In computing , telecommunication , information theory , and coding theory , forward error correction ( FEC ) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels .
39-514: ARQ or Arq may refer to: Automatic Repeat-reQuest , an error control mechanism for data transmission An admission request in H.323 Registration, Admission and Status (RAS) messages ARQ (film) , a 2016 American film ARQ (journal) , an architecture journal ISO 639-3 code for Algerian Arabic ARQ , a query engine for Jena See also [ edit ] Arc (disambiguation) ARC (disambiguation) Ark Topics referred to by
78-552: A soft-decision algorithm to demodulate digital data from an analog signal corrupted by noise. Many FEC decoders can also generate a bit-error rate (BER) signal which can be used as feedback to fine-tune the analog receiving electronics. FEC information is added to mass storage (magnetic, optical and solid state/flash based) devices to enable recovery of corrupted data, and is used as ECC computer memory on systems that require special provisions for reliability. The maximum proportion of errors or missing bits that can be corrected
117-515: A fixed ECC method as long as the ECC can handle the error rate, then switch to ARQ when the error rate gets too high; adaptive modulation and coding uses a variety of ECC rates, adding more error-correction bits per packet when there are higher error rates in the channel, or taking them out when they are not needed. The two main categories of ECC codes are block codes and convolutional codes . There are many types of block codes; Reed–Solomon coding
156-913: A hard decision is made whether it corresponds to a one or a zero bit. In contrast, convolutional codes are typically decoded using soft-decision algorithms like the Viterbi, MAP or BCJR algorithms, which process (discretized) analog signals, and which allow for much higher error-correction performance than hard-decision decoding. Nearly all classical block codes apply the algebraic properties of finite fields . Hence classical block codes are often referred to as algebraic codes. In contrast to classical block codes that often specify an error-detecting or error-correcting ability, many modern block codes such as LDPC codes lack such guarantees. Instead, modern codes are evaluated in terms of their bit error rates. Most forward error correction codes correct only bit-flips, but not bit-insertions or bit-deletions. In this setting,
195-404: A large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect. This causes a fundamental tradeoff between reliability and data rate. In one extreme, a strong code (with low code-rate) can induce an important increase in the receiver SNR (signal-to-noise-ratio) decreasing
234-443: A more uniform distribution of errors. Therefore, interleaving is widely used for burst error-correction . The analysis of modern iterated codes, like turbo codes and LDPC codes , typically assumes an independent distribution of errors. Systems using LDPC codes therefore typically employ additional interleaving across the symbols within a code word. For turbo codes, an interleaver is an integral component and its proper design
273-457: A signal is close to a codeword by only looking at a small number of positions of the signal. Not all testing codes are locally decoding and testing of codes Not all locally decodable codes (LDCs) are locally testable codes (LTCs) neither locally correctable codes (LCCs), q-query LCCs are bounded exponentially while LDCs can have subexponential lengths. Interleaving is frequently used in digital communication and storage systems to improve
312-409: Is a relatively inefficient ECC. Better ECC codes typically examine the last several tens or even the last several hundreds of previously received bits to determine how to decode the current small handful of bits (typically in groups of 2 to 8 bits). ECC could be said to work by "averaging noise"; since each data bit affects many transmitted symbols, the corruption of some symbols by noise usually allows
351-404: Is also used for the evolution of CDMA2000 1x specifically for Internet access, 1xEV-DO (TIA IS-856). Like 1x, EV-DO was developed by Qualcomm , and is sold by Verizon Wireless , Sprint , and other carriers (Verizon's marketing name for 1xEV-DO is Broadband Access , Sprint's consumer and business marketing names for 1xEV-DO are Power Vision and Mobile Broadband , respectively). Sometimes it
390-637: Is an iterated soft-decoding scheme that combines two or more relatively simple convolutional codes and an interleaver to produce a block code that can perform to within a fraction of a decibel of the Shannon limit . Predating LDPC codes in terms of practical application, they now provide similar performance. One of the earliest commercial applications of turbo coding was the CDMA2000 1x (TIA IS-2000) digital cellular technology developed by Qualcomm and sold by Verizon Wireless , Sprint , and other carriers. It
429-430: Is completely lost and the missing letters can be recovered with minimal guesswork. Use of interleaving techniques increases total delay. This is because the entire interleaved block must be received before the packets can be decoded. Also interleavers hide the structure of errors; without an interleaver, more advanced decoding algorithms can take advantage of the error structure and achieve more reliable communication than
SECTION 10
#1732780095306468-501: Is crucial for good performance. The iterative decoding algorithm works best when there are not short cycles in the factor graph that represents the decoder; the interleaver is chosen to avoid short cycles. Interleaver designs include: In multi- carrier communication systems, interleaving across carriers may be employed to provide frequency diversity , e.g., to mitigate frequency-selective fading or narrowband interference. Transmission without interleaving : Here, each group of
