Misplaced Pages

Ataxia–telangiectasia

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Ataxia–telangiectasia ( AT or A–T ), also referred to as ataxia–telangiectasia syndrome or Louis–Bar syndrome , is a rare, neurodegenerative disease causing severe disability. Ataxia refers to poor coordination and telangiectasia to small dilated blood vessels, both of which are hallmarks of the disease. A–T affects many parts of the body:

#374625

124-600: Symptoms most often first appear in early childhood (the toddler stage) when children begin to sit or walk. Though they usually start walking at a normal age, they wobble or sway when walking, standing still or sitting. In late pre-school and early school age, they develop difficulty moving their eyes in a natural manner from one place to the next ( oculomotor apraxia ). They develop slurred or distorted speech, and swallowing problems. Some have an increased number of respiratory tract infections (ear infections, sinusitis , bronchitis , and pneumonia ). Because not all children develop in

248-472: A "sandwich" shape, the immunoglobulin fold , held together by a disulfide bond. Secreted antibodies can occur as a single Y-shaped unit, a monomer . However, some antibody classes also form dimers with two Ig units (as with IgA), tetramers with four Ig units (like teleost fish IgM), or pentamers with five Ig units (like shark IgW or mammalian IgM, which occasionally forms hexamers as well, with six units). IgG can also form hexamers, though no J chain

372-494: A "stemness checkpoint" protecting against MSC differentiation and premature graying of the hair. The cause of telangiectasia or dilated blood vessels in the absence of the ATM protein is not yet known. Approximately 95% of people with A–T have elevated serum AFP levels after the age of two, and measured levels of AFP appear to increase slowly over time. AFP levels are very high in the newborn, and normally descend to adult levels over

496-523: A B cell changes during cell development and activation. Immature B cells, which have never been exposed to an antigen, express only the IgM isotype in a cell surface bound form. The B lymphocyte, in this ready-to-respond form, is known as a " naive B lymphocyte ." The naive B lymphocyte expresses both surface IgM and IgD. The co-expression of both of these immunoglobulin isotypes renders the B cell ready to respond to antigen. B cell activation follows engagement of

620-600: A Y shape. In humans and most other mammals , an antibody unit consists of four polypeptide chains ; two identical heavy chains and two identical light chains connected by disulfide bonds . Each chain is a series of domains : somewhat similar sequences of about 110 amino acids each. These domains are usually represented in simplified schematics as rectangles. Light chains consist of one variable domain V L and one constant domain C L , while heavy chains contain one variable domain V H and three to four constant domains C H 1, C H 2, ... Structurally an antibody

744-671: A chronic inflammatory skin disease (granulomas). Chronic lung disease develops in more than 25% of people with A–T. Lung function tests (spirometry) should be performed at least annually in children old enough to perform them, influenza and pneumococcal vaccines given to eligible individuals, and sinopulmonary infections treated aggressively to limit the development of chronic lung disease. Feeding and swallowing can become difficult for people with A–T as they get older. Involuntary movements may make feeding difficult or messy and may excessively prolong mealtimes. It may be easier to finger feed than use utensils (e.g., spoon or fork). For liquids, it

868-510: A deficiency in the immune system. Ataxia telangiectasia results from defects in the ataxia telangiectasia mutated gene, which can cause abnormal cell death in various places of the body, including brain areas related to coordinated movement of the eyes. Patients with ataxia telangiectasia have prolonged vertical and horizontal saccade latencies and hypometric saccades, and, although not all, some patients show head thrusts. Antibody An antibody ( Ab ) or immunoglobulin ( Ig )

992-441: A distinct epitope of an antigen. Although a huge repertoire of different antibodies is generated in a single individual, the number of genes available to make these proteins is limited by the size of the human genome. Several complex genetic mechanisms have evolved that allow vertebrate B cells to generate a diverse pool of antibodies from a relatively small number of antibody genes. The chromosomal region that encodes an antibody

1116-467: A gene as large as ATM, such variant spellings are likely to occur and doctors cannot always predict whether a specific variant will or will not cause disease. Genetic counseling can help family members of an A–T patient understand what can or cannot be tested, and how the test results should be interpreted. Carriers of A–T, such as the parents of a person with A–T, have one mutated copy of the ATM gene and one normal copy. They are generally healthy, but there

1240-542: A given microbe – that is, the ability of the microbe to enter the body and begin to replicate (not necessarily to cause disease) – depends on sustained production of large quantities of antibodies, meaning that effective vaccines ideally elicit persistent high levels of antibody, which relies on long-lived plasma cells. At the same time, many microbes of medical importance have the ability to mutate to escape antibodies elicited by prior infections, and long-lived plasma cells cannot undergo affinity maturation or class switching. This

1364-408: A huge number of antibodies, each with different paratopes , and thus different antigen specificities. The rearrangement of several subgenes (i.e. V2 family) for lambda light chain immunoglobulin is coupled with the activation of microRNA miR-650, which further influences biology of B-cells. RAG proteins play an important role with V(D)J recombination in cutting DNA at a particular region. Without

SECTION 10

#1732780058375

1488-440: A manifestation of immunological memory. In the course of an immune response, B cells can progressively differentiate into antibody-secreting cells or into memory B cells. Antibody-secreting cells comprise plasmablasts and plasma cells , which differ mainly in the degree to which they secrete antibody, their lifespan, metabolic adaptations, and surface markers. Plasmablasts are rapidly proliferating, short-lived cells produced in

1612-400: A mast cell, triggering its degranulation : the release of molecules stored in its granules. Binds to allergens and triggers histamine release from mast cells and basophils , and is involved in allergy . Humans and other animals evolved IgE to protect against parasitic worms , though in the present, IgE is primarily related to allergies and asthma. Although The antibody isotype of

1736-499: A non-progressive disorder of motor function stemming from malformation or early damage to the brain. CP can manifest in many ways, given the different manner in which the brain can be damaged; in common to all forms is the emergence of signs and symptoms of impairment as the child develops. However, milestones that have been accomplished and neurologic functions that have developed do not deteriorate in CP as they often do in children with A–T in

1860-550: A normal alpha fetoprotein , and the frequent presence of scoliosis, absent tendon reflexes, and abnormal features on the EKG. Individuals with FA manifest difficulty standing in one place that is much enhanced by closure of the eyes (Romberg sign) that is not so apparent in those with A–T – even though those with A–T may have greater difficulty standing in one place with their eyes open. There are other rare disorders that can be confused with A–T, either because of similar clinical features,

