Misplaced Pages

AMD 10h

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The AMD Family 10h , or K10 , is a microprocessor microarchitecture by AMD based on the K8 microarchitecture. The first third-generation Opteron products for servers were launched on September 10, 2007, with the Phenom processors for desktops following and launching on November 11, 2007 as the immediate successors to the K8 series of processors ( Athlon 64 , Opteron , 64-bit Sempron ).

#479520

75-517: It appears that AMD has not used K-nomenclature (which originally stood for "Kryptonite" in the K5 processor ) from the time after the use of the codename K8 for the AMD K8 or Athlon 64 processor family, since no K-nomenclature naming convention beyond K8 has appeared in official AMD documents and press releases after the beginning of 2005. The name " K8L " was first coined by Charlie Demerjian in 2005, at

150-673: A PR rating , or performance rating, to label the chips according to their suggested equivalence in integer performance to a Pentium of that clock speed. Thus, a 116 MHz chip from the second line was marketed as the "K5 PR166". Manufacturing delays caused the PR200's arrival to nearly align with the release of K6. Since AMD did not want the two chips competing, the K5-PR200 only arrived in small numbers. BIOS In computing , BIOS ( / ˈ b aɪ ɒ s , - oʊ s / , BY -oss, -⁠ohss ; Basic Input/Output System , also known as

225-566: A kernel . In the era of DOS , the BIOS provided BIOS interrupt calls for the keyboard, display, storage, and other input/output (I/O) devices that standardized an interface to application programs and the operating system. More recent operating systems do not use the BIOS interrupt calls after startup. Most BIOS implementations are specifically designed to work with a particular computer or motherboard model, by interfacing with various devices especially system chipset . Originally, BIOS firmware

300-468: A network adapter attempts booting by a procedure that is defined by its option ROM or the equivalent integrated into the motherboard BIOS ROM. As such, option ROMs may also influence or supplant the boot process defined by the motherboard BIOS ROM. With the El Torito optical media boot standard , the optical drive actually emulates a 3.5" high-density floppy disk to the BIOS for boot purposes. Reading

375-411: A 16 KB four-way set-associative instruction cache and an 8 KB data cache. The floating-point divide and square-root microcode were mechanically proven. The floating-point transcendental instructions were implemented in hardware and were faithful to true mathematical results for all operands. The K5 project represented an early chance for AMD to take technical leadership from Intel. Although

450-533: A BIOS upgrade that fails could brick the motherboard. Unified Extensible Firmware Interface (UEFI) is a successor to the legacy PC BIOS, aiming to address its technical limitations. UEFI firmware may include legacy BIOS compatibility to maintain compatibility with operating systems and option cards that do not support UEFI native operation. Since 2020, all PCs for Intel platforms no longer support Legacy BIOS. The last version of Microsoft Windows to officially support running on PCs which use legacy BIOS firmware

525-539: A K8 design. In November 2007 AMD stopped delivery of Barcelona processors after a bug in the translation lookaside buffer (TLB) of stepping B2 was discovered that could rarely lead to a race condition and thus a system lockup. A patch in BIOS or software worked around the bug by disabling cache for page tables, but it was connected to a 5 to 20% performance penalty. Kernel patches that would almost completely avoid this penalty were published for Linux . In April 2008,

600-602: A ROM chip) that contains a BIOS extension ROM. The motherboard BIOS typically contains code for initializing and bootstrapping integrated display and integrated storage. The initialization process can involve the execution of code related to the device being initialized, for locating the device, verifying the type of device, then establishing base registers, setting pointers , establishing interrupt vector tables, selecting paging modes which are ways for organizing available registers in devices, setting default values for accessing software routines related to interrupts , and setting

675-523: A SLIC can be preactivated with an OEM product key, and they verify an XML formatted OEM certificate against the SLIC in the BIOS as a means of self-activating (see System Locked Preinstallation , SLP). If a user performs a fresh install of Windows, they will need to have possession of both the OEM key (either SLP or COA) and the digital certificate for their SLIC in order to bypass activation. This can be achieved if

750-608: A hard disk that is bootable, but sometimes there is a removable-media drive that has higher boot priority, so the user can cause a removable disk to be booted. In most modern BIOSes, the boot priority order can be configured by the user. In older BIOSes, limited boot priority options are selectable; in the earliest BIOSes, a fixed priority scheme was implemented, with floppy disk drives first, fixed disks (i.e., hard disks) second, and typically no other boot devices supported, subject to modification of these rules by installed option ROMs. The BIOS in an early PC also usually would only boot from