507-413: Is determined by the design of the ECC, so different forward error correcting codes are suitable for different conditions. In general, a stronger code induces more redundancy that needs to be transmitted using the available bandwidth, which reduces the effective bit-rate while improving the received effective signal-to-noise ratio . The noisy-channel coding theorem of Claude Shannon can be used to compute
546-462: Is different from Wikidata All article disambiguation pages All disambiguation pages Automatic repeat request Automatic repeat request ( ARQ ), also known as automatic repeat query , is an error-control method for data transmission that uses acknowledgements (messages sent by the receiver indicating that it has correctly received a message) and timeouts (specified periods of time allowed to elapse before an acknowledgment
585-709: Is noteworthy for its widespread use in compact discs , DVDs , and hard disk drives . Other examples of classical block codes include Golay , BCH , Multidimensional parity , and Hamming codes . Hamming ECC is commonly used to correct NAND flash memory errors. This provides single-bit error correction and 2-bit error detection. Hamming codes are only suitable for more reliable single-level cell (SLC) NAND. Denser multi-level cell (MLC) NAND may use multi-bit correcting ECC such as BCH or Reed–Solomon. NOR Flash typically does not use any error correction. Classical block codes are usually decoded using hard-decision algorithms, which means that for every input and output signal
624-425: Is only necessary to decode single bits of the message, or to check whether a given signal is a codeword, and do so without looking at the entire signal. This can make sense in a streaming setting, where codewords are too large to be classically decoded fast enough and where only a few bits of the message are of interest for now. Also such codes have become an important tool in computational complexity theory , e.g., for
663-555: Is to be received) to achieve reliable data transmission over an unreliable communication channel . ARQ is appropriate if the communication channel has varying or unknown capacity . If the sender does not receive an acknowledgment before the timeout, it re-transmits the message until it receives an acknowledgment or exceeds a predefined number of retransmissions. Variations of ARQ protocols include Stop-and-wait ARQ , Go-Back-N ARQ , and Selective Repeat ARQ . All three protocols usually use some form of sliding window protocol to help
702-476: The Hamming distance is the appropriate way to measure the bit error rate . A few forward error correction codes are designed to correct bit-insertions and bit-deletions, such as Marker Codes and Watermark Codes. The Levenshtein distance is a more appropriate way to measure the bit error rate when using such codes. The fundamental principle of ECC is to add redundant bits in order to help the decoder to find out
741-459: The Shannon limit. However, capacity achieving ECCs are usually extremely complex to implement. The most popular ECCs have a trade-off between performance and computational complexity. Usually, their parameters give a range of possible code rates, which can be optimized depending on the scenario. Usually, this optimization is done in order to achieve a low decoding error probability while minimizing
780-453: The ability to multiplex two or four channels. A number of patents exist for the use of ARQ in live video contribution environments. In these high throughput environments negative acknowledgements are used to drive down overheads. Forward error correction The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code ( ECC ). The redundancy allows
819-426: The bit error rate, at the cost of reducing the effective data rate. On the other extreme, not using any ECC (i.e., a code-rate equal to 1) uses the full channel for information transfer purposes, at the cost of leaving the bits without any additional protection. One interesting question is the following: how efficient in terms of information transfer can an ECC be that has a negligible decoding error rate? This question
SECTION 20
#1732780095306858-443: The case of satellites orbiting distant planets, retransmission due to errors would create a delay of several hours. FEC is also widely used in modems and in cellular networks . FEC processing in a receiver may be applied to a digital bit stream or in the demodulation of a digitally modulated carrier. For the latter, FEC is an integral part of the initial analog-to-digital conversion in the receiver. The Viterbi decoder implements
897-809: The constituent SPC codes in parallel. LDPC codes were first introduced by Robert G. Gallager in his PhD thesis in 1960, but due to the computational effort in implementing encoder and decoder and the introduction of Reed–Solomon codes, they were mostly ignored until the 1990s. LDPC codes are now used in many recent high-speed communication standards, such as DVB-S2 (Digital Video Broadcasting – Satellite – Second Generation), WiMAX ( IEEE 802.16e standard for microwave communications), High-Speed Wireless LAN ( IEEE 802.11n ), 10GBase-T Ethernet (802.3an) and G.hn/G.9960 (ITU-T Standard for networking over power lines, phone lines and coaxial cable). Other LDPC codes are standardized for wireless communication standards within 3GPP MBMS (see fountain codes ). Turbo coding
936-462: The convolutional decoder. Single pass decoding with this family of error correction codes can yield very low error rates, but for long range transmission conditions (like deep space) iterative decoding is recommended. Concatenated codes have been standard practice in satellite and deep space communications since Voyager 2 first used the technique in its 1986 encounter with Uranus . The Galileo craft used iterative concatenated codes to compensate for
975-569: The data-link layer. ITU-T G.hn uses hybrid ARQ , a mixture of high-rate forward error correction (FEC) and ARQ. It is a high-speed local area network standard that can operate at data rates up to 1 Gbit/s over existing home wiring ( power lines , phone lines and coaxial cables ). G.hn uses CRC-32C for Error Detection, LDPC for FEC and selective repeat for ARQ. ARQ systems were widely used on shortwave radio to ensure reliable delivery of data such as for telegrams. These systems came in forms called ARQ-E and ARQ-M , which also included
