Misplaced Pages

Atlas III

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#56943

105-580: The Atlas III (known as the Atlas II-AR (R for Russian) early in development ) was an American orbital launch vehicle , used in the years between 2000 and 2005. It was developed from the highly successful Atlas II rocket and shared many components. It was the first member of the Atlas family since the Atlas A to feature a "normal" staging method, compared to the previous Atlas family members, which were equipped with two jettisonable outboard engines on

210-538: A base price for each launch vehicle configuration, which ranges from US$ 109 million for the 401 up to US$ 153 million for the 551. Each additional SRB adds an average of US$ 6.8 million to the cost of the launch vehicle. Customers can also choose to purchase larger payload fairings or additional launch service options. NASA and Air Force launch costs are often higher than equivalent commercial missions due to additional government accounting, analysis, processing, and mission assurance requirements, which can add US$ 30–80 million to

315-404: A body is proportional to the product of the masses of the two attracting bodies and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two-point masses or spherical bodies, only influenced by their mutual gravitation (called a two-body problem ), their trajectories can be exactly calculated. If the heavier body is much more massive than

420-427: A certain time called the period. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows: Note that while bound orbits of a point mass or a spherical body with a Newtonian gravitational field are closed ellipses , which repeat the same path exactly and indefinitely, any non-spherical or non-Newtonian effects (such as caused by

525-490: A fault-tolerant unit. The upgraded FTINU first flew in 2006, and in 2010 a follow-on order for more FTINU units was awarded. In 2015, ULA announced that the Aerojet Rocketdyne-produced AJ-60A solid rocket boosters (SRBs) then in use on Atlas V would be superseded by new GEM 63 boosters produced by Northrop Grumman Innovation Systems . The extended GEM 63XL boosters will also be used on

630-515: A mission on an Atlas IIIB with a dual-engine Centaur provided a nearly 400 kg boost in payload capability to geostationary transfer orbit compared to using a single-engine Centaur. An Extended Mission Kit (EMK) was available for Centaur. This kit included additional helium bottles, radiation shielding on the LOX tank and electronics, and thermal paint to maintain stable temperatures for electronics. Two aluminum fairing models (which previously flew on

735-402: A more accurate calculation and understanding of the exact mechanics of orbital motion. Historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of celestial spheres . This model posited the existence of perfect moving spheres or rings to which the stars and planets were attached. It assumed the heavens were fixed apart from the motion of

840-420: A practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space" never to return. In most situations, relativistic effects can be neglected, and Newton's laws give a sufficiently accurate description of motion. The acceleration of a body is equal to the sum of the forces acting on it, divided by its mass, and the gravitational force acting on

945-685: A schedule acceleration to 2014 was possible if funded. Other than the addition of the Emergency Detection System, no major changes were expected to the Atlas V rocket, but ground infrastructure modifications were planned. The most likely candidate for the human-rating was the N02 configuration, with no fairing, no solid rocket boosters, and dual RL10 engines on the Centaur upper stage. On 18 July 2011, NASA and ULA announced an agreement on

1050-410: A single point called the barycenter. The paths of all the star's satellites are elliptical orbits about that barycenter. Each satellite in that system will have its own elliptical orbit with the barycenter at one focal point of that ellipse. At any point along its orbit, any satellite will have a certain value of kinetic and potential energy with respect to the barycenter, and the sum of those two energies

1155-491: A technical sense—they are describing a portion of an elliptical path around the center of gravity—but the orbits are interrupted by striking the Earth. If the cannonball is fired with sufficient speed, the ground curves away from the ball at least as much as the ball falls—so the ball never strikes the ground. It is now in what could be called a non-interrupted or circumnavigating, orbit. For any specific combination of height above

SECTION 10

#1732780826057

1260-729: A third stage. On 6 December 2015, Atlas V lifted its heaviest payload to date into orbit – a 16,517 lb (7,492 kg) Cygnus resupply craft . On 8 September 2016, the OSIRIS-REx Asteroid Sample Return Mission was launched on an Atlas V 411 launch vehicle. It arrived at the asteroid Bennu in December 2018 and departed back to Earth in May 2021 to arrive September 2022 at with a sample ranging from 60 grams to 2 kilograms in 2023. Five Boeing X-37B spaceplane missions were successfully launched with