825-561: A message like "No bootable disk found"; some would prompt for a disk to be inserted and a key to be pressed to retry the boot process. A modern BIOS may display nothing or may automatically enter the BIOS configuration utility when the boot process fails. The environment for the boot program is very simple: the CPU is in real mode and the general-purpose and segment registers are undefined, except SS, SP, CS, and DL. CS:IP always points to physical address 0x07C00 . What values CS and IP actually have

SECTION 10

#1732776535480

900-547: A network device or a SCSI adapter) in a cooperative way, it can use the BIOS Boot Specification (BBS) API to register its ability to do so. Once the expansion ROMs have registered using the BBS APIs, the user can select among the available boot options from within the BIOS's user interface. This is why most BBS compliant PC BIOS implementations will not allow the user to enter the BIOS's user interface until

975-422: A portion of the " upper memory area " (the part of the x86 real-mode address space at and above address 0xA0000) and runs each ROM found, in order. To discover memory-mapped option ROMs, a BIOS implementation scans the real-mode address space from 0x0C0000 to 0x0F0000 on 2  KB (2,048 bytes) boundaries, looking for a two-byte ROM signature : 0x55 followed by 0xAA. In a valid expansion ROM, this signature

1050-464: A reserved block of system RAM at addresses 0x00400–0x004FF with various parameters initialized during the POST. All memory at and above address 0x00500 can be used by the boot program; it may even overwrite itself. The BIOS ROM is customized to the particular manufacturer's hardware, allowing low-level services (such as reading a keystroke or writing a sector of data to diskette) to be provided in

1125-503: A simple boot loader in its ROM.) Versions of MS-DOS , PC DOS or DR-DOS contain a file called variously " IO.SYS ", " IBMBIO.COM ", "IBMBIO.SYS", or "DRBIOS.SYS"; this file is known as the "DOS BIOS" (also known as the "DOS I/O System") and contains the lower-level hardware-specific part of the operating system. Together with the underlying hardware-specific but operating system-independent "System BIOS", which resides in ROM , it represents

1200-621: A software licensing description table (SLIC), a digital signature placed inside the BIOS by the original equipment manufacturer (OEM), for example Dell . The SLIC is inserted into the ACPI data table and contains no active code. Computer manufacturers that distribute OEM versions of Microsoft Windows and Microsoft application software can use the SLIC to authenticate licensing to the OEM Windows Installation disk and system recovery disc containing Windows software. Systems with

1275-454: A standardized way to programs, including operating systems. For example, an IBM PC might have either a monochrome or a color display adapter (using different display memory addresses and hardware), but a single, standard, BIOS system call may be invoked to display a character at a specified position on the screen in text mode or graphics mode . The BIOS provides a small library of basic input/output functions to operate peripherals (such as

1350-521: A video interview, Giuseppe Amato confirmed that the codename is K10 . It was revealed, by The Inquirer itself, that the codename " K8L " referred to a low-power version of the K8 family, later named Turion 64 , and that K10 was the official codename for the microarchitecture. AMD refers to it as Family 10h Processors , as it is the successor of the Family 0Fh Processors (codename K8). 10h and 0Fh refer to

1425-546: A wide variety of workloads, "Barcelona" was able to demonstrate 40% performance advantage over the comparable Intel Xeon codenamed Clovertown dual-processor (2P) quad-core processors. The expected performance of floating point per core would be approximately 1.8 times that of the K8 family, at the same clock speed. On May 10, 2007, AMD held a private event demonstrating the upcoming processors codenamed Agena FX and chipsets, with one demonstrated system being AMD Quad FX platform with one Radeon HD 2900 XT graphics card on

1500-476: Is Windows 10 as Windows 11 requires a UEFI-compliant system (except for IoT Enterprise editions of Windows 11 since version 24H2 ). The term BIOS (Basic Input/Output System) was created by Gary Kildall and first appeared in the CP/M operating system in 1975, describing the machine-specific part of CP/M loaded during boot time that interfaces directly with the hardware . (A CP/M machine usually has only

