An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect , breaking waves , cabbeling , and temperature and salinity differences. Depth contours , shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents move both horizontally, on scales that can span entire oceans, as well as vertically, with vertical currents ( upwelling and downwelling ) playing an important role in the movement of nutrients and gases, such as carbon dioxide, between the surface and the deep ocean.
58-500: Angola current is a temporary ocean surface current . It is an extension of the Guinea Current , flowing near western Africa's coast. It is known to have created similar effects in the upwelling as El Niño , though its effect is weaker. This article about a specific ocean current is a stub . You can help Misplaced Pages by expanding it . Ocean current Ocean currents flow for great distances and together they create
116-399: A decisive role in influencing the climates of regions through which they flow. Ocean currents are important in the study of marine debris . Upwellings and cold ocean water currents flowing from polar and sub-polar regions bring in nutrients that support plankton growth, which are crucial prey items for several key species in marine ecosystems . Ocean currents are also important in
174-569: A much colder northern Europe and greater sea-level rise along the U.S. East Coast." In addition to water surface temperatures, the wind systems are a crucial determinant of ocean currents. Wind wave systems influence oceanic heat exchange, the condition of the sea surface, and can alter ocean currents. In the North Atlantic, equatorial Pacific, and Southern Ocean, increased wind speeds as well as significant wave heights have been attributed to climate change and natural processes combined. In
232-453: A result, influence the biological composition of oceans. Due to the patchiness of the natural ecological world, dispersal is a species survival mechanism for various organisms. With strengthened boundary currents moving toward the poles, it is expected that some marine species will be redirected to the poles and greater depths. The strengthening or weakening of typical dispersal pathways by increased temperatures are expected to not only impact
290-418: A significant role in influencing climate, and shifts in climate in turn impact ocean currents. Over the last century, reconstructed sea surface temperature data reveal that western boundary currents are heating at double the rate of the global average. These observations indicate that the western boundary currents are likely intensifying due to this change in temperature, and may continue to grow stronger in
348-537: A southward displacement of Intertropical Convergence Zone . Changes in precipitation under high-emissions scenarios would be far larger. Additionally, the main controlling pattern of the extratropical Southern Hemisphere's climate is the Southern Annular Mode (SAM), which has been spending more and more years in its positive phase due to climate change (as well as the aftermath of ozone depletion ), which means more warming and more precipitation over
406-487: A wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it. Ocean currents are patterns of water movement that influence climate zones and weather patterns around the world. They are primarily driven by winds and by seawater density, although many other factors influence them – including
464-630: Is known as overturning . In the Pacific Ocean, the rest of the cold and salty water from the Atlantic undergoes haline forcing, and becomes warmer and fresher more quickly. The out-flowing undersea of cold and salty water makes the sea level of the Atlantic slightly lower than the Pacific and salinity or halinity of water at the Atlantic higher than the Pacific. This generates a large but slow flow of warmer and fresher upper ocean water from
522-425: Is also known as the ocean's conveyor belt. Where significant vertical movement of ocean currents is observed, this is known as upwelling and downwelling . The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content , factors which together determine the density of seawater. The thermohaline circulation is a part of the large-scale ocean circulation that
580-676: Is denser than the NADW, and so flows beneath it. AABW formed in the Weddell Sea will mainly fill the Atlantic and Indian Basins, whereas the AABW formed in the Ross Sea will flow towards the Pacific Ocean. At the Indian Ocean, a vertical exchange of a lower layer of cold and salty water from the Atlantic and the warmer and fresher upper ocean water from the tropical Pacific occurs, in what
638-537: Is driven by global density gradients created by surface heat and freshwater fluxes . Wind -driven surface currents (such as the Gulf Stream ) travel polewards from the equatorial Atlantic Ocean , cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water ). This dense water then flows into the ocean basins . While the bulk of it upwells in the Southern Ocean ,
SECTION 10
#1732776392955696-444: Is left behind as the sea ice forms around it (pure water preferentially being frozen). Increasing salinity lowers the freezing point of seawater, so cold liquid brine is formed in inclusions within a honeycomb of ice. The brine progressively melts the ice just beneath it, eventually dripping out of the ice matrix and sinking. This process is known as brine rejection . The resulting Antarctic bottom water sinks and flows north and east. It
754-539: Is outweighed by evaporation , in part due to high windiness. When water evaporates, it leaves salt behind, and so the surface waters of the North Atlantic are particularly salty. North Atlantic is also an already cool region, and evaporative cooling reduces water temperature even further. Thus, this water sinks downward in the Norwegian Sea , fills the Arctic Ocean Basin and spills southwards through
812-423: Is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt, coined by climate scientist Wallace Smith Broecker . It is also referred to as the meridional overturning circulation, or MOC . This name is used because not every circulation pattern caused by temperature and salinity gradients is necessarily part of a single global circulation. Further, it is difficult to separate