1984-444: A part of a virus that is essential for its invasion). More narrowly, an antibody ( Ab ) can refer to the free (secreted) form of these proteins, as opposed to the membrane-bound form found in a B cell receptor. The term immunoglobulin can then refer to both forms. Since they are, broadly speaking, the same protein, the terms are often treated as synonymous. To allow the immune system to recognize millions of different antigens,

2108-777: A possibility because of the early stability of symptoms and signs. There are patients who have been diagnosed with A-T only in adulthood due to an attenuated form of the disease, and this has been correlated with the type of their gene mutation. The first indications of A–T usually occur during the toddler years. Children start walking at a normal age, but may not improve much from their initial wobbly gait. Sometimes they have problems standing or sitting still and tend to sway backward or from side to side. In primary school years, walking becomes more difficult, and children will use doorways and walls for support. Children with A–T often appear better when running or walking quickly in comparison to when they are walking slowly or standing in one place. Around

2232-462: A secondary immune response, undergoing class switching, affinity maturation, and differentiating into antibody-secreting cells. Antibodies are central to the immune protection elicited by most vaccines and infections (although other components of the immune system certainly participate and for some diseases are considerably more important than antibodies in generating an immune response, e.g. herpes zoster ). Durable protection from infections caused by

2356-402: A similarity of some laboratory features, or both. These include: Ataxia–oculomotor apraxia type 1 (AOA1) is an autosomal recessive disorder similar to A–T in manifesting increasing problems with coordination and oculomotor apraxia, often at a similar age to those having A–T. It is caused by mutation in the gene coding for the protein aprataxin. Affected individuals differ from those with A–T by

2480-432: A specific antigen is present in the body and triggers B cell activation. The BCR is composed of surface-bound IgD or IgM antibodies and associated Ig-α and Ig-β heterodimers , which are capable of signal transduction . A typical human B cell will have 50,000 to 100,000 antibodies bound to its surface. Upon antigen binding, they cluster in large patches, which can exceed 1 micrometer in diameter, on lipid rafts that isolate

2604-429: A strong survival signal during interactions with other cells, whereas those with low affinity antibodies will not, and will die by apoptosis . Thus, B cells expressing antibodies with a higher affinity for the antigen will outcompete those with weaker affinities for function and survival allowing the average affinity of antibodies to increase over time. The process of generating antibodies with increased binding affinities

SECTION 20

#1732780058375

2728-458: Is autosomal recessive . Each parent is a carrier, meaning that they have one normal copy of the A–T gene (ATM) and one copy that is mutated. A–T occurs if a child inherits the mutated A–T gene from each parent, so in a family with two carrier parents, there is 1 chance in 4 that a child born to the parents will have the disorder. Prenatal diagnosis (and carrier detection) can be carried out in families if

2852-437: Is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses , including those that cause disease. Antibodies can recognize virtually any size antigen with diverse chemical compositions from molecules. Each antibody recognizes one or more specific antigens . Antigen literally means "antibody generator", as it

2976-403: Is a neurological condition. Although some brain imaging studies of people with OMA reveal a normal brain, some MRI studies have revealed unusual appearance of some brain areas, in particular the corpus callosum, cerebellum, and fourth ventricle. Oculomotor apraxia can be acquired or congenital . Sometimes no cause is found, in which case it is described as idiopathic . A person may be born with

3100-613: Is a rare genetic disorder that has similar chromosomal instability to that seen in people with A–T, but the problems experienced are quite different. Children with NBS have significant microcephaly, a distinct facial appearance, short stature, and moderate cognitive impairment, but do not experience any neurologic deterioration over time. Like those with A–T, children with NBS have enhanced sensitivity to radiation, disposition to lymphoma and leukemia, and some laboratory measures of impaired immune function, but do not have ocular telangiectasia or an elevated level of AFP . The proteins expressed by

3224-522: Is also partitioned into two antigen-binding fragments (Fab), containing one V L , V H , C L , and C H 1 domain each, as well as the crystallisable fragment (Fc), forming the trunk of the Y shape. In between them is a hinge region of the heavy chains, whose flexibility allows antibodies to bind to pairs of epitopes at various distances, to form complexes ( dimers , trimers, etc.), and to bind effector molecules more easily. In an electrophoresis test of blood proteins , antibodies mostly migrate to

3348-454: Is an absence or deficiency of ATM. Further, cerebellar damage and loss of Purkinje and granule cells do not explain all of the neurologic abnormalities seen in people with A–T. The effects of ATM deficiency on the other areas of the brain outside of the cerebellum are being actively investigated. People with A–T have an increased sensitivity to ionizing radiation (X-rays and gamma rays). Therefore, X-ray exposure should be limited to times when it

3472-663: Is an autosomal recessive cerebellar ataxia (ARCA) associated with hypoalbuminemia and hypercholesterolemia. Mutations in the gene APTX , which encodes for aprataxin , have been identified to be responsible for AOA1. Elevated creatine kinase is occasionally present, in addition to a sensorimotor axonal neuropathy, as shown by nerve conduction velocity studies. In addition, MRI studies have shown cerebellar atrophy, mild brainstem atrophy, and, in advanced cases, cortical atrophy. The aprataxin protein APTX can remove obstructive termini from DNA strand breaks that interfere with DNA repair . APTX

3596-414: Is an increased risk of breast cancer in women. This finding has been confirmed in a variety of different ways, and is the subject of current research. Standard surveillance (including monthly breast self-exams and mammography at the usual schedule for age) is recommended, unless additional tests are indicated because the individual has other risk factors (e.g., family history of breast cancer). How loss of

3720-415: Is called affinity maturation . Affinity maturation occurs in mature B cells after V(D)J recombination, and is dependent on help from helper T cells . Isotype or class switching is a biological process occurring after activation of the B cell, which allows the cell to produce different classes of antibody (IgA, IgE, or IgG). The different classes of antibody, and thus effector functions, are defined by

3844-448: Is closer to human IgG2 than human IgG1 in terms of its function. The term humoral immunity is often treated as synonymous with the antibody response, describing the function of the immune system that exists in the body's humors (fluids) in the form of soluble proteins, as distinct from cell-mediated immunity , which generally describes the responses of T cells (especially cytotoxic T cells). In general, antibodies are considered part of