1575-748: Is also a reference to the answer to life, the universe, and everything from The Hitchhiker's Guide to the Galaxy . The first generation desktop APUs based on the K10 microarchitecture were released in 2011 (some models do not provide graphics capability, such as the Lynx Athlon II and Sempron X2). There are two generations of K10-based processors for servers: Opteron 65 nm and 45 nm . AMD discontinued further development of K10 based CPUs after Thuban, choosing to focus on Fusion products for mainstream desktops and laptops and Bulldozer based products for

SECTION 20

#1732776535480

1650-406: Is bootable by attempting to load the first sector ( boot sector ). If the sector cannot be read, the BIOS proceeds to the next device. If the sector is read successfully, some BIOSes will also check for the boot sector signature 0x55 0xAA in the last two bytes of the sector (which is 512 bytes long), before accepting a boot sector and considering the device bootable. When a bootable device is found,

1725-452: Is followed by a single byte indicating the number of 512-byte blocks the expansion ROM occupies in real memory, and the next byte is the option ROM's entry point (also known as its "entry offset"). If the ROM has a valid checksum, the BIOS transfers control to the entry address, which in a normal BIOS extension ROM should be the beginning of the extension's initialization routine. At this point,

1800-556: Is not well defined. Some BIOSes use a CS:IP of 0x0000:0x7C00 while others may use 0x07C0:0x0000 . Because boot programs are always loaded at this fixed address, there is no need for a boot program to be relocatable. DL may contain the drive number, as used with interrupt 13h , of the boot device. SS:SP points to a valid stack that is presumably large enough to support hardware interrupts, but otherwise SS and SP are undefined. (A stack must be already set up in order for interrupts to be serviced, and interrupts must be enabled in order for

1875-471: Is performed each time the system is powered up. Without reprogrammable microcode, an expensive processor swap would be required; for example, the Pentium FDIV bug became an expensive fiasco for Intel as it required a product recall because the original Pentium processor's defective microcode could not be reprogrammed. Operating systems can update main processor microcode also. Some BIOSes contain

1950-541: Is rebooting. When interrupt 19h is called, the BIOS attempts to locate boot loader software on a "boot device", such as a hard disk , a floppy disk , CD , or DVD . It loads and executes the first boot software it finds, giving it control of the PC. The BIOS uses the boot devices set in Nonvolatile BIOS memory ( CMOS ), or, in the earliest PCs, DIP switches . The BIOS checks each device in order to see if it

2025-488: Is running. The interrupt vectors corresponding to the BIOS interrupts have been set to point at the appropriate entry points in the BIOS, hardware interrupt vectors for devices initialized by the BIOS have been set to point to the BIOS-provided ISRs, and some other interrupts, including ones that BIOS generates for programs to hook, have been set to a default dummy ISR that immediately returns. The BIOS maintains

2100-663: Is unique among PCs in having two ROM cartridge slots on the front. Cartridges in these slots map into the same region of the upper memory area used for option ROMs, and the cartridges can contain option ROM modules that the BIOS would recognize. The cartridges can also contain other types of ROM modules, such as BASIC programs, that are handled differently. One PCjr cartridge can contain several ROM modules of different types, possibly stored together in one ROM chip. The 8086 and 8088 start at physical address FFFF0h. The 80286 starts at physical address FFFFF0h. The 80386 and later x86 processors start at physical address FFFFFFF0h. When

2175-611: The CPU , chipset , RAM , motherboard , video card , keyboard , mouse , hard disk drive , optical disc drive and other hardware , including integrated peripherals . Early IBM PCs had a routine in the POST that would download a program into RAM through the keyboard port and run it. This feature was intended for factory test or diagnostic purposes. After the motherboard BIOS completes its POST, most BIOS versions search for option ROM modules, also called BIOS extension ROMs, and execute them. The motherboard BIOS scans for extension ROMs in

2250-503: The SSA/5 and the 5k86 , both released with the K5 label. The original set of "SSA/5" CPUs had its branch prediction unit disabled and additional internal waitstates added; these issues were remedied with the "5k86", resulting in up to 30% better performance clock for clock. The "SSA/5" line ran from 75 to 100 MHz; the "5k86" line ran from 90 to 133 MHz. However, AMD used what it called

2325-558: The System BIOS , ROM BIOS , BIOS ROM or PC BIOS ) is firmware used to provide runtime services for operating systems and programs and to perform hardware initialization during the booting process (power-on startup). The firmware comes pre-installed on the computer's motherboard . The name originates from the Basic Input/Output System used in the CP/M operating system in 1975. The BIOS firmware

