The Ford 335 engine family was a group of engines built by the Ford Motor Company between 1969 and 1982. The "335" designation reflected Ford management's decision to produce an engine of that size (335 cubic inches) with room for expansion during its development. This engine family began production in late 1969 with a 351 cu in (5.8 L) engine, commonly called the 351C. It later expanded to include a 400 cu in (6.6 L) engine which used a taller version of the engine block, commonly referred to as a tall deck engine block, a 351 cu in (5.8 L) tall deck variant, called the 351M, and a 302 cu in (4.9 L) engine which was exclusive to Australia.
106-471: The 351C, introduced in 1969 for the 1970 model year, is commonly referred to as the 351 Cleveland after the Brook Park, Ohio, Cleveland Engine plant in which most of these engines were manufactured. This plant complex included a gray iron foundry (Cleveland Casting Plant), and two engine assembly plants (Engine plant 1 & 2). As newer automobile engines began incorporating aluminum blocks, Ford closed
212-641: A 2-barrel carburetor, a cast-iron intake manifold, and small port 2V cylinder heads. A 1-year only option 400 had flat top pistons,in 1971. The 400 was designed as a high torque, low RPM engine that was a smaller, more efficient and lighter alternative for the big Ford 385 engines , the 429 and 460, for use in Ford's medium and large size cars. Weighing just 80% of a similar big-block, it was originally available in Ford's Custom , Galaxie and LTD lines, and in Mercury Monterey , Marquis , and Brougham for
318-641: A 4-barrel carburetor. Australia only produced one style of cylinder head for the 351 engines, a 2V head with small ports and open chamber cylinder heads. As a result, the Australian 351-4V engines used the 2V cylinder head. This required a unique 4V intake manifold with the smaller 2V ports, unlike the American 351-4V intake manifold which used the large ports. No 351C built in Australia used the large port cylinder heads or closed chamber combustion chambers like
424-476: A Ford passenger car in 1979. They remained available in Ford light-trucks until 1982. Reduced demand for larger engines due to tightening CAFE regulations led to the abandonment of the 351M/400 and the Cleveland production line. By 1980, mid-sized V8's had disappeared from the option list for almost all Ford cars. Only the full-size Panther platform Fords had anything larger than 302 ci available, and this need
530-450: A colder to a warmer place, so their function is the opposite of a heat engine. The work energy ( W in ) that is applied to them is converted into heat, and the sum of this energy and the heat energy that is taken up from the cold reservoir ( Q C ) is equal to the magnitude of the total heat energy given off to the hot reservoir (| Q H |) Their efficiency is measured by a coefficient of performance (COP). Heat pumps are measured by
636-522: A fundamental limit on the thermal efficiency of all heat engines. Even an ideal, frictionless engine can't convert anywhere near 100% of its input heat into work. The limiting factors are the temperature at which the heat enters the engine, T H {\displaystyle T_{\rm {H}}\,} , and the temperature of the environment into which the engine exhausts its waste heat, T C {\displaystyle T_{\rm {C}}\,} , measured in an absolute scale, such as
742-721: A high-performance engine, featuring the 4V large ports heads with closed "quench" combustion chambers. Later versions of the 351C with 4V heads continued to use the large ports and valves, but switched to open chamber heads in an effort to reduce engine emissions. Only the Q-code 351 "Cobra Jet" (1971–1974), R-code "Boss" 351 (1971), and R-code 351 "HO" (1972) versions have four-bolt main bearing caps, however, all 335 series engines could be modified to have 4-bolt main bearing caps. The H-code 351 Cleveland engines were low performance engines with low compression and two-barrel carburetors. All H-code engines ran on regular grade fuel. Compression ratio
848-551: A longer stroke, and used larger main bearings for additional strength. This was similar to the changes made to convert a 302 Small Block to the 351 Windsor . For the 1975 model year the 351M replaced the 351C in North American markets. Initially Ford of Australia imported US made 351C engines. However, by November 1971, Ford of Australia began to manufacture the 351C locally at the Geelong Foundry. This engine
954-440: A manual transmission could be ordered for the first time with these engines. As a result, the block was strengthened in the main bearing supports, in particular the #3 support to better handle the loads imparted by the clutch. The truck engines had unique parts including pistons for different compression ratios from the car engines, truck specific intake and exhaust manifolds, camshaft with more lift, and timing set that did not retard
1060-409: A more realistic as-installed configuration with all engine accessories, air cleaner assembly, and automobile exhaust system. The 351C HO "R-code" had a number of changes to help meet emission standards for 1972 compared to the 1971 Boss 351 "R-Code". The camshaft had less duration, but more valve lift, while the mechanical lifters remained unchanged. The forged pistons were changed to flat-top style and
1166-547: A non-adjustable valve train. The rocker arm design was originally used by the Ford 385 series engines. However, the Boss 351 and 351 HO had an adjustable valve train, using rocker arms mounted on screw-in studs and guide plates. Prior to the release of the 351C, the 335 Series cylinder head was used on the Ford Boss 302 engine . The Boss 302 used a large port closed chamber 4V cylinder head which required minor modifications to make
SECTION 10
