two triode tubes while taking up half as much space and costing less. The 12AX7 is a dual "high mu" (high voltage gain ) triode in a miniature enclosure, and became widely used in audio signal amplifiers, instruments, and guitar amplifiers . The introduction of the miniature tube base (see below) which can have 9 pins, more than previously available, allowed other multi-section tubes to be introduced, such as
7198-467: The magnetic detector . Amplification by vacuum tube became practical only with Lee de Forest 's 1907 invention of the three-terminal " audion " tube, a crude form of what was to become the triode . Being essentially the first electronic amplifier , such tubes were instrumental in long-distance telephony (such as the first coast-to-coast telephone line in the US) and public address systems , and introduced
7320-438: The photoelectric effect , and are used for such purposes as the detection of light intensities. In both types, the electrons are accelerated from the cathode to the anode by the electric field in the tube. The simplest vacuum tube, the diode (i.e. Fleming valve ), was invented in 1904 by John Ambrose Fleming . It contains only a heated electron-emitting cathode and an anode. Electrons can flow in only one direction through
7442-468: The quiescent current necessary to ensure linearity and low distortion. In a power amplifier, this heating can be considerable and can destroy the tube if driven beyond its safe limits. Since the tube contains a vacuum, the anodes in most small and medium power tubes are cooled by radiation through the glass envelope. In some special high power applications, the anode forms part of the vacuum envelope to conduct heat to an external heat sink, usually cooled by
SECTION 60
#17327980105217564-462: The spark gap transmitter for radio or mechanical computers for computing, it was the invention of the thermionic vacuum tube that made these technologies widespread and practical, and created the discipline of electronics . In the 1940s, the invention of semiconductor devices made it possible to produce solid-state devices, which are smaller, safer, cooler, and more efficient, reliable, durable, and economical than thermionic tubes. Beginning in
7686-413: The 19th century, telegraph and telephone engineers had recognized the need to extend the distance that signals could be transmitted. In 1906, Robert von Lieben filed for a patent for a cathode-ray tube which used an external magnetic deflection coil and was intended for use as an amplifier in telephony equipment. This von Lieben magnetic deflection tube was not a successful amplifier, however, because of
7808-485: The Audion for demonstration to AT&T's engineering department. Dr. Harold D. Arnold of AT&T recognized that the blue glow was caused by ionized gas. Arnold recommended that AT&T purchase the patent, and AT&T followed his recommendation. Arnold developed high-vacuum tubes which were tested in the summer of 1913 on AT&T's long-distance network. The high-vacuum tubes could operate at high plate voltages without
7930-427: The accuracy of the bias in low cost op-amps such as the "741" may result in class A or class AB or class B performance, varying from device to device or with temperature). They are sometimes used as medium-power, low-efficiency, and high-cost audio power amplifiers. The power consumption is unrelated to the output power. At idle (no input), the power consumption is essentially the same as at high output volume. The result
8052-454: The active element would pass only an instantaneous current pulse while the voltage across it is zero: it then dissipates no power and 100% efficiency is achieved. However practical devices have a limit to the peak current they can pass, and the pulse must therefore be widened, to around 120 degrees, to obtain a reasonable amount of power, and the efficiency is then 60–70%. Class-D amplifiers use some form of pulse-width modulation to control
8174-400: The allied military by 1916. Historically, vacuum levels in production vacuum tubes typically ranged from 10 μPa down to 10 nPa (8 × 10 Torr down to 8 × 10 Torr). The triode and its derivatives (tetrodes and pentodes) are transconductance devices, in which the controlling signal applied to the grid is a voltage , and the resulting amplified signal appearing at the anode
8296-432: The amplifier. Such amplifiers have an efficiency around 60%. When Class-B amplifiers amplify the signal with two active devices, each operates over one half of the cycle. Efficiency is much improved over class-A amplifiers. Class-B amplifiers are also favoured in battery-operated devices, such as transistor radios . Class B has a maximum theoretical efficiency of π/4 (≈ 78.5%). A practical circuit using class-B elements
8418-409: The base. There was even an occasional design that had two top cap connections. The earliest vacuum tubes evolved from incandescent light bulbs , containing a filament sealed in an evacuated glass envelope. When hot, the filament in a vacuum tube (a cathode ) releases electrons into the vacuum, a process called thermionic emission . This can produce a controllable unidirectional current though
8540-536: The cathode, no direct current could pass from the cathode to the grid. Thus a change of voltage applied to the grid, requiring very little power input to the grid, could make a change in the plate current and could lead to a much larger voltage change at the plate; the result was voltage and power amplification . In 1908, de Forest was granted a patent ( U.S. patent 879,532 ) for such a three-electrode version of his original Audion for use as an electronic amplifier in radio communications. This eventually became known as