1365-433: A three-digit designation. The first digit shows the diameter (in meters) of the payload fairing and has a value of "4" or "5" for fairing launches and "N" for crew capsule launches (as no payload fairing is used). The second digit indicates the number of solid rocket boosters (SRBs) attached to the core of the launch vehicle and can range from "0" through "3" with the 4 m (13 ft) fairing, and "0" through "5" with

1470-505: Is a constant value at every point along its orbit. As a result, as a planet approaches periapsis , the planet will increase in speed as its potential energy decreases; as a planet approaches apoapsis , its velocity will decrease as its potential energy increases. There are a few common ways of understanding orbits: The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes: Orbital rockets are launched vertically at first to lift

1575-528: Is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Advances in Newtonian mechanics were then used to explore variations from the simple assumptions behind Kepler orbits, such as the perturbations due to other bodies, or the impact of spheroidal rather than spherical bodies. Joseph-Louis Lagrange developed a new approach to Newtonian mechanics emphasizing energy more than force, and made progress on

1680-407: Is adopted of taking the potential energy as zero at infinite separation, the bound orbits will have negative total energy, the parabolic trajectories zero total energy, and hyperbolic orbits positive total energy. An open orbit will have a parabolic shape if it has the velocity of exactly the escape velocity at that point in its trajectory, and it will have the shape of a hyperbola when its velocity

1785-464: Is also a vector. Because our basis vector r ^ {\displaystyle {\hat {\mathbf {r} }}} moves as the object orbits, we start by differentiating it. From time t {\displaystyle t} to t + δ t {\displaystyle t+\delta t} , the vector r ^ {\displaystyle {\hat {\mathbf {r} }}} keeps its beginning at

1890-520: Is for nine launches. Project Kuiper aims to put thousands of satellites into orbit. ULA is Amazon's first launch provider. Two Kuiper test satellites were launched on Atlas V in 2023 because their originally-contracted launch vehicles were not available on time. The remaining eight Atlas V Kuiper launches will each carry a full payload of Kuiper satellites. Most of the Kuiper constellation will use other launch vehicles. Each Atlas V booster configuration has

1995-404: Is greater than the escape velocity. When bodies with escape velocity or greater approach each other, they will briefly curve around each other at the time of their closest approach, and then separate, forever. All closed orbits have the shape of an ellipse . A circular orbit is a special case, wherein the foci of the ellipse coincide. The point where the orbiting body is closest to Earth is called

2100-581: Is located in the plane using vector calculus in polar coordinates both with the standard Euclidean basis and with the polar basis with the origin coinciding with the center of force. Let r {\displaystyle r} be the distance between the object and the center and θ {\displaystyle \theta } be the angle it has rotated. Let x ^ {\displaystyle {\hat {\mathbf {x} }}} and y ^ {\displaystyle {\hat {\mathbf {y} }}} be

2205-654: Is powered by a single Russian RD-180 engine burning kerosene and liquid oxygen . The Centaur upper stage is powered by one or two American RL10 engine(s) manufactured by Aerojet Rocketdyne and burns liquid hydrogen and liquid oxygen . Strap-on solid rocket boosters (SRBs) are used in many configurations. AJ-60A SRBs were used originally, but they were replaced in November 2020 by Graphite-Epoxy Motor (GEM 63) SRBs for all except Starliner launches. The standard payload fairings are 4.2 or 5.4 m (14 or 18 ft) in diameter with various lengths. The Atlas V

SECTION 20

#1732780826057

2310-402: Is that it was able to account for the remaining unexplained amount in precession of Mercury's perihelion first noted by Le Verrier. However, Newton's solution is still used for most short term purposes since it is significantly easier to use and sufficiently accurate. Within a planetary system , planets, dwarf planets , asteroids and other minor planets , comets , and space debris orbit

2415-462: Is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as a planet, moon, asteroid, or Lagrange point . Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits , with

2520-549: Is used for DoD , NASA, and commercial payloads. It is America's longest-serving active rocket. After 87 launches, in August 2021 ULA announced that Atlas V would be retired, and all 29 remaining launches had been sold. As of July 2024 , 15 launches remain. Production ceased in 2024. Other future ULA launches will use the Vulcan Centaur rocket. Each Atlas V launch vehicle consists of two main stages. The first stage