#17328020599491272-400: A non-ideal process, so 0 ≤ η t h < 1 {\displaystyle 0\leq \eta _{\rm {th}}<1} When expressed as a percentage, the thermal efficiency must be between 0% and 100%. Efficiency must be less than 100% because there are inefficiencies such as friction and heat loss that convert the energy into alternative forms. For example,
1378-563: A premium cast-iron crankshaft selected for hardness (90% nodularity ). The cylinder head was modified for better airflow, used screw-in studs with adjustable rocker arms, and except for the water passages and larger combustion chambers, were very similar to the heads used on the Boss 302. The valve train used hardened and ground push rods with guide plates and single groove, hardened valve split locks. The forged connecting rods were shot-peened and magnafluxed for strength, and used improved durability 3/8-inch nuts and bolts. The R-code Boss 351
1484-499: A range of outputs up to 360 PS (265 kW; 355 hp). In November 1971, Ford of Australia began to manufacture the 301.6 cu in (4.9 L; 4,942 cc) Cleveland engine at the Geelong engine plant alongside of the 351C. The engine remained in production until 1982 and was only produced in Australia. The 302C was considered an economy V8 and it is estimated that only ten percent of Australian Cleveland V8 production
1590-408: A real-world value may be used as a figure of merit for the device. For engines where a fuel is burned, there are two types of thermal efficiency: indicated thermal efficiency and brake thermal efficiency. This form of efficiency is only appropriate when comparing similar types or similar devices. For other systems, the specifics of the calculations of efficiency vary, but the non-dimensional input
1696-402: A slightly lower advertised compression ratio of 10.7:1 due in part to the slightly larger combustion chambers, and the power rating dropped to 285 bhp (213 kW; 289 PS) at 5400 rpm. The M-code 351C required premium fuel and was available in the 1970-71 Ford Torino , Mercury Montego , Ford Mustang , and Mercury Cougar . The Boss 351 was the most potent high-performance variant of
1802-658: A temperature of T H = 816 ∘ C = 1500 ∘ F = 1089 K {\displaystyle T_{\rm {H}}=816^{\circ }{\text{C}}=1500^{\circ }{\text{F}}=1089{\text{K}}} and the ambient temperature is T C = 21 ∘ C = 70 ∘ F = 294 K {\displaystyle T_{\rm {C}}=21^{\circ }{\text{C}}=70^{\circ }{\text{F}}=294{\text{K}}} , then its maximum possible efficiency is: It can be seen that since T C {\displaystyle T_{\rm {C}}}
1908-413: A thermal efficiency close to 100%. When comparing heating units, such as a highly efficient electric resistance heater to an 80% efficient natural gas-fuelled furnace, an economic analysis is needed to determine the most cost-effective choice. The heating value of a fuel is the amount of heat released during an exothermic reaction (e.g., combustion ) and is a characteristic of each substance. It
2014-484: A typical gasoline automobile engine operates at around 25% efficiency, and a large coal-fuelled electrical generating plant peaks at about 46%. However, advances in Formula 1 motorsport regulations have pushed teams to develop highly efficient power units which peak around 45–50% thermal efficiency. The largest diesel engine in the world peaks at 51.7%. In a combined cycle plant, thermal efficiencies approach 60%. Such
2120-413: A unique cylinder head compared to the Australian 351C to ensure an adequate compression ratio. The 302C had used the "quench" closed combustion chamber with a volume of 56.4–59.4 cc, the smallest of any 335 series engine cylinder head. This head used the small 2V ports and valves, making it the only 335 series head with the closed chambers and small 2V ports. The combination of the closed chamber heads with
2226-448: A unique short-skirt engine block that was both longer and heavier than that of the existing Ford small block V8 . The 335 series incorporated features used on the 385 big-block series, including the canted valve layout, the valve train design, and thin-wall casting technology. All 335 series V8s had free breathing, large-port canted valve heads with a rugged engine block. These engines use a shallow poly angle combustion chamber rather than
SECTION 20
#17328020599492332-498: A variety of Ford models, from pony-car to full-sized. The 351W with a 2V carburetor was also produced during this time which also used the "H-code" designation. Both the 351W and 351C H-code had the same or very similar power ratings, and were used interchangeably when a car was built with the H-code engine option. The M-code was a high-compression, high-performance variation of the 351C, produced in 1970 and 1971. The M-code engines used
2438-413: Is 90% efficient', but a more detailed measure of seasonal energy effectiveness is the annual fuel use efficiency (AFUE). The role of a heat exchanger is to transfer heat between two mediums, so the performance of the heat exchanger is closely related to energy or thermal efficiency. A counter flow heat exchanger is the most efficient type of heat exchanger in transferring heat energy from one circuit to
2544-512: Is a Ford Motor Company engine manufacturing facility in Brook Park , Ohio , United States, a suburb of Cleveland . It consisted of two distinct plants until one was closed in 2012. Opened in 1951, Cleveland Engine Plant number 1 was the site of production for Ford's first overhead valve engine, the Lincoln "Y-block" V8. It also produced many of the "5.0" V8 engines used through
2650-476: Is an active area of research. Due to the other causes detailed below, practical engines have efficiencies far below the Carnot limit. For example, the average automobile engine is less than 35% efficient. Carnot's theorem applies to thermodynamic cycles, where thermal energy is converted to mechanical work. Devices that convert a fuel's chemical energy directly into electrical work, such as fuel cells , can exceed