870-482: The Atlantic meridional overturning circulation (AMOC) is in danger of collapsing due to climate change, which would have extreme impacts on the climate of northern Europe and more widely, although this topic is controversial and remains an active area of research. The "State of the cryosphere" report, dedicates significant space to AMOC, saying it may be enroute to collapse because of ice melt and water warming. In
928-506: The East Australian Current , global warming has also been accredited to increased wind stress curl , which intensifies these currents, and may even indirectly increase sea levels, due to the additional warming created by stronger currents. As ocean circulation changes due to climate, typical distribution patterns are also changing. The dispersal patterns of marine organisms depend on oceanographic conditions, which as
986-645: The Gulf Stream , which, together with its extension the North Atlantic Drift , makes northwest Europe much more temperate for its high latitude than other areas at the same latitude. Another example is Lima, Peru , whose cooler subtropical climate contrasts with that of its surrounding tropical latitudes because of the Humboldt Current . The largest ocean current is the Antarctic Circumpolar Current (ACC),
1044-453: The convection of heat could drive deeper currents. In 1908, Johan Sandström performed a series of experiments at a Bornö Marine Research Station which proved that the currents driven by thermal energy transfer exist, but require that "heating occurs at a greater depth than cooling". Normally, the opposite occurs, because ocean water is heated from above by the Sun and becomes less dense, so
1102-419: The density of sea water . Wind-driven surface currents (such as the Gulf Stream ) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water ). This dense water then flows into the ocean basins . While the bulk of it upwells in the Southern Ocean , the oldest waters (with a transit time of about 1000 years) upwell in
1160-401: The global conveyor belt , which plays a dominant role in determining the climate of many of Earth's regions. More specifically, ocean currents influence the temperature of the regions through which they travel. For example, warm currents traveling along more temperate coasts increase the temperature of the area by warming the sea breezes that blow over them. Perhaps the most striking example is
1218-533: The southern hemisphere . In addition, the areas of surface ocean currents move somewhat with the seasons ; this is most notable in equatorial currents. Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow. Large scale currents are driven by gradients in water density , which in turn depend on variations in temperature and salinity. This thermohaline circulation
SECTION 20
#17327763929551276-526: The 21st century and that there was a "high confidence" changes to it would be reversible within centuries if warming was reversed. Unlike the Fifth Assessment Report, it had only "medium confidence" rather than "high confidence" in the AMOC avoiding a collapse before the end of the 21st century. This reduction in confidence was likely influenced by several review studies that draw attention to
1334-467: The 21st century. A key reason for the uncertainty is the poor and inconsistent representation of ocean stratification in even the CMIP6 models – the most advanced generation available as of early 2020s. Furthermore, the largest long-term role in the state of the circulation is played by Antarctic meltwater, and Antarctic ice loss had been the least-certain aspect of future sea level rise projections for
1392-720: The Earth's radiation budget . Large influxes of low-density meltwater from Lake Agassiz and deglaciation in North America are thought to have led to a shifting of deep water formation and subsidence in the extreme North Atlantic and caused the climate period in Europe known as the Younger Dryas . In 2021, the IPCC Sixth Assessment Report again said the AMOC is "very likely" to decline within
1450-609: The Greenland-Scotland-Ridge – crevasses in the submarine sills that connect Greenland , Iceland and Great Britain. It cannot flow towards the Pacific Ocean due to the narrow shallows of the Bering Strait , but it does slowly flow into the deep abyssal plains of the south Atlantic. In the Southern Ocean , strong katabatic winds blowing from the Antarctic continent onto the ice shelves will blow
1508-530: The IPCC, the most-likely effects of future AMOC decline are reduced precipitation in mid-latitudes, changing patterns of strong precipitation in the tropics and Europe, and strengthening storms that follow the North Atlantic track. In 2020, research found a weakened AMOC would slow the decline in Arctic sea ice . and result in atmospheric trends similar to those that likely occurred during the Younger Dryas , such as
1566-466: The North Atlantic, by the UK-US RAPID programme. It combines direct estimates of ocean transport using current meters and subsea cable measurements with estimates of the geostrophic current from temperature and salinity measurements to provide continuous, full-depth, basin-wide estimates of the meridional overturning circulation. However, it has only been operating since 2004, which is too short when
1624-572: The North Pacific, using as evidence the high values of silicon found in these waters. Other investigators have not found such clear evidence. Computer models of ocean circulation increasingly place most of the deep upwelling in the Southern Ocean, associated with the strong winds in the open latitudes between South America and Antarctica. Direct estimates of the strength of the thermohaline circulation have also been made at 26.5°N in
1682-466: The North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system . The water in these circuits transport both energy (in the form of heat) and mass (dissolved solids and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth. The thermohaline circulation