1014-444: The design of probabilistically checkable proofs . Locally decodable codes are error-correcting codes for which single bits of the message can be probabilistically recovered by only looking at a small (say constant) number of positions of a codeword, even after the codeword has been corrupted at some constant fraction of positions. Locally testable codes are error-correcting codes for which it can be checked probabilistically whether
1053-501: The impact to the data rate. Another criterion for optimizing the code rate is to balance low error rate and retransmissions number in order to the energy cost of the communication. Classical (algebraic) block codes and convolutional codes are frequently combined in concatenated coding schemes in which a short constraint-length Viterbi-decoded convolutional code does most of the work and a block code (usually Reed–Solomon) with larger symbol size and block length "mops up" any errors made by
1092-419: The maximum achievable communication bandwidth for a given maximum acceptable error probability. This establishes bounds on the theoretical maximum information transfer rate of a channel with some given base noise level. However, the proof is not constructive, and hence gives no insight of how to build a capacity achieving code. After years of research, some advanced FEC systems like polar code come very close to
1131-435: The original user data to be extracted from the other, uncorrupted received symbols that also depend on the same user data. Most telecommunication systems use a fixed channel code designed to tolerate the expected worst-case bit error rate , and then fail to work at all if the bit error rate is ever worse. However, some systems adapt to the given channel error conditions: some instances of hybrid automatic repeat-request use
1170-510: The output are systematic , while those that do not are non-systematic . A simplistic example of ECC is to transmit each data bit 3 times, which is known as a (3,1) repetition code . Through a noisy channel, a receiver might see 8 versions of the output, see table below. This allows an error in any one of the three samples to be corrected by "majority vote", or "democratic voting". The correcting ability of this ECC is: Though simple to implement and widely used, this triple modular redundancy
1209-408: The performance of forward error correcting codes. Many communication channels are not memoryless: errors typically occur in bursts rather than independently. If the number of errors within a code word exceeds the error-correcting code's capability, it fails to recover the original code word. Interleaving alleviates this problem by shuffling source symbols across several code words, thereby creating
ARQ - Misplaced Pages Continue
1248-645: The receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a reverse channel to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth. The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code . FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast . Long-latency connections also benefit; in
1287-584: The same letter represents a 4-bit one-bit error-correcting codeword. The codeword cccc is altered in one bit and can be corrected, but the codeword dddd is altered in three bits, so either it cannot be decoded at all or it might be decoded incorrectly . With interleaving : In each of the codewords "aaaa", "eeee", "ffff", and "gggg", only one bit is altered, so one-bit error-correcting code will decode everything correctly. Transmission without interleaving : The term "AnExample" ends up mostly unintelligible and difficult to correct. With interleaving : No word
1326-403: The same term [REDACTED] This disambiguation page lists articles associated with the title ARQ . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=ARQ&oldid=1206164950 " Category : Disambiguation pages Hidden categories: Short description
1365-617: The sender determine which (if any) packets need to be retransmitted. These protocols reside in the data link or transport layers (layers 2 and 4) of the OSI model . The Transmission Control Protocol uses a variant of Go-Back-N ARQ to ensure reliable transmission of data over the Internet Protocol , which does not provide guaranteed delivery of packets; with Selective Acknowledgement (SACK), it uses Selective Repeat ARQ . IEEE 802.11 wireless networking uses ARQ retransmissions at
1404-411: The theoretical maximum given by the Shannon channel capacity under the hypothesis of an infinite length frame. ECC is accomplished by adding redundancy to the transmitted information using an algorithm. A redundant bit may be a complicated function of many original information bits. The original information may or may not appear literally in the encoded output; codes that include the unmodified input in
1443-413: The true message that was encoded by the transmitter. The code-rate of a given ECC system is defined as the ratio between the number of information bits and the total number of bits (i.e., information plus redundancy bits) in a given communication package. The code-rate is hence a real number. A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while
1482-463: The very high error rate conditions caused by having a failed antenna. Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length. Practical implementations rely heavily on decoding
1521-443: Was answered by Claude Shannon with his second theorem, which says that the channel capacity is the maximum bit rate achievable by any ECC whose error rate tends to zero: His proof relies on Gaussian random coding, which is not suitable to real-world applications. The upper bound given by Shannon's work inspired a long journey in designing ECCs that can come close to the ultimate performance boundary. Various codes today can attain almost
#305694