2756-453: Is an overall theoretical limit to the efficiency of any heat engine due to temperature, called the Carnot efficiency. Second, specific types of engines have lower limits on their efficiency due to the inherent irreversibility of the engine cycle they use. Thirdly, the nonideal behavior of real engines, such as mechanical friction and losses in the combustion process causes further efficiency losses. The second law of thermodynamics puts
2862-466: Is capable of 20% better fuel economy . The Cleveland-built EcoBoost V6 engines were available in the 2010 Lincoln MKS , Lincoln MKT , and Ford Flex , and standard on the 2010 Ford Taurus SHO . Ford made an additional US$ 1.5 million investment in the plant in 2016 after building over a million EcoBoost engines. Cleveland Engine Plant number 2 opened in 1955 to produce the Y-block 292 V8 for
2968-432: Is fixed by the environment, the only way for a designer to increase the Carnot efficiency of an engine is to increase T H {\displaystyle T_{\rm {H}}} , the temperature at which the heat is added to the engine. The efficiency of ordinary heat engines also generally increases with operating temperature , and advanced structural materials that allow engines to operate at higher temperatures
3074-538: Is measured in units of energy per unit of the substance, usually mass , such as: kJ/kg, J / mol . The heating value for fuels is expressed as the HHV, LHV, or GHV to distinguish treatment of the heat of phase changes: Which definition of heating value is being used significantly affects any quoted efficiency. Not stating whether an efficiency is HHV or LHV renders such numbers very misleading. Heat pumps , refrigerators and air conditioners use work to move heat from
3180-430: Is still the same: Efficiency = Output energy / input energy. Heat engines transform thermal energy , or heat, Q in into mechanical energy , or work , W out . They cannot do this task perfectly, so some of the input heat energy is not converted into work, but is dissipated as waste heat Q out < 0 into the surroundings: The thermal efficiency of a heat engine is the percentage of heat energy that
3286-613: Is transformed into work . Thermal efficiency is defined as The efficiency of even the best heat engines is low; usually below 50% and often far below. So the energy lost to the environment by heat engines is a major waste of energy resources. Since a large fraction of the fuels produced worldwide go to powering heat engines, perhaps up to half of the useful energy produced worldwide is wasted in engine inefficiency, although modern cogeneration , combined cycle and energy recycling schemes are beginning to use this heat for other purposes. This inefficiency can be attributed to three causes. There
Ford 335 engine - Misplaced Pages Continue
3392-492: The 351M for the 1975 model year. This new variation used the same bore and stroke dimensions of the 351C, but used the tall deck block from the 400 V8 engine and was only available with a 2 barrel carburetor. By 1970 the 390 V8 FE engine was becoming outdated. With pending emission requirements, a more modern replacement was needed. Although the big-block 385 family was used to replace the larger displacement 428 V8 FE engine , this engine family had nothing comparable in size to
3498-474: The 4V (four venturi) large port cylinder heads were used on the 4-barrel engines. While the 2Vs used the smaller port of the two, these ports and valves were significantly larger than Windsor engines. The 4V heads had enormous ports which flowed very well, in particular at higher valve lift. The 4V heads could out-flow Chevrolet Double Hump heads and Chrysler's high-performance 340 heads. 2V heads still have excellent flow, and actually have slightly better flow than
3604-643: The Carnot theorem . In general, energy conversion efficiency is the ratio between the useful output of a device and the input, in energy terms. For thermal efficiency, the input, Q i n {\displaystyle Q_{\rm {in}}} , to the device is heat , or the heat-content of a fuel that is consumed. The desired output is mechanical work , W o u t {\displaystyle W_{\rm {out}}} , or heat, Q o u t {\displaystyle Q_{\rm {out}}} , or possibly both. Because
3710-590: The Ford Thunderbird . It was the source of the famed 351 Cleveland V8, and most recently, it was the site for Duratec 25 and 30 production starting in 1994. The plant closed in May 2012, with the last of its output going to 2012 model year Ford Fusions , and its 250 employees transferring to Plant 1. 41°24′42″N 81°49′19″W / 41.41180°N 81.82199°W / 41.41180; -81.82199 Thermal efficiency In thermodynamics ,
3816-541: The Kelvin or Rankine scale. From Carnot's theorem , for any engine working between these two temperatures: This limiting value is called the Carnot cycle efficiency because it is the efficiency of an unattainable, ideal, reversible engine cycle called the Carnot cycle . No device converting heat into mechanical energy, regardless of its construction, can exceed this efficiency. Examples of T H {\displaystyle T_{\rm {H}}\,} are
3922-447: The ideal gas law . Real engines have many departures from ideal behavior that waste energy, reducing actual efficiencies below the theoretical values given above. Examples are: These factors may be accounted when analyzing thermodynamic cycles, however discussion of how to do so is outside the scope of this article. For a device that converts energy from another form into thermal energy (such as an electric heater, boiler, or furnace),
4028-401: The thermal efficiency ( η t h {\displaystyle \eta _{\rm {th}}} ) is a dimensionless performance measure of a device that uses thermal energy , such as an internal combustion engine , steam turbine , steam engine , boiler , furnace , refrigerator , ACs etc. For a heat engine , thermal efficiency is the ratio of the net work output to