8662-405: The cutoff can be amplified, that is an octave bandwidth. On the other hand, an inductive-capacitive series circuit with a large inductance and a tunable capacitance may be simpler to implement. By reducing the duty cycle below 0.5, the output amplitude can be modulated. The voltage square waveform degrades, but any overheating is compensated by the lower overall power flowing. Any load mismatch behind
8784-565: The device – from the cathode to the anode. Adding one or more control grids within the tube allows the current between the cathode and anode to be controlled by the voltage on the grids. These devices became a key component of electronic circuits for the first half of the twentieth century. They were crucial to the development of radio , television , radar , sound recording and reproduction , long-distance telephone networks, and analog and early digital computers . Although some applications had used earlier technologies such as
8906-429: The edges, the lower the overlap. While in class D, transistors and the load exist as two separate modules, class F admits imperfections like the parasitics of the transistor and tries to optimise the global system to have a high impedance at the harmonics. Of course there must be a finite voltage across the transistor to push the current across the on-state resistance. Because the combined current through both transistors
9028-418: The electrode leads connect to pins on the tube's base which plug into a tube socket . Tubes were a frequent cause of failure in electronic equipment, and consumers were expected to be able to replace tubes themselves. In addition to the base terminals, some tubes had an electrode terminating at a top cap . The principal reason for doing this was to avoid leakage resistance through the tube base, particularly for
9150-425: The exception of early light bulbs , such tubes were only used in scientific research or as novelties. The groundwork laid by these scientists and inventors, however, was critical to the development of subsequent vacuum tube technology. Although thermionic emission was originally reported in 1873 by Frederick Guthrie , it was Thomas Edison's apparently independent discovery of the phenomenon in 1883, referred to as
9272-403: The filament as the cathode; this is called a "directly heated" tube. Most modern tubes are "indirectly heated" by a "heater" element inside a metal tube that is the cathode. The heater is electrically isolated from the surrounding cathode and simply serves to heat the cathode sufficiently for thermionic emission of electrons. The electrical isolation allows all the tubes' heaters to be supplied from
9394-444: The filter can only act on the first harmonic current waveform, clearly only a purely resistive load makes sense, then the lower the resistance, the higher the current. Class F can be driven by sine or by a square wave, for a sine the input can be tuned by an inductor to increase gain. If class F is implemented with a single transistor, the filter is complicated to short the even harmonics. All previous designs use sharp edges to minimise
9516-400: The high impedance grid input. The bases were commonly made with phenolic insulation which performs poorly as an insulator in humid conditions. Other reasons for using a top cap include improving stability by reducing grid-to-anode capacitance, improved high-frequency performance, keeping a very high plate voltage away from lower voltages, and accommodating one more electrode than allowed by
9638-411: The influence of the plate voltage on the space charge near the cathode, permitting the tetrode to produce greater voltage gain than the triode in amplifier circuits. While the amplification factors of typical triodes commonly range from below ten to around 100, tetrode amplification factors of 500 are common. Consequently, higher voltage gains from a single tube amplification stage became possible, reducing
9760-508: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Class_C&oldid=1055559963 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Power amplifier classes#Class C Additional letter classes are defined for special-purpose amplifiers, with additional active elements, power supply improvements, or output tuning; sometimes
9882-438: The market. Dynamic range of 118 dB in a high-end consumer product was seen in the year 2009. Most, however, remain closer to 100 dB dynamic range at this time [2022] due to practical cost considerations. These designs have been said to rival traditional class A and AB amplifiers in terms of quality. An early use of class-D amplifiers was high-power subwoofer amplifiers in cars. Because subwoofers are generally limited to
10004-573: The mid-1960s, thermionic tubes were being replaced by the transistor . However, the cathode-ray tube (CRT) remained the basis for television monitors and oscilloscopes until the early 21st century. Thermionic tubes are still employed in some applications, such as the magnetron used in microwave ovens, certain high-frequency amplifiers , and high end audio amplifiers, which many audio enthusiasts prefer for their "warmer" tube sound , and amplifiers for electric musical instruments such as guitars (for desired effects, such as "overdriving" them to achieve
10126-561: The miniature tube version of the " All American Five ". Octodes, such as the 7A8, were rarely used in the United States, but much more common in Europe, particularly in battery operated radios where the lower power consumption was an advantage. To further reduce the cost and complexity of radio equipment, two separate structures (triode and pentode for instance) can be combined in the bulb of a single multisection tube . An early example