Ataxia–telangiectasia - Misplaced Pages Continue

3968-544: Is compensated for through memory B cells: novel variants of a microbe that still retain structural features of previously encountered antigens can elicit memory B cell responses that adapt to those changes. It has been suggested that long-lived plasma cells secrete B cell receptors with higher affinity than those on the surfaces of memory B cells, but findings are not entirely consistent on this point. Antibodies are heavy (~150 k Da ) proteins of about 10 nm in size, arranged in three globular regions that roughly form

4092-480: Is controversy regarding whether OMA should be considered an apraxia , since apraxia is the inability to perform a learned or skilled motor action to command, and saccade initiation is neither a learned nor a skilled action. Even though OMA is not always associated with developmental issues, children with this condition often have hypotonia , decreased muscle tone, and show developmental delays. Some common delays are seen in speech, reading and motor development. OMA

4216-452: Is genomic instability which can lead to the development of cancers. Irradiation and radiomimetic compounds induce DSBs which are unable to be repaired appropriately when ATM is absent. Consequently, such agents can prove especially cytotoxic to A–T cells and people with A–T. Infertility is often described as a characteristic of A–T. Whereas this is certainly the case for the mouse model of A–T, in humans it may be more accurate to characterize

4340-507: Is large and contains several distinct gene loci for each domain of the antibody—the chromosome region containing heavy chain genes ( IGH@ ) is found on chromosome 14 , and the loci containing lambda and kappa light chain genes ( IGL@ and IGK@ ) are found on chromosomes 22 and 2 in humans. One of these domains is called the variable domain, which is present in each heavy and light chain of every antibody, but can differ in different antibodies generated from distinct B cells. Differences between

4464-761: Is medically necessary, as exposing an A–T patient to ionizing radiation can damage cells in such a way that the body cannot repair them. The cells can cope normally with other forms of radiation, such as ultraviolet light, so there is no need for special precautions from sunlight exposure. The diagnosis of A–T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with telangiectasia and sometimes increased infections, and confirmed by specific laboratory abnormalities (elevated alpha-fetoprotein levels, increased chromosomal breakage or cell death of white blood cells after exposure to X-rays, absence of ATM protein in white blood cells, or mutations in each of

4588-486: Is often easier to drink from a closed container with a straw than from an open cup. Caregivers may need to provide foods or liquids so that self-feeding is possible, or they may need to feed the person with A–T. In general, meals should be completed within approximately 30 minutes. Longer meals may be stressful, interfere with other daily activities, and limit the intake of necessary liquids and nutrients. If swallowing problems ( dysphagia ) occur, they typically present during

4712-458: Is present, ensuring that antibody levels to the antigen in question do not fall to 0, provided the plasma cell stays alive. The rate of antibody secretion, however, can be regulated, for example, by the presence of adjuvant molecules that stimulate the immune response such as TLR ligands. Long-lived plasma cells can live for potentially the entire lifetime of the organism. Classically, the survival niches that house long-lived plasma cells reside in

4836-564: Is recruited to DNA single-strand breaks by XRCC1 protein, where it functions as a nick sensor to scan the single-strand breaks for 5'-AMP obstructive termini that are intermediates in failed DNA ligase reactions. The removal of these obstructions allows DNA repair of the break to be completed. It is not yet clear which specific single-strand breaks are the neurodegenerative agents in AOA1 patients that lack functional aprataxin protein. However, single-strand breaks with 5'-AMP termini appear to be

4960-455: Is relatively uncommon, but probably does occur more often than in those without A–T. Spinal fusion is only rarely indicated. A–T is caused by mutations in the ATM (ATM serine/threonine kinase or ataxia–telangiectasia mutated) gene, which was cloned in 1995. ATM is located on human chromosome 11 (11q22.3) and is made up of 69 exons spread across 150kb of genomic DNA. The mode of inheritance for A–T

5084-430: Is required. IgA tetramers and pentamers have also been reported. Antibodies also form complexes by binding to antigen: this is called an antigen-antibody complex or immune complex . Small antigens can cross-link two antibodies, also leading to the formation of antibody dimers, trimers, tetramers, etc. Multivalent antigens (e.g., cells with multiple epitopes) can form larger complexes with antibodies. An extreme example

Ataxia–telangiectasia - Misplaced Pages Continue

5208-625: Is reversible, and the antibody's affinity towards an antigen is relative rather than absolute. Relatively weak binding also means it is possible for an antibody to cross-react with different antigens of different relative affinities. The main categories of antibody action include the following: More indirectly, an antibody can signal immune cells to present antibody fragments to T cells , or downregulate other immune cells to avoid autoimmunity . Activated B cells differentiate into either antibody-producing cells called plasma cells that secrete soluble antibody or memory cells that survive in

5332-409: Is that special screening tests are not helpful, but all women should have routine cancer surveillance. A–T can cause features of early aging such as premature graying of the hair. It can also cause vitiligo (an auto-immune disease causing loss of skin pigment resulting in a blotchy "bleach-splashed" look), and warts which can be extensive and recalcitrant to treatment. A small number of people develop

5456-503: Is the chief manifestation of CP. Children with ataxic CP will not manifest the laboratory abnormalities associated with A–T. Cogan occulomotor apraxia is a rare disorder of development. Affected children have difficulty moving their eyes only to a new visual target, so they will turn their head past the target to "drag" the eyes to the new object of interest, then turn the head back. This tendency becomes evident in late infancy and toddler years, and mostly improves with time. This contrasts to

5580-410: Is the clumping, or agglutination , of red blood cells with antibodies in blood typing to determine blood groups : the large clumps become insoluble, leading to visually apparent precipitation . The membrane-bound form of an antibody may be called a surface immunoglobulin (sIg) or a membrane immunoglobulin (mIg). It is part of the B cell receptor (BCR), which allows a B cell to detect when

5704-463: Is the presence of an antigen that drives the formation of an antigen-specific antibody. Each tip of the "Y" of an antibody contains a paratope that specifically binds to one particular epitope on an antigen, allowing the two molecules to bind together with precision. Using this mechanism, antibodies can effectively "tag" a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly (for example, by blocking