2625-575: The Atlas ;II ) were available for the Atlas ;III, both with a 4.2 m (14 ft) diameter: Fairing selection had a small but noticeable impact on the performance of Atlas III. For example, when going to a 185 km (115 mi) low Earth orbit, flying with the Extended payload fairing would reduce the payload capacity by around 45 kg (99 lb) compared to flying with

2730-649: The Boeing Starliner CST-100 spacecraft as part of the Commercial Crew Program . Atlas V is the launch vehicle for Starliner. The first launch of an uncrewed Starliner, the Boeing OFT mission, occurred atop a human-rated Atlas V on the morning of 20 December 2019; the mission failed to meet goals due to a spacecraft failure, though the Atlas V launcher performed well. In 2022, an Atlas V launched an uncrewed Starliner capsule for

2835-788: The Common Core Booster (not to be confused with the Delta IV's Common Booster Core ), is 3.8 m (12 ft) in diameter and 32.5 m (107 ft) in length. It is powered by one Russian NPO Energomash RD-180 main engine burning 284,450 kg (627,100 lb) of liquid oxygen and RP-1 . The booster operates for about four minutes, providing about 4 MN (900,000 lb f ) of thrust. Thrust can be augmented with up to five Aerojet AJ-60A or Northrop Grumman GEM 63 strap-on solid rocket boosters , each providing an additional 1.27 MN (290,000 lb f ) of thrust for 94 seconds. The main differences between

2940-485: The SpaceX Falcon 9 . In 2006, ULA offered an Atlas V Heavy option that would use three Common Core Booster (CCB) stages strapped together to lift a 29,400 kg (64,800 lb) payload to low Earth orbit . ULA stated at the time that 95% of the hardware required for the Atlas V Heavy has already been flown on the Atlas V single-core vehicles. The lifting capability of the proposed launch vehicle

3045-749: The United Launch Alliance . This led to a proposal to combine the 5-meter-diameter Delta IV tankage production processes with dual RD-180 engines, resulting in the Atlas Phase ;2 . An Atlas V PH2-Heavy consisting of three 5-meter stages in parallel with six RD-180s was considered in the Augustine Report as a possible heavy lifter for use in future space missions, as well as the Shuttle-derived Ares ;V and Ares V Lite . If built,

3150-474: The Vulcan Centaur launch vehicle that will replace the Atlas V. The first Atlas V launch with GEM 63 boosters happened on 13 November 2020. Proposals and design work to human-rate the Atlas V began as early as 2006, with ULA's parent company Lockheed Martin reporting an agreement with Bigelow Aerospace that was intended to lead to commercial private trips to low Earth orbit (LEO). Human-rating design and simulation work began in earnest in 2010, with

3255-464: The apoapsis is that point at which they are the farthest. (More specific terms are used for specific bodies. For example, perigee and apogee are the lowest and highest parts of an orbit around Earth, while perihelion and aphelion are the closest and farthest points of an orbit around the Sun.) In the case of planets orbiting a star, the mass of the star and all its satellites are calculated to be at

Atlas III - Misplaced Pages Continue

3360-450: The center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion . For most situations, orbital motion is adequately approximated by Newtonian mechanics , which explains gravity as a force obeying an inverse-square law . However, Albert Einstein 's general theory of relativity , which accounts for gravity as due to curvature of spacetime , with orbits following geodesics , provides

3465-467: The eccentricities of the planetary orbits vary over time. Mercury , the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch , Mars has the next largest eccentricity while the smallest orbital eccentricities are seen with Venus and Neptune . As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and

3570-453: The perigee , and when orbiting a body other than earth it is called the periapsis (less properly, "perifocus" or "pericentron"). The point where the satellite is farthest from Earth is called the apogee , apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the line-of-apsides . This is the major axis of the ellipse, the line through its longest part. Bodies following closed orbits repeat their paths with