4134-489: The "M" designation of the 351M. Some claim the "M" stands for “Modified” - being modified from a 400-V8 with a shortened stroke - though others claim that the "M" refers to the Michigan Casting Center, where the 351M began production. Some say that the "M" designation has no official meaning, and that it was just Ford's way of distinguishing the 351M from the 351C and 351W. Ford master part catalogs reference
4240-413: The 1969 model year called for a second line, which was organized at Ford's Cleveland, Ohio, engine works. At this time, it was also decided to upgrade the design of the new Cleveland manufactured 351s to improve performance. Two cylinder-head designs were developed, one similar to the 351W, but with larger ports and valves, and the other with very large ports with canted intake and exhaust valves similar to
4346-542: The 1971 model year. For 1972, it was also available in the Ford Torino , Mercury Montego and its variations through 1979. By the late 1970s it was also available in the Ford Thunderbird , Ford F-series pickup trucks, the Lincoln Continental , and Mark V . Unlike the 351C, almost all 400 blocks used the large bellhousing bolt pattern used by the 385 family big-block and were typically equipped with
Ford 335 engine - Misplaced Pages Continue
4452-507: The 1972 model year, the only change to the engine was a retarding the camshaft events by 4°. The engine was rated at 266 hp (198 kW) (SAE net) for 1972 when installed in the Mustang, and 248 hp (185 kW) in the Torino and Montego. An increase in the combustion chamber size and the use of smaller valves occurred in 1973, which reduced horsepower to 246 hp (183 kW) for
4558-544: The 1975 model year and blocks were cast in the Michigan Casting Center or the Cleveland Foundry. The 351M was the last pushrod V8 block designed by Ford until the introduction of the 7.3-liter "Godzilla" engine for the Super Duty trucks in model year 2020. For the 1977 model year, Ford replaced its FE big-block 360 and 390 engines in its light truck line with its new 351M and 400 engines. For light-truck use,
4664-577: The 1980s and 1990s, with the last produced in 2000. The demise of the 5.0 was to also be the end for CEP1, but Ford instead invested $ 350 million to refurbish it to handle production of the Duratec 30 for the Ford Taurus and Mercury Sable . Ford idled the plant in May 2007. In 2009, Ford reopened Plant 1 with a $ 55 million investment in tooling to produce their new 3.5 L EcoBoost V6. The EcoBoost V6 produces 15% lower CO 2 emissions , and
4770-433: The 335 engines have excessive clearances in the lifter bores. This results in oil leaking out of the lifter bores which can cause oil cavitation from the lifter motion, and can reduce oil flow to the main bearings. The cylinder-head design for the 335 series engines is its most definitive design feature. All cylinder head variants were two-valve that use large free flowing ports with poly-angle or 'canted' valves, resulting in
4876-624: The 335-series V8 locally at the Geelong engine plant. They produced both the 351C-2V and 351C-4V engine along with a short stroke version displacing 302 cubic inches. These new locally built engines replaced the previously imported 302 Windsor and 351C from the USA. Initially, the cylinder blocks were imported from the US, while the remaining parts were manufactured in Australia at the Geelong Ford Foundry. In 1973, Ford of Australia received word of
4982-430: The 351 Cleveland. The 400 had " square " proportions, with a 4.0 in (102 mm) bore and stroke. Ford called the engine a "400" but in actuality it displaced 402.1 cu in (6.6 L; 6,590 cc). To accommodate the longer stroke, Ford engineers increased the block deck height to 10.297 inches compared to the 351C's 9.206 inches. As a result, the 400 used longer (6.580 inch) connecting rods than
5088-446: The 351 Windsor was not sufficient. Ford took the 400 engine's tall-deck block and installed a crankshaft with a shorter 3.5 in (89 mm) stroke to produce a 351 cubic inch (5.8 L) engine. This crankshaft was not the same as a 351C, in that it used the larger 3.0 in (76 mm) main bearing journals of the 400 V8. To compensate for the shorter stroke the pistons for the 351M have a taller compression height, so that it could use
5194-485: The 351C (5.778 inch), but it retained the same connecting rod-to-stroke (1.65:1) ratio as the 351C. The 400 featured larger 3.00 inch main-bearing journals, the same size as those used in the 351 Windsor, but rod journals were the same size as the 351C. The cylinder heads for the 400 were the same as those used on the 351C-2V, having the open combustion chamber with smaller 2V sized ports and valves. All 400s were low performance engines that ran on regular fuel and all used
5300-458: The 351C available only in the 1971 Boss 351 Mustang. Rated at 330 bhp (246 kW), it was fitted with a four-barrel Autolite model 4300-D spreadbore carburetor, an aluminum intake manifold, solid lifters, dual-point distributor, a six-quart oil pan, and cast-aluminum valve covers. Forged domed pistons gave an 11.1:1 advertised compression ratio which made premium fuel necessary. It had four-bolt main bearing caps selected for hardness and
5406-466: The 351C was imported to Australia from the US. Both the 351-2V and 351-4V were imported and both were in all respects the same as the American market counterparts. In November 1971, Ford of Australia began producing its own 351C engines, ending the importation of American engines. At the outset, Australia only produced a 351-2V engine, but in March 1972 Ford of Australia began to offer a new 351-4V engine with
SECTION 50
#17328020599495512-491: The 390 V8. For the 1971 model year, Ford introduced the 400 V8 engine as a replacement for the 390 V8. Ford billed the 400 as the 351C's big brother. It was designed to provide brisk acceleration in medium to heavy weight vehicles in an engine package that was smaller and lighter than the FE V8 Engines and the 385 Series Ford V8's. The Ford 400 engine was based on the 351 Cleveland but had a half-inch longer stroke than