5828-529: Is thought to be, in part, the result of natural antibodies circulating in the serum of the recipient binding to α-Gal antigens expressed on the donor tissue. Virtually all microbes can trigger an antibody response. Successful recognition and eradication of many different types of microbes requires diversity among antibodies; their amino acid composition varies allowing them to interact with many different antigens. It has been estimated that humans generate about 10 billion different antibodies, each capable of binding

5952-454: Is triggered by cytokines; the isotype generated depends on which cytokines are present in the B cell environment. Class switching occurs in the heavy chain gene locus by a mechanism called class switch recombination (CSR). This mechanism relies on conserved nucleotide motifs, called switch (S) regions , found in DNA upstream of each constant region gene (except in the δ-chain). The DNA strand

6076-664: The SETX gene are the cause of the disease. AOA2 shows cerebellar atrophy, loss of Purkinje cells , and demyelination. In particular, there is a failure of the cerebrocerebellar circuit in AOA2 that has been shown to be responsible for the weaker coordination of complex cognitive functions such as working memory, executive functions, speech, and sequence learning. Although there is no sign of mental retardation or severe dementia, even after long disease duration, research on families with possible AOA2 have shown mild cognitive impairment as indexed by

6200-416: The adaptive immune system , though this classification can become complicated. For example, natural IgM, which are made by B-1 lineage cells that have properties more similar to innate immune cells than adaptive, refers to IgM antibodies made independently of an immune response that demonstrate polyreactivity- they recognize multiple distinct (unrelated) antigens. These can work with the complement system in

6324-613: The hMre11 (defective in ATLD) and Nbs1 (defective in NBS) genes exist in the cell as a complex, along with a third protein expressed by the hRad50 gene. This complex, known as the MRN complex, plays an important role in DNA damage repair and signaling and is required to recruit ATM to the sites of DNA double strand breaks. Mre11 and Nbs1 are also targets for phosphorylation by the ATM kinase. Thus,

SECTION 50

#1732780058375

6448-736: The iota (ι) chain, are found in other vertebrates like sharks ( Chondrichthyes ) and bony fishes ( Teleostei ). In most placental mammals , the structure of antibodies is generally the same. Jawed fish appear to be the most primitive animals that are able to make antibodies similar to those of mammals, although many features of their adaptive immunity appeared somewhat earlier. Cartilaginous fish (such as sharks) produce heavy-chain-only antibodies (i.e., lacking light chains) which moreover feature longer chain pentamers (with five constant units per molecule). Camelids (such as camels, llamas, alpacas) are also notable for producing heavy-chain-only antibodies. The antibody's paratope interacts with

6572-542: The mini–mental state examination (MMSE) and the Mattis dementia rating scale. These impairments appear to be mostly due to a deficit in initiation and concept subtests. Telangiectasias are widened blood vessels that can develop anywhere on the skin, mucous membranes, whites of the eyes, and even in the brain. Telangiectasias are associated with multiple systemic signs, the most serious of which are unusual sensitivity to ionizing radiation, excessive chromosomal breakage, and

6696-437: The "classical" complement system. This results in the killing of bacteria in two ways. First, the binding of the antibody and complement molecules marks the microbe for ingestion by phagocytes in a process called opsonization ; these phagocytes are attracted by certain complement molecules generated in the complement cascade. Second, some complement system components form a membrane attack complex to assist antibodies to kill

6820-520: The ATM protein creates a multisystem disorder A–T has been described as a genome instability syndrome, a DNA repair disorder and a DNA damage response (DDR) syndrome. ATM , the gene responsible for this multi-system disorder, encodes a protein of the same name which coordinates the cellular response to DNA double strand breaks (DSBs). Radiation therapy, chemotherapy that acts like radiation (radiomimetic drugs) and certain biochemical processes and metabolites can cause DSBs. When these breaks occur, ATM stops

6944-614: The BCRs from most other cell signaling receptors. These patches may improve the efficiency of the cellular immune response . In humans, the cell surface is bare around the B cell receptors for several hundred nanometers, which further isolates the BCRs from competing influences. Antibodies can come in different varieties known as isotypes or classes . In humans there are five antibody classes known as IgA, IgD, IgE, IgG, and IgM, which are further subdivided into subclasses such as IgA1, IgA2. The prefix "Ig" stands for immunoglobulin , while

7068-513: The F V region. It is the subregion of Fab that binds to an antigen. More specifically, each variable domain contains three hypervariable regions – the amino acids seen there vary the most from antibody to antibody. When the protein folds, these regions give rise to three loops of β-strands , localized near one another on the surface of the antibody. These loops are referred to as the complementarity-determining regions (CDRs), since their shape complements that of an antigen. Three CDRs from each of

7192-458: The Fc region and influence interactions with effector molecules. The N-terminus of each chain is situated at the tip. Each immunoglobulin domain has a similar structure, characteristic of all the members of the immunoglobulin superfamily : it is composed of between 7 (for constant domains) and 9 (for variable domains) β-strands , forming two beta sheets in a Greek key motif . The sheets create

7316-489: The Fc region of an antibody, while the complement system is activated by binding the C1q protein complex. IgG or IgM can bind to C1q, but IgA cannot, therefore IgA does not activate the classical complement pathway . Another role of the Fc region is to selectively distribute different antibody classes across the body. In particular, the neonatal Fc receptor (FcRn) binds to the Fc region of IgG antibodies to transport it across

7440-491: The V, D and J gene segments exist, and are tandemly arranged in the genomes of mammals . In the bone marrow, each developing B cell will assemble an immunoglobulin variable region by randomly selecting and combining one V, one D and one J gene segment (or one V and one J segment in the light chain). As there are multiple copies of each type of gene segment, and different combinations of gene segments can be used to generate each immunoglobulin variable region, this process generates

7564-618: The above-mentioned rearrangements have a tendency to recombine with other genes (translocation), making the cells prone to the development of cancer (lymphoma and leukemia). Cells from people with A–T demonstrate genomic instability, slow growth and premature senescence in culture, shortened telomeres and an ongoing, low-level stress response. These factors may contribute to the progeric (signs of early aging) changes of skin and hair sometimes observed in people with A–T. For example, DNA damage and genomic instability cause melanocyte stem cell (MSC) differentiation which produces graying. Thus, ATM may be