3675-737: The three-body problem , discovering the Lagrangian points . In a dramatic vindication of classical mechanics, in 1846 Urbain Le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus . Albert Einstein in his 1916 paper The Foundation of the General Theory of Relativity explained that gravity was due to curvature of space-time and removed Newton's assumption that changes in gravity propagate instantaneously. This led astronomers to recognize that Newtonian mechanics did not provide

3780-446: The three-body problem ; however, it converges too slowly to be of much use. Except for special cases like the Lagrangian points , no method is known to solve the equations of motion for a system with four or more bodies. Rather than an exact closed form solution, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms: Differential simulations with large numbers of objects perform

3885-583: The 5 m (16 ft) fairing. As seen in the first image, all SRB layouts are asymmetrical. The third digit represents the number of engines on the Centaur stage, either "1" or "2". All of the configurations use the Single Engine Centaur , except for the "N22" which is only used on Starliner crew capsule missions, and uses Dual Engine Centaur . Atlas V has flown in eleven configurations:    Active    Retired Before 2016, pricing information for Atlas V launches

3990-551: The Atlas V and earlier Atlas I and II family launch vehicles are: The Centaur upper stage uses a pressure-stabilized propellant-tank design and cryogenic propellants . The Centaur stage for Atlas V is stretched 1.7 m (5 ft 7 in) relative to the Atlas IIAS Centaur and is powered by either one or two Aerojet Rocketdyne RL10A-4-2 engines, each engine developing a thrust of 99.2 kN (22,300 lb f ). The inertial navigation unit (INU) located on

4095-628: The Atlas V as the initial launch vehicle for its CST-100 crew capsule. CST-100 will take NASA astronauts to the International Space Station (ISS) and was also intended to service the proposed Bigelow Commercial Space Station . A three-flight test program was projected to be completed by 2015, certifying the Atlas V/CST-100 combination for human spaceflight operations. The first flight was expected to include an Atlas V rocket integrated with an uncrewed CST-100 capsule,

4200-607: The Atlas V to be the booster for its still-under-development Dream Chaser crewed spaceplane . The Dream Chaser was intended to launch on an Atlas V, fly a crew to the ISS, and land horizontally following a lifting-body reentry. However, in late 2014 NASA did not select the Dream Chaser to be one of the two vehicles selected under the Commercial Crew competition. On 4 August 2011, Boeing announced that it would use

4305-609: The Atlas V. It will fly 15 more launches. For planned launches, see List of Atlas launches (2020–2029) . The first payload, the Hot Bird 6 communications satellite, was launched to geostationary transfer orbit (GTO) on 21 August 2002 by an Atlas V 401. On 12 August 2005, the Mars Reconnaissance Orbiter was launched aboard an Atlas V 401 launch vehicle from Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS). The Centaur upper stage of

Atlas III - Misplaced Pages Continue

4410-715: The Atlas V. The flights are launched on Atlas V 501s from Cape Canaveral Space Force Station in Florida. The X-37B, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft operated by USAF that can autonomously conduct landings from orbit to a runway. The first Vandenberg Air Force Base landing at the Space Shuttle 15,000 ft (4,600 m) runway occurred in December 2010. Landings occur at both Vandenberg and Cape Canaveral depending on mission requirements. On 20 December 2019,

4515-454: The Atlas PH2-Heavy was projected to be able to launch a payload mass of approximately 70 t (69 long tons; 77 short tons) into an orbit of 28.5° inclination . The Atlas V Common Core Booster was to have been used as the first stage of the joint US-Japanese GX rocket , which was scheduled to make its first flight in 2012. GX launches would have been from the Atlas V launch complex at Vandenberg Air Force Base, SLC-3E . However,

4620-461: The Centaur provides guidance and navigation for both the Atlas and Centaur and controls both Atlas and Centaur tank pressures and propellant use. The Centaur engines are capable of multiple in-space starts, making possible insertion into low Earth parking orbit , followed by a coast period and then insertion into GTO . A subsequent third burn following a multi-hour coast can permit direct injection of payloads into geostationary orbit . As of 2006 ,

4725-475: The Centaur vehicle had the highest proportion of burnable propellant relative to total mass of any modern hydrogen upper stage and hence can deliver substantial payloads to a high-energy state. Atlas V payload fairings are available in two diameters, depending on satellite requirements. The 4.2 m (14 ft) diameter fairing, originally designed for the Atlas II booster, comes in three different lengths:

4830-410: The Earth at the point half an orbit beyond, and directly opposite the firing point, below the circular orbit. At a specific horizontal firing speed called escape velocity , dependent on the mass of the planet and the distance of the object from the barycenter, an open orbit (E) is achieved that has a parabolic path . At even greater speeds the object will follow a range of hyperbolic trajectories . In

4935-619: The Japanese government decided to cancel the GX project in December 2009. In May 2015, a consortium of companies, including Aerojet and Dynetics , sought to license the production or manufacturing rights to the Atlas V using the AR1 engine in place of the RD-180. The proposal was rejected by ULA. Last flight of the 431 configuration 100th flight of an RD-180 engine ULA has stopped selling

5040-695: The Large payload fairing. Both fairing options were still flown on the Atlas V rocket until 2022. For the Atlas V, these fairings were part of the 400-series of that rocket, and a further extended option ("Extra Extended") was available. The first flight of the Atlas III occurred on 24 May 2000, launching the Eutelsat W4 communications satellite into a geosynchronous orbit . All Atlas III launches were made from Space Launch Complex 36B at Cape Canaveral Space Force Station (CCSFS), which at that time

5145-494: The RUAG fairing is much longer and fully encloses both the Centaur upper stage and the payload. Many systems on the Atlas V have been the subject of upgrade and enhancement both prior to the first Atlas V flight and since that time. Work on a Fault Tolerant Inertial Navigation Unit (FTINU) started in 2001 to enhance mission reliability for Atlas vehicles by replacing the earlier non-redundant navigation and computing equipment with

5250-580: The Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.2 /11.86 , is practically equal to that for Venus, 0.723 /0.615 , in accord with the relationship. Idealised orbits meeting these rules are known as Kepler orbits . Isaac Newton demonstrated that Kepler's laws were derivable from his theory of gravitation and that, in general,

5355-420: The Sun is not located at the center of the orbits, but rather at one focus . Second, he found that the orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from

SECTION 50

#1732780826057

5460-403: The accelerations in the radial and transverse directions. As said, Newton gives this first due to gravity is − μ / r 2 {\displaystyle -\mu /r^{2}} and the second is zero. Equation (2) can be rearranged using integration by parts. We can multiply through by r {\displaystyle r} because it is not zero unless

5565-434: The aft propellant tank bulkhead, whereas the engine on a single-engine Centaur was mounted on a specially made beam connected to those existing dual-engine mounts. The single-engine Centaur featured an RL-10A-4-1 engine with a 51 cm (20 in) extendible nozzle, which increased the engine's thrust by 1.4 kN and specific impulse by 6.5 seconds. Centaur hosted the vehicle's avionics and flight computers and controlled

5670-462: The atmosphere, in an act commonly referred to as an aerobraking maneuver. As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a ' thought experiment ', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle speed. The effects of air friction on the cannonball are ignored (or perhaps

5775-675: The award of US$ 6.7 million in the first phase of the NASA Commercial Crew Program (CCP) to develop an Emergency Detection System (EDS). As of February 2011, ULA had received an extension to April 2011 from NASA and was finishing up work on the EDS. NASA solicited proposals for CCP phase 2 in October 2010, and ULA proposed to complete design work on the EDS. At the time, NASA's goal was to get astronauts to orbit by 2015. Then-ULA President and CEO Michael Gass stated that

5880-601: The boost stage of the Atlas III, provided by Lockheed-Martin, and a newly designed upper stage. It would have launched from the Tanegashima Space Center , south of Kyūshū , Japan. In December 2009, the Japanese government decided to cancel the GX project. The Atlas III first stage was considered as a Removable Propulsion Module (RPM) for the Starbooster concept. Orbit In celestial mechanics , an orbit (also known as orbital revolution )

5985-466: The calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large assemblages of objects have been simulated. The following derivation applies to such an elliptical orbit. We start only with the Newtonian law of gravitation stating that the gravitational acceleration towards the central body is related to the inverse of the square of

6090-517: The center of gravity and mass of the planet, there is one specific firing speed (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a circular orbit , as shown in (C). As the firing speed is increased beyond this, non-interrupted elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be non-interrupted elliptical orbits at slower firing speed; these will come closest to