10248-449: The music signal is between 100 and 400 watts output. The key to understanding this efficiency without churning the actual numbers is that we have a 400-watt-capable amplifier but with the efficiency of a 100-watt amplifier. This is because the waveforms of music contain long periods under 100 watts and contain only brief bursts of up to 400 watts – in other words, the losses at 400 watts are for brief time periods. If this example were drawn as
10370-431: The number of external pins (leads) often forced the functions to share some of those external connections such as their cathode connections (in addition to the heater connection). The RCA Type 55 is a double diode triode used as a detector, automatic gain control rectifier and audio preamplifier in early AC powered radios. These sets often include the 53 Dual Triode Audio Output. Another early type of multi-section tube,
10492-435: The number of tubes required. Screen grid tubes were marketed by late 1927. However, the useful region of operation of the screen grid tube as an amplifier was limited to plate voltages greater than the screen grid voltage, due to secondary emission from the plate. In any tube, electrons strike the plate with sufficient energy to cause the emission of electrons from its surface. In a triode this secondary emission of electrons
10614-528: The oscillation valve was developed for the purpose of rectifying radio frequency current as the detector component of radio receiver circuits. While offering no advantage over the electrical sensitivity of crystal detectors , the Fleming valve offered advantage, particularly in shipboard use, over the difficulty of adjustment of the crystal detector and the susceptibility of the crystal detector to being dislodged from adjustment by vibration or bumping. In
10736-459: The output devices. The conduction angle of each device is no longer related directly to the input signal but instead varies in pulse width. In the class-D amplifier the active devices (transistors) function as electronic switches instead of linear gain devices; they are either on or off. The analog signal is converted to a stream of pulses that represents the signal by pulse-width modulation , pulse-density modulation , delta-sigma modulation or
10858-434: The output waveform superficially resembles a pulse-train of digital symbols, but a class-D amplifier merely converts an input waveform into a continuously pulse-width modulated analog signal. (A digital waveform would be pulse-code modulated .) Other amplifier classes are mainly variations of the previous classes. For example, class-G and class-H amplifiers are marked by variation of the supply rails (in discrete steps or in
10980-743: The overlap. There are a variety of amplifier designs that enhance class-AB output stages with more efficient techniques to achieve greater efficiency with low distortion. These designs are common in large audio amplifiers since the heatsinks and power transformers would be prohibitively large (and costly) without the efficiency increases. The terms "class G" and "class H" are used interchangeably to refer to different designs, varying in definition from one manufacturer or paper to another. Class-G amplifiers (which use "rail switching" to decrease power consumption and increase efficiency) are more efficient than class-AB amplifiers. These amplifiers provide several power rails at different voltages and switch between them as
11102-652: The plate current, possibly changing the output by hundreds of volts (depending on the circuit). The solid-state device which operates most like the pentode tube is the junction field-effect transistor (JFET), although vacuum tubes typically operate at over a hundred volts, unlike most semiconductors in most applications. The 19th century saw increasing research with evacuated tubes, such as the Geissler and Crookes tubes . The many scientists and inventors who experimented with such tubes include Thomas Edison , Eugen Goldstein , Nikola Tesla , and Johann Wilhelm Hittorf . With
11224-471: The plate, it creates an electric field due to the potential difference between them. Such a tube with only two electrodes is termed a diode , and is used for rectification . Since current can only pass in one direction, such a diode (or rectifier ) will convert alternating current (AC) to pulsating DC. Diodes can therefore be used in a DC power supply , as a demodulator of amplitude modulated (AM) radio signals and for similar functions. Early tubes used
11346-405: The plate. The vacuum tube is then known as a triode , tetrode , pentode , etc., depending on the number of grids. A triode has three electrodes: the anode, cathode, and one grid, and so on. The first grid, known as the control grid, (and sometimes other grids) transforms the diode into a voltage-controlled device : the voltage applied to the control grid affects the current between the cathode and
11468-414: The plate. When held negative with respect to the cathode, the control grid creates an electric field that repels electrons emitted by the cathode, thus reducing or even stopping the current between cathode and anode. As long as the control grid is negative relative to the cathode, essentially no current flows into it, yet a change of several volts on the control grid is sufficient to make a large difference in
11590-399: The power used by the deflection coil. Von Lieben would later make refinements to triode vacuum tubes. Lee de Forest is credited with inventing the triode tube in 1907 while experimenting to improve his original (diode) Audion . By placing an additional electrode between the filament ( cathode ) and plate (anode), he discovered the ability of the resulting device to amplify signals. As
11712-448: The present-day C cell , for which the letter denotes its size and shape). The C battery's positive terminal was connected to the cathode of the tubes (or "ground" in most circuits) and whose negative terminal supplied this bias voltage to the grids of the tubes. Later circuits, after tubes were made with heaters isolated from their cathodes, used cathode biasing , avoiding the need for a separate negative power supply. For cathode biasing,