SECTION 60

#1732780058375

7688-605: The absence of telangiectasia, normal immunoglobulin levels, a later onset, and a slower progression of the symptoms. Because of its rarity, it is not yet known whether or not ATLD carries an increased risk to develop cancer. Because those mutations of Mre11 that severely impair the MRE11 protein are incompatible with life, individuals with ATLD all have some partial function of the Mre11 protein, and hence likely all have their own levels of disease severity. Nijmegen breakage syndrome (NBS)

7812-450: The adaptive immune system is regulated by interactions between idiotypes. The Fc region (the trunk of the Y shape) is composed of constant domains from the heavy chains. Its role is in modulating immune cell activity: it is where effector molecules bind to, triggering various effects after the antibody Fab region binds to an antigen. Effector cells (such as macrophages or natural killer cells ) bind via their Fc receptors (FcR) to

7936-539: The age of about 12 – 15 years, though involuntary movements may start at any age and may worsen over time. These extra movements can take many forms, including small jerks of the hands and feet that look like fidgeting ( chorea ), slower twisting movements of the upper body ( athetosis ), adoption of stiff and twisted postures ( dystonia ), occasional uncontrolled jerks ( myoclonic jerks ), and various rhythmic and non-rhythmic movements with attempts at coordinated action ( tremors ). Prominent blood vessels (telangiectasia) over

8060-432: The airway. Many individuals with A–T develop deformities of the feet that compound the difficulty they have with walking due to impaired coordination. Early treatment may slow progression of this deformity. Bracing or surgical correction sometimes improves stability at the ankle sufficient to enable an individual to walk with support, or bear weight during assisted standing transfers from one seat to another. Severe scoliosis

8184-410: The antibody (also known as effector functions), in addition to some other structural features. Antibodies from different classes also differ in where they are released in the body and at what stage of an immune response. Between species, while classes and subclasses of antibodies may be shared (at least in name), their functions and distribution throughout the body may be different. For example, mouse IgG1

8308-686: The antibody generates a large cavalry of antibodies with a high degree of variability. This combination is called V(D)J recombination discussed below. Somatic recombination of immunoglobulins, also known as V(D)J recombination , involves the generation of a unique immunoglobulin variable region. The variable region of each immunoglobulin heavy or light chain is encoded in several pieces—known as gene segments (subgenes). These segments are called variable (V), diversity (D) and joining (J) segments. V, D and J segments are found in Ig heavy chains , but only V and J segments are found in Ig light chains . Multiple copies of

8432-562: The antigen's epitope. An antigen usually contains different epitopes along its surface arranged discontinuously, and dominant epitopes on a given antigen are called determinants. Antibody and antigen interact by spatial complementarity (lock and key). The molecular forces involved in the Fab-epitope interaction are weak and non-specific – for example electrostatic forces , hydrogen bonds , hydrophobic interactions , and van der Waals forces . This means binding between antibody and antigen

8556-421: The antigen-binding sites at both tips of the antibody come in an equally wide variety. The rest of the antibody structure is much less variable; in humans, antibodies occur in five classes , sometimes called isotypes : IgA , IgD , IgE , IgG , and IgM . Human IgG and IgA antibodies are also divided into discrete subclasses (IgG1, IgG2, IgG3, IgG4; IgA1 and IgA2). The class refers to the functions triggered by

8680-428: The associated gene products are involved in DNA repair. Both horizontal and vertical eye movements are affected in these disorders. Although people with either type may have some mild cognitive problems, such as difficulty with concentration or performing multi-step activities, intellectual function is usually not affected. Ataxia-oculomotor apraxia type 1 ( AOA1 ) usually has an onset of symptoms during childhood. It

8804-401: The bacterium directly (bacteriolysis). To combat pathogens that replicate outside cells, antibodies bind to pathogens to link them together, causing them to agglutinate . Since an antibody has at least two paratopes, it can bind more than one antigen by binding identical epitopes carried on the surfaces of these antigens. By coating the pathogen, antibodies stimulate effector functions against

8928-466: The beginning of their second decade, children with the more severe ("classic") form of A–T start using a wheelchair for long distances. During school years, children may have increasing difficulty with reading because of impaired coordination of eye movement. At the same time, other problems with fine-motor functions (writing, coloring, and using utensils to eat), and with speech (dysarthria) may arise. Most of these neurologic problems stop progressing after

9052-614: The blood. Some people have frequent infections of the upper (colds, sinus and ear infections) and lower (bronchitis and pneumonia) respiratory tract. All children with A–T should have their immune systems evaluated to detect those with severe problems that require treatment to minimize the number or severity of infections. Some people with A–T need additional immunizations (especially with pneumonia and influenza vaccines), antibiotics to provide protection (prophylaxis) from infections, and/or infusions of immunoglobulins (gamma globulin). The need for these treatments should be determined by an expert in

9176-434: The bloodstream, they are said to be part of the humoral immune system . Circulating antibodies are produced by clonal B cells that specifically respond to only one antigen (an example is a virus capsid protein fragment). Antibodies contribute to immunity in three ways: They prevent pathogens from entering or damaging cells by binding to them; they stimulate removal of pathogens by macrophages and other cells by coating

9300-424: The body for years afterward in order to allow the immune system to remember an antigen and respond faster upon future exposures. At the prenatal and neonatal stages of life, the presence of antibodies is provided by passive immunization from the mother. Early endogenous antibody production varies for different kinds of antibodies, and usually appear within the first years of life. Since antibodies exist freely in

9424-477: The bone marrow, though it cannot be assumed that any given plasma cell in the bone marrow will be long-lived. However, other work indicates that survival niches can readily be established within the mucosal tissues- though the classes of antibodies involved show a different hierarchy from those in the bone marrow. B cells can also differentiate into memory B cells which can persist for decades similarly to long-lived plasma cells. These cells can be rapidly recalled in

9548-489: The cell from making new DNA (cell cycle arrest) and recruits and activates other proteins to repair the damage. Thus, ATM allows the cell to repair its DNA before the completion of cell division. If DNA damage is too severe, ATM will mediate the process of programmed cell death (apoptosis) to eliminate the cell and prevent genomic instability. In the absence of the ATM protein, cell-cycle check-point regulation and programmed cell death in response to DSBs are defective. The result

9672-467: The cell's ATM gene. These more specialized tests are not always needed, but are particularly helpful if a child's symptoms are atypical. There are several other disorders with similar symptoms or laboratory features that physicians may consider when diagnosing A–T. The three most common disorders that are sometimes confused with A–T are: Each of these can be distinguished from A–T by the neurologic exam and clinical history. Cerebral palsy (CP) describes