6195-459: The coordinate system at the center of the mass of the system. Energy is associated with gravitational fields . A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational potential energy . Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses,

6300-406: The cost of a launch. In 2013, launch costs for commercial satellites to GTO averaged about US$ 100 million, significantly lower than historic Atlas V pricing. However, after the rise of reusable rockets , the price of an Atlas V [401] has dropped from approximately US$ 180 million to US$ 109 million, in large part due to competitive pressure that emerged in the launch services marketplace during

6405-683: The distance r {\displaystyle r} of the orbiting object from the center as a function of its angle θ {\displaystyle \theta } . However, it is easier to introduce the auxiliary variable u = 1 / r {\displaystyle u=1/r} and to express u {\displaystyle u} as a function of θ {\displaystyle \theta } . Derivatives of r {\displaystyle r} with respect to time may be rewritten as derivatives of u {\displaystyle u} with respect to angle. Plugging these into (1) gives So for

SECTION 60

#1732780826057

6510-434: The distance between them, namely where F 2 is the force acting on the mass m 2 caused by the gravitational attraction mass m 1 has for m 2 , G is the universal gravitational constant, and r is the distance between the two masses centers. From Newton's Second Law, the summation of the forces acting on m 2 related to that body's acceleration: where A 2 is the acceleration of m 2 caused by

6615-517: The early 2010s. ULA CEO Tory Bruno stated in 2016 that ULA needs at least two commercial missions each year in order to stay profitable going forward. ULA is not attempting to win these missions on purely lowest purchase price, stating that it "would rather be the best value provider". In 2016, ULA suggested that customers would have much lower insurance and delay costs because of the high Atlas V reliability and schedule certainty, making overall customer costs close to that of using competitors like

6720-428: The entire analysis can be done separately in these dimensions. This results in the harmonic parabolic equations x = A cos ⁡ ( t ) {\displaystyle x=A\cos(t)} and y = B sin ⁡ ( t ) {\displaystyle y=B\sin(t)} of the ellipse. The location of the orbiting object at the current time t {\displaystyle t}

6825-424: The entire flight. The RL-10 engine on the single-engine Centaur featured electromechanical gimballing, as opposed to the hydraulic gimballing on other variants. The tanks of Centaur were balloon tanks like the first stage, made from stainless steel. PVC foam insulation was installed on the outside of the tank walls to help limit propellant boiloff inside the tanks. Two variants of Centaur flew on Atlas III: Flying

6930-467: The first Starliner crew capsule was launched in Boe-OFT un-crewed test flight. The Atlas V launch vehicle performed flawlessly but an anomaly with the spacecraft left it in a wrong orbit. The orbit was too low to reach the flight's destination of ISS , and the mission was subsequently cut short. In its 100 launches (as of June 2024), starting with its first launch in August 2002, Atlas V has achieved

7035-458: The first (booster) stage (with a single center engine serving as the sustainer). The Atlas III was developed further to create the Atlas V . The Atlas III was developed from the highly successful Atlas II rocket and consisted of two stages. The first stage was heavily modified from Atlas II, and the upper stage remained the Centaur . The Atlas III was produced in two versions. The baseline

7140-426: The first stage. 12 retrorockets were mounted on the stage to aid in separating it from Centaur during flight. The first stage continued to make use of the balloon tank technology of previous Atlas rockets, where the stainless-steel tank walls were thin and had to remain pressurized in order to not collapse. The tanks were pressurized with helium gas, which was stored in 13 bottles throughout the stage. The first stage

7245-408: The force of gravitational attraction F 2 of m 1 acting on m 2 . Combining Eq. 1 and 2: Solving for the acceleration, A 2 : where μ {\displaystyle \mu \,} is the standard gravitational parameter , in this case G m 1 {\displaystyle Gm_{1}} . It is understood that the system being described is m 2 , hence

7350-417: The gravitational energy decreases to zero as they approach zero separation. It is convenient and conventional to assign the potential energy as having zero value when they are an infinite distance apart, and hence it has a negative value (since it decreases from zero) for smaller finite distances. When only two gravitational bodies interact, their orbits follow a conic section . The orbit can be open (implying