AMD 10h - Misplaced Pages Continue

2400-423: The "first sector" of a CD-ROM or DVD-ROM is not a simply defined operation like it is on a floppy disk or a hard disk. Furthermore, the complexity of the medium makes it difficult to write a useful boot program in one sector. The bootable virtual floppy disk can contain software that provides access to the optical medium in its native format. If an expansion ROM wishes to change the way the system boots (such as from

2475-430: The 1980s under MS-DOS , when programmers observed that using the BIOS video services for graphics display were very slow. To increase the speed of screen output, many programs bypassed the BIOS and programmed the video display hardware directly. Other graphics programmers, particularly but not exclusively in the demoscene , observed that there were technical capabilities of the PC display adapters that were not supported by

2550-424: The BIOS after completing its initialization process. Once (and if) an option ROM returns, the BIOS continues searching for more option ROMs, calling each as it is found, until the entire option ROM area in the memory space has been scanned. It is possible that an option ROM will not return to BIOS, pre-empting the BIOS's boot sequence altogether. After the POST completes and, in a BIOS that supports option ROMs, after

2625-601: The BIOS to carry out most input/output tasks within the PC. Calling real mode BIOS services directly is inefficient for protected mode (and long mode ) operating systems. BIOS interrupt calls are not used by modern multitasking operating systems after they initially load. In the 1990s, BIOS provided some protected mode interfaces for Microsoft Windows and Unix-like operating systems, such as Advanced Power Management (APM), Plug and Play BIOS , Desktop Management Interface (DMI), VESA BIOS Extensions (VBE), e820 and MultiProcessor Specification (MPS). Starting from

2700-408: The BIOS transfers control to the loaded sector. The BIOS does not interpret the contents of the boot sector other than to possibly check for the boot sector signature in the last two bytes. Interpretation of data structures like partition tables and BIOS Parameter Blocks is done by the boot program in the boot sector itself or by other programs loaded through the boot process. A non-disk device such as

2775-630: The BIOS. Code in option ROMs runs before the BIOS boots the operating system from mass storage . These ROMs typically test and initialize hardware, add new BIOS services, or replace existing BIOS services with their own services. For example, a SCSI controller usually has a BIOS extension ROM that adds support for hard drives connected through that controller. An extension ROM could in principle contain operating system, or it could implement an entirely different boot process such as network booting . Operation of an IBM-compatible computer system can be completely changed by removing or inserting an adapter card (or

2850-667: The IBM BIOS and could not be taken advantage of without circumventing it. Since the AT-compatible BIOS ran in Intel real mode , operating systems that ran in protected mode on 286 and later processors required hardware device drivers compatible with protected mode operation to replace BIOS services. In modern PCs running modern operating systems (such as Windows and Linux ) the BIOS interrupt calls are used only during booting and initial loading of operating systems. Before

2925-561: The Microprocessor Forum 2003. The outlined features to be deployed by the next-generation microprocessors are as follows: In June 2006, AMD executive vice president Henri Richard had an interview with DigiTimes commented on the upcoming processor developments: Q: What is your broad perspective on the development of AMD processor technology over the next three to four years? A: Well, as Dirk Meyer commented at our analysts meeting, we're not standing still. We've talked about

3000-552: The analogue to the " CP/M BIOS ". The BIOS originally proprietary to the IBM PC has been reverse engineered by some companies (such as Phoenix Technologies ) looking to create compatible systems. With the introduction of PS/2 machines, IBM divided the System BIOS into real- and protected-mode portions. The real-mode portion was meant to provide backward compatibility with existing operating systems such as DOS, and therefore

3075-510: The boot sequence by inserting its own boot actions into it, by preventing the BIOS from detecting certain devices as bootable, or both. Before the BIOS Boot Specification was promulgated, this was the only way for expansion ROMs to implement boot capability for devices not supported for booting by the native BIOS of the motherboard. The user can select the boot priority implemented by the BIOS. For example, most computers have

AMD 10h - Misplaced Pages Continue

3150-459: The card is not supported by the motherboard BIOS and the card needs to be initialized or made accessible through BIOS services before the operating system can be loaded (usually this means it is required in the boot process). An additional advantage of ROM on some early PC systems (notably including the IBM PCjr) was that ROM was faster than main system RAM. (On modern systems, the case is very much

3225-403: The chip addressed the right design concepts, the actual engineering implementation had its issues. The low clock rates were, in part, due to AMD's limitations as a "cutting edge" manufacturing company at the time, and in part due to the design itself, which had many levels of logic for the process technology of the day, hampering clock scaling. Additionally, while the K5's floating-point performance