9796-430: The cell-bound antibody molecule with an antigen, causing the cell to divide and differentiate into an antibody-producing cell called a plasma cell . In this activated form, the B cell starts to produce antibody in a secreted form rather than a membrane -bound form. Some daughter cells of the activated B cells undergo isotype switching , a mechanism that causes the production of antibodies to change from IgM or IgD to

9920-409: The cerebellum). The cause of this cell loss is not known, though many hypotheses have been proposed based on experiments performed both in cell culture and in the mouse model of A–T. Current hypotheses explaining the neurodegeneration associated with A–T include the following: These hypotheses may not be mutually exclusive and more than one of these mechanisms may underlie neuronal cell death when there

10044-520: The characteristic symptoms but it has been reported they have higher risks of cancer and heart disease. The prevalence of A–T is estimated to be as high as 1 in 40,000 to as low as 1 in 300,000 people. There is substantial variability in the severity of features of A–T among affected individuals, and at different ages. The following symptoms or problems are either common or important features of A–T: Many children are initially misdiagnosed as having cerebral palsy . The diagnosis of A–T may not be made until

10168-423: The classical complement pathway leading to lysis of enveloped virus particles long before the adaptive immune response is activated. Antibodies are produced exclusively by B cells in response to antigens where initially, antibodies are formed as membrane-bound receptors, but upon activation by antigens and helper T cells, B cells differentiate to produce soluble antibodies. Many natural antibodies are directed against

10292-403: The constant (C) regions of the immunoglobulin heavy chain. Initially, naive B cells express only cell-surface IgM and IgD with identical antigen binding regions. Each isotype is adapted for a distinct function; therefore, after activation, an antibody with an IgG, IgA, or IgE effector function might be required to effectively eliminate an antigen. Class switching allows different daughter cells from

10416-537: The diagnosis. There is no enhanced risk for cancer. Ataxia–oculomotor apraxia type 2 (AOA2) is an autosomal recessive disorder also similar to A–T in manifesting increasing problems with coordination and peripheral neuropathy, but oculomotor apraxia is present in only half of affected individuals. Ocular telangiectasia do not develop. Laboratory abnormalities of AOA2 are like A–T, and unlike AOA1, in having an elevated serum AFP level, but like AOA1 and unlike A–T in having normal markers of immune function. Genetic testing of

10540-410: The disaccharide galactose α(1,3)-galactose (α-Gal), which is found as a terminal sugar on glycosylated cell surface proteins, and generated in response to production of this sugar by bacteria contained in the human gut. These antibodies undergo quality checks in the endoplasmic reticulum (ER), which contains proteins that assist in proper folding and assembly. Rejection of xenotransplantated organs

10664-404: The disorder. FA is caused by mutation in the frataxin gene, most often an expansion of a naturally occurring repetition of the three nucleotide bases GAA from the usual 5–33 repetitions of this trinucleotide sequence to greater than 65 repeats on each chromosome. Most often the ataxia appears between 10 and 15 years of age, and differs from A–T by the absence of telangiectasia and oculomotor apraxia,

10788-414: The diversity of the antibody pool and impacts the antibody's antigen-binding affinity . Some point mutations will result in the production of antibodies that have a weaker interaction (low affinity) with their antigen than the original antibody, and some mutations will generate antibodies with a stronger interaction (high affinity). B cells that express high affinity antibodies on their surface will receive

10912-583: The earliest phases of an immune response to help facilitate clearance of the offending antigen and delivery of the resulting immune complexes to the lymph nodes or spleen for initiation of an immune response. Hence in this capacity, the function of antibodies is more akin to that of innate immunity than adaptive. Nonetheless, in general antibodies are regarded as part of the adaptive immune system because they demonstrate exceptional specificity (with some exception), are produced through genetic rearrangements (rather than being encoded directly in germline ), and are

11036-428: The early appearance of peripheral neuropathy, early in their course manifest difficulty with initiation of gaze shifts, and the absence of ocular telangiectasia, but laboratory features are of key importance in the differentiation of the two. Individuals with AOA1 have a normal AFP, normal measures of immune function, and after 10–15 years have low serum levels of albumin. Genetic testing of the aprataxin gene can confirm

11160-602: The early phases of the immune response (classically described as arising extrafollicularly rather than from the germinal center ) which have the potential to differentiate further into plasma cells. The literature is sloppy at times and often describes plasmablasts as just short-lived plasma cells- formally this is incorrect. Plasma cells, in contrast, do not divide (they are terminally differentiated ), and rely on survival niches comprising specific cell types and cytokines to persist. Plasma cells will secrete huge quantities of antibody regardless of whether or not their cognate antigen

11284-424: The errors (mutation) in an affected child's two ATM genes have been identified. The process of getting this done can be complicated and, as it requires time, should be arranged before conception. Looking for mutations in the ATM gene of an unrelated person (for example, the spouse of a known A–T carrier) presents significant challenges. Genes often have variant spellings (polymorphisms) that do not affect function. In

11408-545: The face and ears. They occur in the bladder as a late complication of chemotherapy with cyclophosphamide, have been seen deep inside the brain of older people with A–T, and occasionally arise in the liver and lungs. About two-thirds of people with A–T have abnormalities of the immune system. The most common abnormalities are low levels of one or more classes of immunoglobulins (IgA, IgM, and IgG subclasses), not making antibodies in response to vaccines or infections, and having low numbers of lymphocytes (especially T-lymphocytes) in

11532-500: The field of immunodeficiency or infectious diseases. People with A–T have a highly increased incidence (approximately 25% lifetime risk) of cancers, particularly lymphomas and leukemia , but other cancers can occur. Women who are A–T carriers (who have one mutated copy of the ATM gene), have approximately a two-fold increased risk for the development of breast cancer compared to the general population. This includes all mothers of A–T children and some female relatives. Current consensus

11656-432: The first year to 18 months. The reason why individuals with A–T have elevated levels of AFP is not yet known. A–T is one of several DNA repair disorders that result in neurological abnormalities or degeneration. Arguably some of the most devastating symptoms of A–T are a result of progressive cerebellar degeneration, characterized by the loss of Purkinje cells and, to a lesser extent, granule cells (located exclusively in