7455-504: The gravitational force – or, more generally, for any inverse square force law – the right hand side of the equation becomes a constant and the equation is seen to be the harmonic equation (up to a shift of origin of the dependent variable). The solution is: Atlas V Atlas V is an expendable launch system and the fifth major version in the Atlas launch vehicle family . It was designed by Lockheed Martin and has been operated by United Launch Alliance (ULA) since 2006. It

7560-490: The highest accuracy in understanding orbits. In relativity theory , orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions (except where there are very strong gravity fields and very high speeds) but the differences are measurable. Essentially all the experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy. The original vindication of general relativity

7665-535: The in-flight launch abort system test flight did not materialize, and the third flight, a crewed orbital test flight with two astronauts (in the end NASA's, not Boeing's astronauts) materialized in June 2024 as Boeing Crewed Flight Test . The launch abort system was tested in 2019 in the Boeing Pad Abort Test mission but this did not take place in-flight but from the launch pad. In 2014, NASA selected

7770-411: The launch vehicle completed its burns over a 56-minute period and placed MRO into an interplanetary transfer orbit towards Mars. On 19 January 2006, New Horizons was launched by a Lockheed Martin Atlas V 551 rocket. A third stage was added to increase the heliocentric (escape) speed. This was the first launch of the Atlas V 551 configuration with five solid rocket boosters, and the first Atlas V with

7875-504: The mountain is high enough that the cannon is above the Earth's atmosphere, which is the same thing). If the cannon fires its ball with a low initial speed, the trajectory of the ball curves downward and hits the ground (A). As the firing speed is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in

7980-538: The necessity of an EELV heavy-lift variant, including development of an Atlas V Heavy", and to "resolve the RD-180 issue, including coproduction, stockpile , or United States development of an RD-180 replacement". In 2010, ULA stated that the Atlas V Heavy variant could be available to customers 30 months from the date of order. In late 2006, the Atlas V program gained access to the tooling and processes for 5-meter-diameter stages used on Delta IV when Boeing and Lockheed Martin space operations were merged into

8085-410: The object never returns) or closed (returning). Which it is depends on the total energy ( kinetic + potential energy ) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the escape velocity for that position, in the case of a closed orbit, the speed is always less than the escape velocity. Since the kinetic energy is never negative if the common convention

8190-498: The orbiting object crashes. Then having the derivative be zero gives that the function is a constant. which is actually the theoretical proof of Kepler's second law (A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, h , is the angular momentum per unit mass . In order to get an equation for the orbit from equation (1), we need to eliminate time. (See also Binet equation .) In polar coordinates, this would express

8295-411: The orbits of bodies subject to gravity were conic sections (this assumes that the force of gravity propagates instantaneously). Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their masses , and that those bodies orbit their common center of mass . Where one body is much more massive than the other (as is the case of an artificial satellite orbiting a planet), it

8400-421: The origin and rotates from angle θ {\displaystyle \theta } to θ + θ ˙   δ t {\displaystyle \theta +{\dot {\theta }}\ \delta t} which moves its head a distance θ ˙   δ t {\displaystyle {\dot {\theta }}\ \delta t} in

8505-503: The original 9 m (30 ft) version and extended 10 and 11 m (33 and 36 ft) versions, first flown respectively on the AV-008/ Astra 1KR and AV-004/ Inmarsat-4 F1 missions. Fairings of up to 7.2 m (24 ft) diameter and 32.3 m (106 ft) length have been considered but were never implemented. A 5.4 m (18 ft) diameter fairing, with an internally usable diameter of 4.57 m (15.0 ft),

8610-627: The perpendicular direction θ ^ {\displaystyle {\hat {\boldsymbol {\theta }}}} giving a derivative of θ ˙ θ ^ {\displaystyle {\dot {\theta }}{\hat {\boldsymbol {\theta }}}} . We can now find the velocity and acceleration of our orbiting object. The coefficients of r ^ {\displaystyle {\hat {\mathbf {r} }}} and θ ^ {\displaystyle {\hat {\boldsymbol {\theta }}}} give