5618-460: The 4V heads at lower valve lift values. In addition to the two port sizes, the 335 cylinder heads used two style of combustion chambers, an open or a closed "quench" chamber. Both combustion chambers are very shallow, due to the shallow valve angles. The combustion chambers are almost a very shallow hemispherical chamber, rather than a wedge shaped. The closed chamber heads enclose the valves more closely, reducing combustion chamber volume, to increase
5724-502: The COP can be greater than 1 (100%). Therefore, heat pumps can be a more efficient way of heating than simply converting the input work into heat, as in an electric heater or furnace. Since they are heat engines, these devices are also limited by Carnot's theorem . The limiting value of the Carnot 'efficiency' for these processes, with the equality theoretically achievable only with an ideal 'reversible' cycle, is: The same device used between
5830-439: The Carnot efficiency. The Carnot cycle is reversible and thus represents the upper limit on efficiency of an engine cycle. Practical engine cycles are irreversible and thus have inherently lower efficiency than the Carnot efficiency when operated between the same temperatures T H {\displaystyle T_{\rm {H}}} and T C {\displaystyle T_{\rm {C}}} . One of
5936-494: The Michigan Casting Center prior to March 2, 1977, experienced water jacket cracking problems above the lifter bores. The cracking was (potentially) caused by an internal coring problem when the blocks were cast, although others considered it to be normal freeze cracking. The result was horizontal cracks approximately 1" above the lifter bore. After March 2, 1977, the blocks cast at Michigan Casting Center did not have problems with cracking. There exists debate as to what Ford meant by
6042-619: The US built 351C-4V engines. Ford Australia built a quantity of 4-bolt 5.8 litre engines — similar to those used in NASCAR at the time — for race purposes in Australia. When the engine's local racing career ended at the end of 1984, the surplus stock was shipped and sold in the United States for use in the De Tomaso Pantera , as Detroit no longer offered the 351 Cleveland engine. Cleveland Engine Cleveland Engine
6148-538: The achieved COP to the Carnot COP, which can not exceed 100%. The 'thermal efficiency' is sometimes called the energy efficiency . In the United States, in everyday usage the SEER is the more common measure of energy efficiency for cooling devices, as well as for heat pumps when in their heating mode. For energy-conversion heating devices their peak steady-state thermal efficiency is often stated, e.g., 'this furnace
6254-429: The addition of catalytic converters to the exhaust system. An extra water jacket was added to the heads, along with further enlarging the combustion chamber to 80 cc. The development of the 400 V8 led to a significant design flaw that remained with the engine throughout its production life. With a longer stroke, the compression ratio became excessively high with the 351-2V heads and flat top pistons. Ford engineers reduced
6360-405: The big-block Ford 385 series V8 . Sales, marketing, and product planning favored the canted valve design, as it was viewed as more innovative. Other changes to the engine were related to ease of manufacture and improved reliability. This led to elimination of coolant flowing through a 'dry' intake manifold, a potential source of leaks and minimized unnecessary heat transfer. To perform this change,
6466-480: The block casting, leaving two compared to the Small Block family's three. The result was an oil system very similar to the 385 series V8s, adequate for street engines but falling short in high-revolution race use without modification. The two main oil galleys in the 335 series engine run along the lifter bores. Oil is fed from the filter to the number one main bearing followed by the number one cam bearing above. At
SECTION 60
#17328020599496572-498: The camshaft timing. The strengthened engine block was introduced to the Ford cars for the 1978 model year. The 400 V8s for the model years 1971–72 were either cast in the Dearborn Iron Foundry or the Cleveland Foundry. Those built for model years 1973–79 were either cast in the Cleveland Foundry or the Michigan Casting Center. The 351M introduced in 1975 shared the same block as the 400. The 351M and 400 blocks cast at
6678-646: The casting plant in May 2012. The 335 series engines were used in mid- and full-sized cars and light trucks, (351M/400 only) at times concurrently with the Windsor small-block family , the 351 Windsor , in cars. These engines were also used as a replacement for the FE V8 family in both the car and truck lines. The 335 series only outlived the FE series by a half-decade, being replaced by the more compact Windsor V8s. The 335-series V8s were overhead valve V8 engines that used
6784-448: The compression ratio by using a piston with a compression height that was too short and this led to an excessive deck clearance of 0.067" to .080" compared to a 351-2V at 0.035" . In 1971, this method of reducing compression was sufficient due to the higher octane leaded fuels. However, once lower octane unleaded fuels became used the excessive deck clearance led to problems with detonation. For 1975, Ford dealt with this problem by decreasing
6890-448: The compression ratio further with a larger 15cc piston dish and reducing ignition timing. However, the 400 V8 obtained a reputation for being prone to detonation. Today, an array of performance parts are becoming more available for the "M" engines, with a resurgence of popularity in the classic truck market. When the 351 Cleveland was discontinued after the 1974 model year, Ford needed another engine in that size range, since production of