11780-414: The genes encoding the variable domains of the heavy and light chains undergo a high rate of point mutation , by a process called somatic hypermutation (SHM). SHM results in approximately one nucleotide change per variable gene, per cell division. As a consequence, any daughter B cells will acquire slight amino acid differences in the variable domains of their antibody chains. This serves to increase

11904-846: The heavy and light chains together form an antibody-binding site whose shape can be anything from a pocket to which a smaller antigen binds, to a larger surface, to a protrusion that sticks out into a groove in an antigen. Typically though, only a few residues contribute to most of the binding energy. The existence of two identical antibody-binding sites allows antibody molecules to bind strongly to multivalent antigen (repeating sites such as polysaccharides in bacterial cell walls , or other sites at some distance apart), as well as to form antibody complexes and larger antigen-antibody complexes . The structures of CDRs have been clustered and classified by Chothia et al. and more recently by North et al. and Nikoloudis et al. However, describing an antibody's binding site using only one single static structure limits

12028-769: The invading microbe. The activation of natural killer cells by antibodies initiates a cytotoxic mechanism known as antibody-dependent cell-mediated cytotoxicity (ADCC) – this process may explain the efficacy of monoclonal antibodies used in biological therapies against cancer . The Fc receptors are isotype-specific, which gives greater flexibility to the immune system, invoking only the appropriate immune mechanisms for distinct pathogens. Humans and higher primates also produce "natural antibodies" that are present in serum before viral infection. Natural antibodies have been defined as antibodies that are produced without any previous infection, vaccination , other foreign antigen exposure or passive immunization . These antibodies can activate

12152-462: The last, gamma globulin fraction. Conversely, most gamma-globulins are antibodies, which is why the two terms were historically used as synonyms, as were the symbols Ig and γ . This variant terminology fell out of use due to the correspondence being inexact and due to confusion with γ (gamma) heavy chains which characterize the IgG class of antibodies. The variable domains can also be referred to as

12276-412: The late pre-school years. Most children with ataxia caused by CP do not begin to walk at a normal age, whereas most children with A–T start to walk at a normal age even though they often "wobble" from the start. Pure ataxia is a rare manifestation of early brain damage or malformation, however, and the possibility of an occult genetic disorder of brain should be considered and sought for those in whom ataxia

12400-437: The most likely candidate lesion. Ataxia-oculomotor apraxia type 2 ( AOA2 ), also known as spinocerebellar ataxia with axonal neuropathy type 2 , has its onset during adolescence. It is characterized by cerebellar atrophy and peripheral neuropathy. Sufferers of type 2 have high amounts of another protein called alpha-fetoprotein (AFP), and may also have high amounts of the protein creatine phosphokinase (CPK). Mutations in

12524-399: The oculomotor difficulties evident in children with A–T, which are not evident in early childhood but emerge over time. Cogan's oculomotor apraxia is generally an isolated problem, or may be associated with broader developmental delay. Friedreich ataxia (FA) is the most common genetic cause of ataxia in children. Like A–T, FA is a recessive disease, appearing in families without a history of

12648-557: The other antibody isotypes, IgE, IgA, or IgG, that have defined roles in the immune system. In mammals there are two types of immunoglobulin light chain , which are called lambda (λ) and kappa (κ). However, there is no known functional difference between them, and both can occur with any of the five major types of heavy chains. Each antibody contains two identical light chains: both κ or both λ. Proportions of κ and λ types vary by species and can be used to detect abnormal proliferation of B cell clones. Other types of light chains, such as

12772-1024: The parietal eye fields (PEF). The PEF surround the posterior, medial segment of the intraparietal sulcus. They have a role in reflexive saccades, and send information to the FEF. Since the FEF and PEF have complementary roles in voluntary and reflexive production of saccades, respectively, and they get inputs from different areas of the brain, only bilateral lesions to both the FEF and PEF will cause persistent OMA. Patients with either bilateral FEF or bilateral PEF damage (but not both FEF and PEF) have been shown to regain at least some voluntary saccadic initiation some time after their hemorrhages. Other causes of OMA include brain tumors and cardiovascular problems. A subgroup of genetically recessive ataxias associated with OMA has been identified, with an onset during childhood. These are ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia 2 (AOA2), and ataxia telangiectasia . These are autosomal recessive disorders and

12896-544: The parts of the brain for eye movement control not working, or may manifest poor eye movement control in childhood. If any part of the brain that controls eye movement becomes damaged, then OMA may develop. One of the potential causes is bifrontal hemorrhages. In this case, OMA is associated with bilateral lesions of the frontal eye fields (FEF), located in the caudal middle frontal gyrus. The FEF control voluntary eye movements, including saccades, smooth pursuit and vergence. OMA can also be associated with bilateral hemorrhages in

13020-587: The pathogen in cells that recognize their Fc region. Those cells that recognize coated pathogens have Fc receptors, which, as the name suggests, interact with the Fc region of IgA, IgG, and IgE antibodies. The engagement of a particular antibody with the Fc receptor on a particular cell triggers an effector function of that cell; phagocytes will phagocytose , mast cells and neutrophils will degranulate , natural killer cells will release cytokines and cytotoxic molecules; that will ultimately result in destruction of

13144-455: The pathogen; and they trigger destruction of pathogens by stimulating other immune responses such as the complement pathway . Antibodies will also trigger vasoactive amine degranulation to contribute to immunity against certain types of antigens (helminths, allergens). Antibodies that bind to surface antigens (for example, on bacteria) will attract the first component of the complement cascade with their Fc region and initiate activation of

13268-446: The periphery, they rearrange special segments of their DNA [V(D)J recombination process]. This process requires them to make DSBs, which are difficult to repair in the absence of ATM. As a result, most people with A–T have reduced numbers of lymphocytes and some impairment of lymphocyte function (such as an impaired ability to make antibodies in response to vaccines or infections). In addition, broken pieces of DNA in chromosomes involved in

13392-483: The person's ATM genes). A variety of laboratory abnormalities occur in most people with A–T, allowing for a tentative diagnosis to be made in the presence of typical clinical features. Not all abnormalities are seen in all patients. These abnormalities include: The diagnosis can be confirmed in the laboratory by finding an absence or deficiency of the ATM protein in cultured blood cells, an absence or deficiency of ATM function (kinase assay), or mutations in both copies of