1740-407: The circulation has a large impact on the climate of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the meridional overturning circulation , (MOC). Since the 2000s an international program called Argo has been mapping the temperature and salinity structure of
1798-405: The circulation stability bias within general circulation models , and simplified ocean-modelling studies suggesting the AMOC may be more vulnerable to abrupt change than larger-scale models suggest. As of 2024 , there is no consensus on whether a consistent slowing of the AMOC circulation has occurred but there is little doubt it will occur in the event of continued climate change. According to
Angola Current - Misplaced Pages Continue
1856-408: The circulation, which was established in 1960 by Henry Stommel and Arnold B. Arons. They have chemical, temperature and isotopic ratio signatures (such as Pa / Th ratios) which can be traced, their flow rate calculated, and their age determined. NADW is formed because North Atlantic is a rare place in the ocean where precipitation , which adds fresh water to the ocean and so reduces its salinity,
1914-497: The climate system . The hemisphere which experiences the collapse of its circulation would experience less precipitation and become drier, while the other hemisphere would become wetter. Marine ecosystems are also likely to receive fewer nutrients and experience greater ocean deoxygenation . In the Northern Hemisphere, AMOC's collapse would also substantially lower the temperatures in many European countries, while
1972-554: The cost and emissions of shipping vessels. Ocean currents can also impact the fishing industry , examples of this include the Tsugaru , Oyashio and Kuroshio currents all of which influence the western North Pacific temperature, which has been shown to be a habitat predictor for the Skipjack tuna . It has also been shown that it is not just local currents that can affect a country's economy, but neighboring currents can influence
2030-570: The dispersal and distribution of many organisms, inclusing those with pelagic egg or larval stages. An example is the life-cycle of the European Eel . Terrestrial species, for example tortoises and lizards, can be carried on floating debris by currents to colonise new terrestrial areas and islands . The continued rise of atmospheric temperatures is anticipated to have various effects on the strength of surface ocean currents, wind-driven circulation and dispersal patterns. Ocean currents play
2088-411: The east coast of North America would experience accelerated sea level rise . The collapse of either circulation is generally believed to be more than a century away and may only occur under high warming, but there is a lot of uncertainty about these projections. It has long been known that wind can drive ocean currents, but only at the surface. In the 19th century, some oceanographers suggested that
2146-485: The freezing point. That freezing point is also lower than for fresh water due to salinity, and can be below −2 °C, depending on salinity and pressure. These density differences caused by temperature and salinity ultimately separate ocean water into distinct water masses , such as the North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW). These two waters are the main drivers of
2204-544: The human population lives in the Northern Hemisphere , the AMOC has been far better studied, but both are very important for the global climate. Both of them also appear to be slowing down due to climate change , as the melting of the ice sheets dilutes salty flows such as the Antarctic bottom water . Either one could outright collapse to a much weaker state, which would be an example of tipping points in
2262-509: The large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them, and the Coriolis effect plays a major role in their development. The Ekman spiral velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the northern hemisphere and counter-clockwise rotation in
2320-462: The near future. There is evidence that surface warming due to anthropogenic climate change has accelerated upper ocean currents in 77% of the global ocean. Specifically, increased vertical stratification due to surface warming intensifies upper ocean currents, while changes in horizontal density gradients caused by differential warming across different ocean regions results in the acceleration of surface zonal currents . There are suggestions that
2378-502: The newly formed sea ice away, opening polynyas in locations such as Weddell and Ross Seas , off the Adélie Coast and by Cape Darnley . The ocean, no longer protected by sea ice, suffers a brutal and strong cooling (see polynya ). Meanwhile, sea ice starts reforming, so the surface waters also get saltier, hence very dense. In fact, the formation of sea ice contributes to an increase in surface seawater salinity; saltier brine
Angola Current - Misplaced Pages Continue
2436-477: The ocean due to stronger westerlies , freshening the Southern Ocean further. Climate models currently disagree on whether the Southern Ocean circulation would continue to respond to changes in SAM the way it does now, or if it will eventually adjust to them. As of early 2020s, their best, limited-confidence estimate is that the lower cell would continue to weaken, while the upper cell may strengthen by around 20% over
2494-460: The ocean floor, providing a continuous thermohaline circulation. As the deep waters sink into the ocean basins, they displace the older deep-water masses, which gradually become less dense due to continued ocean mixing. Thus, some water is rising, in what is known as upwelling . Its speeds are very slow even compared to the movement of the bottom water masses. It is therefore difficult to measure where upwelling occurs using current speeds, given all
2552-515: The ocean with a fleet of automated platforms that float with the ocean currents. The information gathered will help explain the role the oceans play in the earth's climate. Ocean currents affect temperatures throughout the world. For example, the ocean current that brings warm water up the north Atlantic to northwest Europe also cumulatively and slowly blocks ice from forming along the seashores, which would also block ships from entering and exiting inland waterways and seaports, hence ocean currents play