6996-521: The compression ratio. However, both designs have the same thermal efficiency and resistance to detonation. The closed combustion chamber promotes better swirling of incoming air fuel mixture, giving it a low-rpm torque advantage, and requires less machining to obtain high compression ratios. However, the open chamber heads valves are less shrouded, which improves low lift airflow, and they exhibit better emissions characteristics. Most 335 series engines used stamped rocker arms with cast fulcrums that made for
7102-471: The compression was reduced through the use of dished pistons. The compression reduced again for 1973 and a new timing set retarded the camshaft timing 6° to aid with reducing emissions. Changes to the cylinder heads for 1975 to add the Thermactor emission system caused the exhaust port to be more restrictive than the earlier 1971-74 heads. The 400 was re-tuned by Ford in 1975 to use unleaded gasoline with
7208-472: The cylinder block above the cam timing chain cover. Small Blocks use a wet intake manifold which routes coolant through the intake manifold via a horizontally protruding hose. The 335 uses smaller, 14mm, spark plugs and has a square-shaped eight bolt rocker cover while the Windsor's six-bolt rocker cover is more rounded. To reduce production costs, Ford eliminated one of the 335 series's main oil galleries from
7314-518: The cylinder heads work with the Windsor engine block. The Boss 302 version of the cylinder heads used small 58cc cambers and large 2.23" intake valves. The valves were later reduced to 2.19" as used on the 351C 4V cylinder heads. The genesis of the "351 Cleveland" resulted from Ford's inability to produce enough of its new Ford small block engine -based 351 cu in V8s at its Windsor Engine Plant #1 in Windsor, Ontario, Canada. Sales and marketing forecasts for
7420-415: The efficiency with which they give off heat to the hot reservoir, COP heating ; refrigerators and air conditioners by the efficiency with which they take up heat from the cold space, COP cooling : The reason the term "coefficient of performance" is used instead of "efficiency" is that, since these devices are moving heat, not creating it, the amount of heat they move can be greater than the input work, so
7526-449: The emission stickers for the engine. The "351M/400" referenced the engine family, and some confused this with the engine name. This sticker also listed the engine displacement below the engine family. Ford's official name for the 400 V8 contains no additional designations - the proper nomenclature is simply "400." In the early 1970s before the 351M debuted, Ford referred to the 400 as the "400 Cleveland". The 351M and 400 were last offered in
7632-417: The engine as a Modified. Likewise, Ford's use of the 400 block in the creation of the 351M engine has resulted in the 400 mistakenly being referred to as the "400M" or "400 Modified." This is despite the 400 having been the design basis from which the "modified" 351M was derived and it was in production several years before Ford used the "M" designation. Further confusion arises from Ford printing "351M/400" on
7738-410: The fact the Ford of USA was stopping production of the 351 Cleveland engine after the 1974 model year. As a result, Ford of Australia placed an order for approximately 60,000 engine blocks to act as a supply until Geelong could start producing its own engine blocks. In 1975 Geelong began production of its own engine blocks which it continued until December 1981. All engine blocks produced in Australia were
7844-470: The factors determining efficiency is how heat is added to the working fluid in the cycle, and how it is removed. The Carnot cycle achieves maximum efficiency because all the heat is added to the working fluid at the maximum temperature T H {\displaystyle T_{\rm {H}}} , and removed at the minimum temperature T C {\displaystyle T_{\rm {C}}} . In contrast, in an internal combustion engine,
7950-473: The four-barrel for the intermediate Fords, though it still retained the higher 266 hp (198 kW) rating in the Mustang. The 351 CJ (now referred to as the "351 4V") was rated at 255 hp (190 kW) in 1974 and was only installed in the Ford Ranchero , Ford Torino, Mercury Montego, and Mercury Cougar. Production of the 351C ceased at the end of the 1974 model year. The engine was replaced by
8056-493: The front of the engine block was extended to include provisions for the coolant to flow through a crossover in the block. This extension also acted as an integrated timing chain housing. The timing chain housing was covered with flat steel that was easier to seal than the typical large timing chain cover used on other Ford V8s. These changes resulted in a bigger and heavier engine block than the Windsor V8s. To help reduce costs
8162-491: The fuel, but is generally close to the air value of 1.4. This standard value is usually used in the engine cycle equations below, and when this approximation is made the cycle is called an air-standard cycle . One should not confuse thermal efficiency with other efficiencies that are used when discussing engines. The above efficiency formulas are based on simple idealized mathematical models of engines, with no friction and working fluids that obey simple thermodynamic rules called
8268-408: The heads to open chamber heads, but retained the same large ports, valves, and adjustable valve train used in 1971. This resulted in a compression ratio decreased to 9.2:1 while the cleaner-burning open-chamber heads helped meet the new emissions regulations. The Ram Air option was no longer available. The engine otherwise remained unchanged from 1971. This engine produced 275 hp (205 kW) using
8374-413: The heat input; in the case of a heat pump , thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is fractional as the output is always less than the input while the COP of a heat pump is more than 1. These values are further restricted by