13516-603: The placenta, from the mother to the fetus. In addition to this, binding to FcRn endows IgG with an exceptionally long half-life relative to other plasma proteins of 3-4 weeks. IgG3 in most cases (depending on allotype) has mutations at the FcRn binding site which lower affinity for FcRn, which are thought to have evolved to limit the highly inflammatory effects of this subclass. Antibodies are glycoproteins , that is, they have carbohydrates (glycans) added to conserved amino acid residues. These conserved glycosylation sites occur in

13640-400: The preschool years when the neurologic symptoms of impaired gait, hand coordination, speech and eye movement appear or worsen, and the telangiectasia first appear. Because A–T is so rare, doctors may not be familiar with the symptoms, or methods of making a diagnosis. The late appearance of telangiectasia may be a barrier to the diagnosis. It may also take some time before doctors consider A–T as

13764-437: The presence of these proteins, V(D)J recombination would not occur. After a B cell produces a functional immunoglobulin gene during V(D)J recombination, it cannot express any other variable region (a process known as allelic exclusion ) thus each B cell can produce antibodies containing only one kind of variable chain. Following activation with antigen, B cells begin to proliferate rapidly. In these rapidly dividing cells,

13888-424: The proteins of potentially responsible genes, such as ATM, MRE11, nibrin, TDP1, aprataxin and senataxin as well as other proteins important to ATM function such as ATR, DNA-PK, and RAD50. There is no treatment known to slow or stop the progression of the neurologic problems. Oculomotor apraxia Oculomotor apraxia ( OMA ) is the absence or defect of controlled, voluntary, and purposeful eye movement. It

14012-428: The reproductive abnormality as gonadal atrophy or dysgenesis characterized by delayed pubertal development. Because programmed DSBs are generated to initiate genetic recombinations involved in the production of sperm and eggs in reproductive organs (a process known as meiosis), meiotic defects and arrest can occur when ATM is not present. As lymphocytes develop from stem cells in the bone marrow into mature lymphocytes in

14136-437: The same activated B cell to produce antibodies of different isotypes. Only the constant region of the antibody heavy chain changes during class switching; the variable regions, and therefore antigen specificity, remain unchanged. Thus the progeny of a single B cell can produce antibodies, all specific for the same antigen, but with the ability to produce the effector function appropriate for each antigenic challenge. Class switching

14260-521: The same manner or at the same rate, it may be some years before A–T is properly diagnosed. Most children with A–T have stable neurologic symptoms for the first 4–5 years of life, but begin to show increasing problems in early school years. A–T has an autosomal recessive pattern of inheritance . A–T is caused by a defect in the ATM gene, named after this disease, which is involved in the recognition and repair of damaged DNA. Heterozygotes will not experience

14384-661: The second decade of life. Dysphagia is common because of the neurological changes that interfere with coordination of mouth and pharynx (throat) movements that are needed for safe and efficient swallowing. Coordination problems involving the mouth may make chewing difficult and increase the duration of meals. Problems involving the pharynx may cause liquid, food, and saliva to be inhaled into the airway (aspiration). People with dysphagia may not cough when they aspirate (silent aspiration). Swallowing problems and especially swallowing problems with silent aspiration may cause lung problems due to inability to cough and clear food and liquids from

14508-519: The senataxin gene (SETX) can confirm the diagnosis. There is no enhanced risk for cancer. Ataxia–telangiectasia like disorder (ATLD) is an extremely rare condition, caused by mutation in the hMre11 gene, that could be considered in the differential diagnosis of A–T. Patients with ATLD are very similar to those with A–T in showing a progressive cerebellar ataxia, hypersensitivity to ionizing radiation and genomic instability. Those rare individuals with ATLD who are well described differ from those with A–T by

14632-478: The similarity of the three diseases can be explained in part by the fact that the protein products of the three genes mutated in these disorders interact in common pathways in the cell. Differentiation of these disorders is often possible with clinical features and selected laboratory tests. In cases where the distinction is unclear, clinical laboratories can identify genetic abnormalities of ATM, aprataxin and senataxin, and specialty centers can identify abnormality of

14756-444: The suffix denotes the type of heavy chain the antibody contains: the heavy chain types α (alpha), γ (gamma), δ (delta), ε (epsilon), μ (mu) give rise to IgA, IgG, IgD, IgE, IgM, respectively. The distinctive features of each class are determined by the part of the heavy chain within the hinge and Fc region. The classes differ in their biological properties, functional locations and ability to deal with different antigens, as depicted in

14880-440: The table. For example, IgE antibodies are responsible for an allergic response consisting of histamine release from mast cells , often a sole contributor to asthma (though other pathways exist as do exist symptoms very similar to yet not technically asthma). The antibody's variable region binds to allergic antigen, for example house dust mite particles, while its Fc region (in the ε heavy chains) binds to Fc receptor ε on

15004-430: The understanding and characterization of the antibody's function and properties. To improve antibody structure prediction and to take the strongly correlated CDR loop and interface movements into account, antibody paratopes should be described as interconverting states in solution with varying probabilities. In the framework of the immune network theory , CDRs are also called idiotypes. According to immune network theory,

15128-412: The variable domains are located on three loops known as hypervariable regions (HV-1, HV-2 and HV-3) or complementarity-determining regions (CDR1, CDR2 and CDR3). CDRs are supported within the variable domains by conserved framework regions. The heavy chain locus contains about 65 different variable domain genes that all differ in their CDRs. Combining these genes with an array of genes for other domains of

15252-536: The white ( sclera ) of the eyes usually occur by the age of 5–8 years, but sometimes appear later or not at all. The absence of telangiectasia does not exclude the diagnosis of A–T. Potentially a cosmetic problem, the ocular telangiectasia do not bleed or itch, though they are sometimes misdiagnosed as chronic conjunctivitis. It is their constant nature, not changing with time, weather or emotion, that marks them as different from other visible blood vessels. Telangiectasia can also appear on sun-exposed areas of skin, especially

15376-576: Was first described in 1952 by the American ophthalmologist David Glendenning Cogan . People with this condition have difficulty moving their eyes horizontally and moving them quickly. The main difficulty is in saccade initiation, but there is also impaired cancellation of the vestibulo-ocular reflex . Patients have to turn their head in order to compensate for the lack of eye movement initiation in order to follow an object or see objects in their peripheral vision , but they often exceed their target. There

#374625