11834-411: The proper load (e.g., an inductive-capacitive filter plus a load resistor) is used, two things happen. The first is that the output's bias level is clamped with the average output voltage equal to the supply voltage. This is why tuned operation is sometimes called a clamper . This restores the waveform to its proper shape, despite the amplifier having only a one-polarity supply. This is directly related to
11956-405: The proportion of each input cycle (conduction angle) during which an amplifying device passes current. The image of the conduction angle derives from amplifying a sinusoidal signal. If the device is always on, the conducting angle is 360°. If it is on for only half of each cycle, the angle is 180°. The angle of flow is closely related to the amplifier power efficiency . In the illustrations below,
12078-405: The pulses. The frequency of the output pulses is typically ten or more times the highest frequency in the input signal to amplify, so that the filter can adequately reduce the unwanted harmonics and accurately reproduce the input. The main advantage of a class-D amplifier is power efficiency. Efficiency over 90% is achievable with MOSFETs and >80% is fairly common. Because the output pulses have
12200-532: The question of thermionic emission and conduction in a vacuum. Consequently, General Electric started producing hard vacuum triodes (which were branded Pliotrons) in 1915. Langmuir patented the hard vacuum triode, but de Forest and AT&T successfully asserted priority and invalidated the patent. Pliotrons were closely followed by the French type ' TM ' and later the English type 'R' which were in widespread use by
12322-435: The same way as in class B over half the waveform, but also conducts a small amount on the other half. As a result, the region where both devices simultaneously are nearly off (the "dead zone") is reduced. The result is that when the waveforms from the two devices are combined, the crossover is greatly minimised or eliminated altogether. The exact choice of quiescent current (the standing current through both devices when there
12444-471: The schematic figure. The class H amplifier can actually be thought of as two amplifiers in series. In the schematic example shown by the figure, +/- 40 V rail amplifiers can produce about 100 watts continuous into an 8-ohm load. If the output signal is operating below 40 volts, the amplifier only has the losses associated with a 100 W amplifier. This is because the Class H upper devices T2 and T4 are only used when
12566-429: The second phenomenon: the waveform on the center frequency becomes less distorted. The residual distortion is dependent upon the bandwidth of the tuned load, with the center frequency seeing very little distortion, but greater attenuation the farther from the tuned frequency that the signal gets. The tuned circuit resonates at one frequency, the fixed carrier frequency, and so the unwanted frequencies are suppressed, and
12688-442: The signal output approaches each level. Thus, the amplifier increases efficiency by reducing the wasted power at the output transistors. Class-G amplifiers are more efficient than class AB but less efficient when compared to class D, however, they do not have the electromagnetic interference effects of class D. Class-H amplifiers create an infinitely variable (analog) supply rail. They are sometimes referred to as rail trackers. This
12810-399: The supply voltage during the RF cycle. The input circuit is biased so that the active element (e.g., transistor) conducts for only a fraction of the RF cycle, usually one-third (120 degrees) or less. The active element conducts only while the collector voltage is passing through its minimum. By this means, power dissipation in the active device is minimised, and efficiency increased. Ideally,
12932-440: The suppressor grid wired internally to the cathode (e.g. EL84/6BQ5) and those with the suppressor grid wired to a separate pin for user access (e.g. 803, 837). An alternative solution for power applications is the beam tetrode or beam power tube , discussed below. Superheterodyne receivers require a local oscillator and mixer , combined in the function of a single pentagrid converter tube. Various alternatives such as using
13054-431: The traditional classes is important, yet several aspects deviate substantially from their ideal values. These classes use harmonic tuning of their output networks to achieve higher efficiency and can be considered a subset of class C due to their conduction-angle characteristics. The class-E amplifier is a highly efficient tuned switching power amplifier used at radio frequencies. It uses a single-pole switching element and
13176-458: The triode caused early tube audio amplifiers to exhibit harmonic distortion at low volumes. Plotting plate current as a function of applied grid voltage, it was seen that there was a range of grid voltages for which the transfer characteristics were approximately linear. To use this range, a negative bias voltage had to be applied to the grid to position the DC operating point in the linear region. This
13298-407: The triode. De Forest's original device was made with conventional vacuum technology. The vacuum was not a "hard vacuum" but rather left a very small amount of residual gas. The physics behind the device's operation was also not settled. The residual gas would cause a blue glow (visible ionization) when the plate voltage was high (above about 60 volts). In 1912, de Forest and John Stone Stone brought