8480-644: The higher torque-capacity C6 transmission . There were a small number of 400 block castings produced in 1973 with the dual bellhousing patterns. It had the large bellhousing and the small bellhousing bolt pattern used by the Windsor V8 family and the 351C, though it was not necessarily drilled for both. These particular blocks have been dubbed the "400 FMX" by enthusiasts, though were never officially referenced as such by Ford. Most 400's also had unique engine mount bolt pattern but these 400 FMX blocks had provisions for both 351C-style and 400/351M engine mounts. For 1972,
8586-440: The input heat normally has a real financial cost, a memorable, generic definition of thermal efficiency is η t h ≡ benefit cost . {\displaystyle \eta _{\rm {th}}\equiv {\frac {\text{benefit}}{\text{cost}}}.} From the first law of thermodynamics , the energy output cannot exceed the input, and by the second law of thermodynamics it cannot be equal in
8692-507: The intake and exhaust valves being at separate angles. This allowed for very large valves to be installed, while reducing the port length and minimizing sharp turns within the port. The 335-Series cylinder heads had freer flowing ports than the Ford Windsor V8s. The 335-series engines used different cylinder heads for two and four barrel carburetors. The 2V (two venturi) small port cylinder heads were used on 2-barrel engines while
8798-404: The large-port 4V heads with a closed "quench" combustion chamber and large valves. These engines also included cast-aluminum flat-top pistons, stiffer valve springs, a high-performance hydraulic camshaft, and a squarebore Autolite 4300-A carburetor. The 1970 engines had an advertised 11.0:1 compression ratio and were rated at 300 bhp (224 kW; 304 PS) at 5400 rpm. The 1971 version had
8904-534: The more realistic SAE net system and was only available in the 1972 Ford Mustang. It was, however, now available in any body style or model of the Mustang, unlike the Boss 351. The 3.91 Traction Lok rear and four speed were still the only available drivetrain. The Q-code 351 "Cobra-Jet" (also called 351-CJ, 351-4V) was produced from May 1971 through the 1974 model year. It was a lower-compression design that used open-chamber 4V heads. The open-chamber heads exhibited superior emissions characteristics and were used to meet
9010-531: The more stringent emissions standards for 1972 and beyond. The "351 CJ" high-performance engine included a different intake manifold, high-lift, long-duration camshaft with hydraulic valve lifters, higher rate valve springs with dampers, a 715-CFM spread-bore 4300-D Motorcraft carburetor and a dual-point distributor (only with four-speed manual transmissions - not sold in California). The block was upgraded to four-bolt main bearing caps, and larger harmonic balancer
9116-466: The oil system was revised, as explained above. Although the 351W began as the basis for the 351C, by the time it reached production the design changes resulted in almost no parts interchanging between the two designs. The two engines, however, shared the same bore spacing, engine mounts and bell housing pattern. The 351 Cleveland began production in July 1969 for the 1970 model year. Its actual displacement
9222-469: The same connecting rods as the 400. The result of the 351M using the longer 400 connecting rod was a higher connecting rod-to-stroke ratio of 1.88:1 than the 351C and 400's of 1.65:1. Other than pistons and crankshaft the 351M shared all of its major components with the 400, and it also used the large 385 Series style bellhousing. The 351M was only ever equipped with a 2-barrel carburetor and open chamber small port 2V cylinder heads. 351M production began for
9328-400: The same temperatures is more efficient when considered as a heat pump than when considered as a refrigerator since This is because when heating, the work used to run the device is converted to heat and adds to the desired effect, whereas if the desired effect is cooling the heat resulting from the input work is just an unwanted by-product. Sometimes, the term efficiency is used for the ratio of
9434-409: The same time, it also feeds the right hand oil galley, supplying the right side lifter bank. It has four galleries that lead to each of the remaining main bearings. After the oil feeds them, it feeds each corresponding camshaft bearing above. At the rear-most main bearing, the oil goes into the second gallery, which feeds the left lifter bank. In addition the oil system not prioritizing the main bearings,
9540-526: The second-generation equipment was an oxygen (O 2 ) sensor in the exhaust, which had to be placed before the Thermactor air was added. Since Thermactor air was injected right into the block's exhaust ports in the M-block, there was nowhere for the O 2 sensor to go. During the 1969 Model year, Ford of Australia imported approximately 17,000 302 Windsor and 351 Windsor V8's. However, the 351 Windsor
9646-774: The short deck 9.206" engine block. The last Australian Ford to receive a Cleveland V8 engine was a Ford XE Fairmont Ghia ESP sedan, Vehicle Identification Number JG32AR33633K built on 25 November 1982. Ford Australia continued to make remnant stock of the 351C available in Bronco and F-series vehicles until August 1985. Australian-built 351 engines were also used by De Tomaso in Italy for the Pantera , Longchamp , and Deauville cars after American supplies had come to an end. These engines were tuned in Switzerland and were available with
9752-467: The small 2V ports has caused the 302C head to be a bolt-on-performance upgrade for other 335 series V8s. Having the smallest combustion chamber of the 335 series V8s, these cylinder heads will easily boost the static compression ratio of any other 335 series V8. In addition, the small ports used on these head are more efficient for a street performance engine, than the large port 4V heads that tend to favour performance only at higher engine speeds. Initially,