3300-492: The computer, and if it was lost the system settings could not be changed. The same applied in general to computers with an EISA bus, for which the configuration program was called an EISA Configuration Utility (ECU). A modern Wintel -compatible computer provides a setup routine essentially unchanged in nature from the ROM-resident BIOS setup utilities of the late 1990s; the user can configure hardware options using

3375-440: The device's configuration using default values. In addition, plug-in adapter cards such as SCSI , RAID , network interface cards , and video cards often include their own BIOS (e.g. Video BIOS ), complementing or replacing the system BIOS code for the given component. Even devices built into the motherboard can behave in this way; their option ROMs can be a part of the motherboard BIOS. An add-in card requires an option ROM if

3450-485: The expansion ROMs have finished executing and registering themselves with the BBS API. Also, if an expansion ROM wishes to change the way the system boots unilaterally, it can simply hook interrupt 19h or other interrupts normally called from interrupt 19h, such as interrupt 13h, the BIOS disk service, to intercept the BIOS boot process. Then it can replace the BIOS boot process with one of its own, or it can merely modify

3525-416: The extension ROM code takes over, typically testing and initializing the hardware it controls and registering interrupt vectors for use by post-boot applications. It may use BIOS services (including those provided by previously initialized option ROMs) to provide a user configuration interface, to display diagnostic information, or to do anything else that it requires. An option ROM should normally return to

3600-465: The first floppy disk drive or the first hard disk drive, even if there were two drives installed. On the original IBM PC and XT, if no bootable disk was found, the BIOS would try to start ROM BASIC with the interrupt call to interrupt 18h . Since few programs used BASIC in ROM, clone PC makers left it out; then a computer that failed to boot from a disk would display "No ROM BASIC" and halt (in response to interrupt 18h). Later computers would display

3675-482: The in-house-developed test suite proved invaluable on later projects. All models had 4.3 million transistors , with five integer units that could process instructions out of order and one floating-point unit. The branch target buffer was four times the size of the Pentium's and register renaming helped overcome register dependencies. The chip's speculative execution of instructions reduced pipeline stalls. It had

3750-403: The keyboard and video display. The modern Wintel machine may store the BIOS configuration settings in flash ROM, perhaps the same flash ROM that holds the BIOS itself. Peripheral cards such as hard disk drive host bus adapters and video cards have their own firmware, and BIOS extension option ROM code may be a part of the expansion card firmware; that code provides additional capabilities in

3825-654: The keyboard, rudimentary text and graphics display functions and so forth). When using MS-DOS, BIOS services could be accessed by an application program (or by MS-DOS) by executing an interrupt 13h interrupt instruction to access disk functions, or by executing one of a number of other documented BIOS interrupt calls to access video display , keyboard , cassette, and other device functions. Operating systems and executive software that are designed to supersede this basic firmware functionality provide replacement software interfaces to application software. Applications can also provide these services to themselves. This began even in

SECTION 50

#1732776535480

3900-512: The main result of the CPUID x86 processor instruction. In hexadecimal numbering, 0Fh (h represents hexadecimal numbering) equals the decimal number 15, and 10h equals decimal 16. (The "K10h" form that sometimes pops up is an improper hybrid of the "K" code and Family identifier number.) In 2003, AMD outlined the features for upcoming generations of microprocessors after the K8 family of processors in various events and analyst meetings, including

3975-462: The new stepping B3 was brought to the market by AMD, including a fix for the bug plus other minor enhancements. AMD has introduced the microprocessors manufactured at 65 nm feature width using Silicon-on-insulator (SOI) technology, since the release of K10 coincides with the volume ramp of this manufacturing process. The K8 family was known to be particularly sensitive to memory latency since its design gains performance by minimizing this through

4050-527: The operating system's first graphical screen is displayed, input and output are typically handled through BIOS. A boot menu such as the textual menu of Windows, which allows users to choose an operating system to boot, to boot into the safe mode , or to use the last known good configuration, is displayed through BIOS and receives keyboard input through BIOS. Many modern PCs can still boot and run legacy operating systems such as MS-DOS or DR-DOS that rely heavily on BIOS for their console and disk I/O, providing that