13420-646: The tube were much greater. In a sense, these were akin to integrated circuits. In the United States, Cleartron briefly produced the "Multivalve" triple triode for use in the Emerson Baby Grand receiver. This Emerson set also has a single tube socket, but because it uses a four-pin base, the additional element connections are made on a "mezzanine" platform at the top of the tube base. By 1940 multisection tubes had become commonplace. There were constraints, however, due to patents and other licensing considerations (see British Valve Association ). Constraints due to
13542-482: The tubes) without requiring replacement. When triodes were first used in radio transmitters and receivers, it was found that tuned amplification stages had a tendency to oscillate unless their gain was very limited. This was due to the parasitic capacitance between the plate (the amplifier's output) and the control grid (the amplifier's input), known as the Miller capacitance . Eventually the technique of neutralization
13664-530: The two active elements conducts more than half of the time. Class AB is widely considered a good compromise for amplifiers, since many types of input signal are nominally quiet enough to stay in the "class-A" region, where they are amplified with good fidelity, and by definition if passing out of this region, will be large enough that the distortion products typical of class B will be relatively small. The crossover distortion can be reduced further by using negative feedback . In class-AB operation, each device operates
13786-424: The two halves of the signal, as one output device has to take over supplying power exactly as the other finishes. This is called crossover distortion . An improvement is to bias the devices so they are not completely off when they are not in use. This approach is called class AB operation. In a class-AB amplifier, the conduction angle is intermediate between class A and B (conduction angle θ > 180°); each one of
13908-535: The use of thermionic valve (tube) designs instead of transistors, for several reasons: Transistors are much less expensive than tubes so more elaborate designs that use more parts are still less expensive to manufacture than tube designs. A classic application for a pair of class-A devices is the long-tailed pair , which is exceptionally linear, and forms the basis of many more complex circuits, including many audio amplifiers and almost all op-amps . Class-A amplifiers may be used in output stages of op-amps (although
14030-420: The vacuum known as the Edison effect . A second electrode, the anode or plate , will attract those electrons if it is at a more positive voltage. The result is a net flow of electrons from the filament to plate. However, electrons cannot flow in the reverse direction because the plate is not heated and does not emit electrons. The filament has a dual function: it emits electrons when heated; and, together with
14152-421: The voltage applied to the control grid (or simply "grid") was lowered from the cathode's voltage to somewhat more negative voltages, the amount of current from the filament to the plate would be reduced. The negative electrostatic field created by the grid in the vicinity of the cathode would inhibit the passage of emitted electrons and reduce the current to the plate. With the voltage of the grid less than that of
14274-459: The wanted full signal (sine wave) is extracted by the tuned load. The signal bandwidth of the amplifier is limited by the Q-factor of the tuned circuit but this is not a serious limitation. Any residual harmonics can be removed using a further filter. In practical class-C amplifiers a tuned load is invariably used. In one common arrangement the resistor shown in the circuit above is replaced with
14396-443: The waveform. Devices operating in Class B are used in linear amplifiers, so called because the radio frequency output power is proportional to the square of the input excitation voltage. This is more easily understood if stated as "output voltage is proportional to input voltage, thus ouput power is proportional to input power." This characteristic prevents distortion of amplitude-modulated or frequency-modulated signals passing through
14518-449: Was also technical consultant to Edison-Swan . One of Marconi's needs was for improvement of the detector , a device that extracts information from a modulated radio frequency. Marconi had developed a magnetic detector , which was less responsive to natural sources of radio frequency interference than the coherer , but the magnetic detector only provided an audio frequency signal to a telephone receiver. A reliable detector that could drive
14640-405: Was called the idle condition, and the plate current at this point the "idle current". The controlling voltage was superimposed onto the bias voltage, resulting in a linear variation of plate current in response to positive and negative variation of the input voltage around that point. This concept is called grid bias . Many early radio sets had a third battery called the "C battery" (unrelated to
14762-569: Was developed whereby the RF transformer connected to the plate (anode) would include an additional winding in the opposite phase. This winding would be connected back to the grid through a small capacitor, and when properly adjusted would cancel the Miller capacitance. This technique was employed and led to the success of the Neutrodyne radio during the 1920s. However, neutralization required careful adjustment and proved unsatisfactory when used over
14884-401: Was usually connected to the cathode and its negative voltage relative to the anode repelled secondary electrons so that they would be collected by the anode instead of the screen grid. The term pentode means the tube has five electrodes. The pentode was invented in 1926 by Bernard D. H. Tellegen and became generally favored over the simple tetrode. Pentodes are made in two classes: those with
#520479