9858-462: The stock cast-iron manifolds), a facility water pump, a 750 Holley Street HP-series carburetor (vs. the stock 715 CFM Autolite unit), and minus the factory air filter assembly, engine accessories, or factory exhaust system. In that externally modified state it produced 383 hp (286 kW) gross at 6,100 rpm, and 391 lb⋅ft (530 N⋅m) torque (gross) at 4,000 rpm. A measurement of SAE net horsepower would be significantly lower, and represents
9964-425: The temperature of hot steam entering the turbine of a steam power plant , or the temperature at which the fuel burns in an internal combustion engine . T C {\displaystyle T_{\rm {C}}} is usually the ambient temperature where the engine is located, or the temperature of a lake or river into which the waste heat is discharged. For example, if an automobile engine burns gasoline at
10070-418: The temperature of the fuel-air mixture in the cylinder is nowhere near its peak temperature as the fuel starts to burn, and only reaches the peak temperature as all the fuel is consumed, so the average temperature at which heat is added is lower, reducing efficiency. An important parameter in the efficiency of combustion engines is the specific heat ratio of the air-fuel mixture, γ . This varies somewhat with
10176-408: The thermal efficiency is where the Q {\displaystyle Q} quantities are heat-equivalent values. So, for a boiler that produces 210 kW (or 700,000 BTU/h) output for each 300 kW (or 1,000,000 BTU/h) heat-equivalent input, its thermal efficiency is 210/300 = 0.70, or 70%. This means that 30% of the energy is lost to the environment. An electric resistance heater has
10282-404: The two engine families. The 335 series have a roughly two-inch extension cast into the front of the block which forms an integrated timing cover enclosure covered by a piece of flat steel, similar to an Oldsmobile V8 engine . This results in the 335 series engine block being heavier than the Small Block engines. The 335 series use a dry intake manifold with the radiator hose connecting vertically to
10388-409: The wedge style used on the small blocks. The 335 engines use large main-bearing caps, with two-bolt as standard and four-bolt added on some performance versions. The first engine in the 335 series was introduced in late 1969 as the 351C. The 400 cu in appeared in the third quarter of 1970, which raised deck height from 9.206 in (234 mm) and tall deck 10.297 in (262 mm) to accommodate
10494-412: Was 351.9 cubic inches (5,766 cc). A conventional two-barrel "2V" (two venturi) version and a four-barrel "4V" (four venturi) performance version were built. The 351C-2V was never marketed as a high-performance engine. It used the small port 2V cylinder heads with open combustion chambers to produce a more economical passenger car engine that was tuned more for low-rpm torque. The 351C-4V was marketed as
10600-490: Was 9.5:1 in 1970 and progressively dropped annually until it reached it low point of 8.0:1 compression in 1973 and 1974. H-code 351s were equipped with a cast-iron crankshaft, two-bolt main bearing caps, forged-steel connecting rods, cast-aluminum pistons, non-adjustable valve train, and cast-iron intake and exhaust manifolds. All H-code 351 Cleveland engines used the small port 2V heads with open combustion chambers. These engines were produced from 1970 through 1974 and were used on
10706-481: Was filled with the 351W. With low demand for engines in the size range of the 351M/400, the 335-series V8's no longer had a need to be produced. In addition, there were difficulties adapting the M-block to the second generation of emissions controls. Unlike previous Ford engines, Thermactor and exhaust gas recirculation features had already been built into the 351M and 400 engine, rendering adaptation to electronic feedback fuel/air systems difficult. One requirement of
10812-400: Was installed. These engines also featured induction-hardened exhaust seats for use with low-lead and unleaded gasoline. This engine was different from the 1970-71 M-code 351C having a more aggressive camshaft, a spread-bore carburetor, a four-bolt block and the lower compression allowed regular fuel to be used. It was rated at 280 bhp (209 kW; 284 PS) for all 1971 applications. For
10918-437: Was only installed in the 1971 Boss 351 Mustang, and it came equipped with Ram Air induction. Ford manufactured 1,806 Boss 351 Mustangs in 1971, 591 of which are registered and accounted for on the Boss 351 Registry site. The January 2010 issue of Hot Rod reported a project in which a Boss 351 was assembled to the exact internal specifications of an original motor, but fitted with open, long tube, 1-3/4-inch Hooker headers (vs.
11024-477: Was phased out for 1970 in favor of the newer 351 Cleveland. The 351 Cleveland engines continued to be imported from the US along with the 302 Windsor V8. Both the low-performance 351C-2V and the high performance 351C-4V were imported with the vast majority of the engines being the 351C-2V. Like the US engines, the 4V versions used the closed "quench" chambered heads and used the larger ports on the cylinder heads. In November 1971, Ford of Australia began to manufacture
11130-413: Was the 302C. The 302C was created by using the 351C block with a crankshaft that had a 3.0 in (76 mm) stroke while it shared the 2.75" main journal size of the 351C. The 302C had a 6.020 in (152.91 mm) connecting rod to allow it to share the same piston as the 351C. This resulted in a connecting rod-to-stroke ratio of 2.01:1, making it the highest ratio of the 335 series V8s. The 302C used
11236-465: Was very similar to the American counterpart and remained in production until December 1981. Ford of Australia also produced a smaller 302C alongside the 351C, which was exclusive to the Australian market. All 335 series engines shared the same 4.38 in (111 mm) bore spacing and cylinder head bolt pattern as the Small Block V8 family. There are a number of significant differences between
#948051