4125-425: The option ROM scan is completed and all detected ROM modules with valid checksums have been called, the BIOS calls interrupt 19h to start boot processing. Post-boot, programs loaded can also call interrupt 19h to reboot the system, but they must be careful to disable interrupts and other asynchronous hardware processes that may interfere with the BIOS rebooting process, or else the system may hang or crash while it

4200-537: The performance market. However, within the Fusion product family, APUs such as the first generation A4, A6 and A8-series chips (Llano APUs) continued to use K10-derived CPU cores in conjunction with a Radeon graphics core. K10 and its derivatives were phased out of production by the introduction of Trinity-based APUs in 2012, which replaced the K10 cores in the APU with Bulldozer-derived cores. The Family 11h microarchitecture

4275-548: The point of successfully initializing a video display adapter. Options on the IBM PC and XT were set by switches and jumpers on the main board and on expansion cards . Starting around the mid-1990s, it became typical for the BIOS ROM to include a "BIOS configuration utility" (BCU ) or "BIOS setup utility", accessed at system power-up by a particular key sequence. This program allowed the user to set system configuration options, of

4350-665: The refresh of the current K8 architecture that will come in '07, with significant improvements in many different areas of the processor, including integer performance, floating point performance, memory bandwidth, interconnections and so on. On November 30, 2006, AMD live demonstrated the native quad core chip known as "Barcelona" for the first time in public, while running Windows Server 2003 64-bit Edition. AMD claims 70% scaling of performance in real world loads, and better performance than Intel Xeon 5355 processor codenamed Clovertown . On January 24, 2007, AMD Executive Vice President Randy Allen claimed that in live tests, in regard to

4425-621: The reverse of this, and BIOS ROM code is usually copied ("shadowed") into RAM so it will run faster.) Option ROMs normally reside on adapter cards. However, the original PC, and perhaps also the PC XT, have a spare ROM socket on the motherboard (the "system board" in IBM's terms) into which an option ROM can be inserted, and the four ROMs that contain the BASIC interpreter can also be removed and replaced with custom ROMs which can be option ROMs. The IBM PCjr

4500-469: The same time), but for the most part they have only DDR3. Lynx desktop processors only support DDR3, as they use the FM1 socket. Characteristics of the microarchitecture include the following: APU features table AMD released a limited edition Deneb-based processor to extreme overclockers and partners. Fewer than 100 were manufactured. The "42" officially represents four cores running at 2 GHz, but

4575-672: The stack set up by BIOS is unknown and its location is likewise variable; although the boot program can investigate the default stack by examining SS:SP, it is easier and shorter to just unconditionally set up a new stack. At boot time, all BIOS services are available, and the memory below address 0x00400 contains the interrupt vector table . BIOS POST has initialized the system timers, interrupt controller(s), DMA controller(s), and other motherboard/chipset hardware as necessary to bring all BIOS services to ready status. DRAM refresh for all system DRAM in conventional memory and extended memory, but not necessarily expanded memory, has been set up and

SECTION 60

#1732776535480

4650-537: The system has a BIOS, or a CSM-capable UEFI firmware. Intel processors have reprogrammable microcode since the P6 microarchitecture. AMD processors have reprogrammable microcode since the K7 microarchitecture. The BIOS contain patches to the processor microcode that fix errors in the initial processor microcode; microcode is loaded into processor's SRAM so reprogramming is not persistent, thus loading of microcode updates

4725-479: The system is initialized, the first instruction of the BIOS appears at that address. If the system has just been powered up or the reset button was pressed (" cold boot "), the full power-on self-test (POST) is run. If Ctrl+Alt+Delete was pressed (" warm boot "), a special flag value stored in nonvolatile BIOS memory (" CMOS ") tested by the BIOS allows bypass of the lengthy POST and memory detection. The POST identifies, tests and initializes system devices such as

4800-405: The system timer-tick interrupt, which BIOS always uses at least to maintain the time-of-day count and which it initializes during POST, to be active and for the keyboard to work. The keyboard works even if the BIOS keyboard service is not called; keystrokes are received and placed in the 15-character type-ahead buffer maintained by BIOS.) The boot program must set up its own stack, because the size of

4875-442: The time a writer at The Inquirer , and was used by the wider IT community as a convenient shorthand while according to AMD official documents, the processor family was termed "AMD Next Generation Processor Technology". The microarchitecture has also been referred to as Stars , as the codenames for desktop line of processors was named under stars or constellations (the initial Phenom models being codenamed Agena and Toliman ). In