2610-656: The oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in units of sverdrup (Sv) , where 1 Sv is equivalent to a volume flow rate of 1,000,000 m (35,000,000 cu ft) per second. There are two main types of currents, surface currents and deep water currents. Generally surface currents are driven by wind systems and deep water currents are driven by differences in water density due to variations in water temperature and salinity . Surface oceanic currents are driven by wind currents,
2668-408: The oldest waters (with a transit time of around 1000 years) upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of
2726-408: The other wind-driven processes going on in the surface ocean. Deep waters have their own chemical signature, formed from the breakdown of particulate matter falling into them over the course of their long journey at depth. A number of scientists have tried to use these tracers to infer where the upwelling occurs. Wallace Broecker , using box models, has asserted that the bulk of deep upwelling occurs in
2784-421: The parts of the circulation driven by temperature and salinity alone from those driven by other factors, such as the wind and tidal forces . This global circulation has two major limbs - Atlantic meridional overturning circulation ( AMOC ), centered in the north Atlantic Ocean, and Southern Ocean overturning circulation or Southern Ocean meridional circulation ( SMOC ), around Antarctica . Because 90% of
2842-462: The role of salinity in ocean layer formation. Salinity is important because like temperature, it affects water density . Water becomes less dense as its temperature increases and the distance between its molecules expands, but more dense as the salinity increases, since there is a larger mass of salts dissolved within that water. Further, while fresh water is at its most dense at 4 °C, seawater only gets denser as it cools, up until it reaches
2900-582: The same latitude North America's weather was colder. A good example of this is the Agulhas Current (down along eastern Africa), which long prevented sailors from reaching India. In recent times, around-the-world sailing competitors make good use of surface currents to build and maintain speed. Ocean currents can also be used for marine power generation , with areas of Japan, Florida and Hawaii being considered for test projects. The utilization of currents today can still impact global trade, it can reduce
2958-450: The same time, the Antarctic Circumpolar Current (ACC) is also slowing down and is expected to lose 20% of it power by the year 2050, "with widespread impacts on ocean circulation and climate". UNESCO mentions that the report in the first time "notes a growing scientific consensus that melting Greenland and Antarctic ice sheets, among other factors, may be slowing important ocean currents at both poles, with potentially dire consequences for
SECTION 50
#17327763929553016-424: The shape and configuration of the ocean basin they flow through. The two basic types of currents – surface and deep-water currents – help define the character and flow of ocean waters across the planet. Ocean currents are driven by the wind, by the gravitational pull of the moon in the form of tides , and by the effects of variations in water density. Ocean dynamics define and describe the motion of water within
3074-411: The surface layer floats on the surface above the cooler, denser layers, resulting in ocean stratification . However, wind and tides cause mixing between these water layers, with diapycnal mixing caused by tidal currents being one example. This mixing is what enables the convection between ocean layers, and thus, deep water currents. In the 1920s, Sandström's framework was expanded by accounting for
3132-413: The survival of native marine species due to inability to replenish their meta populations but also may increase the prevalence of invasive species . In Japanese corals and macroalgae, the unusual dispersal pattern of organisms toward the poles may destabilize native species. Knowledge of surface ocean currents is essential in reducing costs of shipping, since traveling with them reduces fuel costs. In
3190-414: The timescale of the circulation is measured in centuries. The thermohaline circulation plays an important role in supplying heat to the polar regions, and thus in regulating the amount of sea ice in these regions, although poleward heat transport outside the tropics is considerably larger in the atmosphere than in the ocean. Changes in the thermohaline circulation are thought to have significant impacts on
3248-540: The tropical Pacific to the Indian Ocean through the Indonesian Archipelago to replace the cold and salty Antarctic Bottom Water . This is also known as 'haline forcing' (net high latitude freshwater gain and low latitude evaporation). This warmer, fresher water from the Pacific flows up through the South Atlantic to Greenland , where it cools off and undergoes evaporative cooling and sinks to
3306-986: The viability of local fishing industries. Currents of the Arctic Ocean Currents of the Atlantic Ocean Currents of the Indian Ocean Currents of the Pacific Ocean Currents of the Southern Ocean Oceanic gyres Thermohaline circulation Thermohaline circulation ( THC ) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes . The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content , factors which together determine
3364-527: The wind powered sailing-ship era, knowledge of wind patterns and ocean currents was even more essential. Using ocean currents to help their ships into harbor and using currents such as the gulf stream to get back home. The lack of understanding of ocean currents during that time period is hypothesized to be one of the contributing factors to exploration failure. The Gulf Stream and the Canary current keep western European countries warmer and less variable, while at
#954045