4950-461: The type formerly set using DIP switches , through an interactive menu system controlled through the keyboard. In the interim period, IBM-compatible PCs‍—‌including the IBM AT ‍—‌held configuration settings in battery-backed RAM and used a bootable configuration program on floppy disk, not in the ROM, to set the configuration options contained in this memory. The floppy disk was supplied with

5025-477: The upcoming RD790 chipset. The system was also demonstrated real-time converting a 720p video clip into another undisclosed format while all 8 cores were maxed at 100% by other tasks. On the December 2006 analyst day, Executive vice president Marty Seyer announced a new mobile core codenamed Griffin launched in 2008 with inherited power optimizations technologies from the K10 microarchitecture, but based on

5100-1166: The use of an on-die memory controller (integrated into the CPU); increased latency in the external modules negates the usefulness of the feature. DDR2 RAM introduces some additional latency over DDR RAM since the DRAM is internally driven by a clock at one quarter of the external data frequency, as opposed to one half that of DDR. However, since the command clock rate in DDR2 is doubled relative to DDR and other latency-reducing features (e.g. additive latency) have been introduced, common comparisons based on CAS latency alone are not sufficient. For example, Socket AM2 processors are known to demonstrate similar performance using DDR2 SDRAM as Socket 939 processors that utilize DDR-400 SDRAM. K10 processors support DDR2 SDRAM rated up to DDR2-1066 (1066 MHz). While some desktop K10 processors are AM2+ supporting only DDR2, an AM3 K10 processor supports both DDR2 and DDR3. A few AM3 motherboards have both DDR2 and DDR3 slots (this does not mean that both types can be fitted at

5175-780: The user performs a restore using a pre-customised image provided by the OEM. Power users can copy the necessary certificate files from the OEM image, decode the SLP product key, then perform SLP activation manually. Some BIOS implementations allow overclocking , an action in which the CPU is adjusted to a higher clock rate than its manufacturer rating for guaranteed capability. Overclocking may, however, seriously compromise system reliability in insufficiently cooled computers and generally shorten component lifespan. Overclocking, when incorrectly performed, may also cause components to overheat so quickly that they mechanically destroy themselves. Some older operating systems , for example MS-DOS , rely on

5250-459: Was Intel's Pentium microprocessor . The K5 was an ambitious design, closer to a Pentium Pro than a Pentium regarding technical solutions and internal architecture. However, the final product was closer to the Pentium regarding performance, although faster clock-for-clock compared to the Pentium. The K5 was based upon an internal highly parallel RISC processor architecture with an x86 decoding front-end. The K5 offered good x86 compatibility and

5325-528: Was a mixture of both K8 and K10 designs with lower power consumption for laptop that was marketed as Turion X2 Ultra and was later replaced by completely K10-based designs. The Family 12h microarchitecture is a derivative of the K10 design: Note : These media discussions are listed in ascending date of publication. AMD K5 The K5 is AMD ' s first x86 processor to be developed entirely in-house . Introduced in March 1996, its primary competition

5400-433: Was named "CBIOS" (for "Compatibility BIOS"), whereas the "ABIOS" (for "Advanced BIOS") provided new interfaces specifically suited for multitasking operating systems such as OS/2 . The BIOS of the original IBM PC and XT had no interactive user interface. Error codes or messages were displayed on the screen, or coded series of sounds were generated to signal errors when the power-on self-test (POST) had not proceeded to

5475-432: Was originally proprietary to the IBM PC ; it was reverse engineered by some companies (such as Phoenix Technologies ) looking to create compatible systems. The interface of that original system serves as a de facto standard . The BIOS in older PCs initializes and tests the system hardware components ( power-on self-test or POST for short), and loads a boot loader from a mass storage device which then initializes

5550-475: Was regarded as superior to that of the Cyrix 6x86 , it was slower than that of the Pentium, although offering more reliable transcendental function results. Because it was late to market and did not meet performance expectations, the K5 never gained the acceptance among large computer manufacturers that the earlier Am486 and later AMD K6 enjoyed. There were two revisions of the K5 architecture, internally called

5625-406: Was stored in a ROM chip on the PC motherboard. In later computer systems, the BIOS contents are stored on flash memory so it can be rewritten without removing the chip from the motherboard. This allows easy, end-user updates to the BIOS firmware so new features can be added or bugs can be fixed, but it also creates a possibility for the computer to become infected with BIOS rootkits . Furthermore,

#479520