8715-420: The possibility of certifying the Atlas V to NASA's standards for human spaceflight. ULA agreed to provide NASA with data on the Atlas V, while NASA would provide ULA with draft human certification requirements. In 2011, the human-rated Atlas V was also still under consideration to carry spaceflight participants to the proposed Bigelow Commercial Space Station . In 2011, Sierra Nevada Corporation (SNC) picked

8820-548: The radial and transverse polar basis with the first being the unit vector pointing from the central body to the current location of the orbiting object and the second being the orthogonal unit vector pointing in the direction that the orbiting object would travel if orbiting in a counter clockwise circle. Then the vector to the orbiting object is We use r ˙ {\displaystyle {\dot {r}}} and θ ˙ {\displaystyle {\dot {\theta }}} to denote

8925-408: The rocket above the atmosphere (which causes frictional drag), and then slowly pitch over and finish firing the rocket engine parallel to the atmosphere to achieve orbit speed. Once in orbit, their speed keeps them in orbit above the atmosphere. If e.g., an elliptical orbit dips into dense air, the object will lose speed and re-enter (i.e. fall). Occasionally a space craft will intentionally intercept

9030-434: The second flight an in-flight launch abort system demonstration in the middle of that year, and the third flight a crewed mission carrying two Boeing test-pilot astronauts into LEO and returning them safely at the end of 2015. These plans were delayed by many years and morphed along the way so that in the end, the first orbital test flight with no crew materialized in 2019, but it was a failure and needed to be reflown in 2022,

9135-412: The second time on Boe-OFT 2 mission; the mission was a success. In June 2024, on Boe-CFT mission, Atlas V carried humans into space for the first time, launching two NASA astronauts to the ISS. Amazon has selected the Atlas V to launch some of the satellites for Project Kuiper . Project Kuiper will offer a high-speed satellite internet constellation service. The contract signed with Amazon

9240-509: The slight oblateness of the Earth , or by relativistic effects , thereby changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed ellipses characteristic of Newtonian two-body motion . The two-body solutions were published by Newton in Principia in 1687. In 1912, Karl Fritiof Sundman developed a converging infinite series that solves

9345-440: The smaller, as in the case of a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate enough and convenient to describe the motion in terms of a coordinate system that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still sufficient and can be had by placing

9450-449: The spheres and was developed without any understanding of gravity. After the planets' motions were more accurately measured, theoretical mechanisms such as deferent and epicycles were added. Although the model was capable of reasonably accurately predicting the planets' positions in the sky, more and more epicycles were required as the measurements became more accurate, hence the model became increasingly unwieldy. Originally geocentric , it

9555-730: The standard Euclidean bases and let r ^ = cos ⁡ ( θ ) x ^ + sin ⁡ ( θ ) y ^ {\displaystyle {\hat {\mathbf {r} }}=\cos(\theta ){\hat {\mathbf {x} }}+\sin(\theta ){\hat {\mathbf {y} }}} and θ ^ = − sin ⁡ ( θ ) x ^ + cos ⁡ ( θ ) y ^ {\displaystyle {\hat {\boldsymbol {\theta }}}=-\sin(\theta ){\hat {\mathbf {x} }}+\cos(\theta ){\hat {\mathbf {y} }}} be

9660-412: The standard derivatives of how this distance and angle change over time. We take the derivative of a vector to see how it changes over time by subtracting its location at time t {\displaystyle t} from that at time t + δ t {\displaystyle t+\delta t} and dividing by δ t {\displaystyle \delta t} . The result

9765-443: The subscripts can be dropped. We assume that the central body is massive enough that it can be considered to be stationary and we ignore the more subtle effects of general relativity . When a pendulum or an object attached to a spring swings in an ellipse, the inward acceleration/force is proportional to the distance A = F / m = − k r . {\displaystyle A=F/m=-kr.} Due to

9870-463: The system's barycenter in elliptical orbits . A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies that are gravitationally bound to one of the planets in a planetary system, either natural or artificial satellites , follow orbits about a barycenter near or within that planet. Owing to mutual gravitational perturbations ,

9975-424: The tanks. The storied "stage-and-a-half" system used on all Atlas rockets from Atlas B to Atlas II, where three engines are lit on the ground, and two of them are dropped away during flight, was replaced by a single Russian RD-180 engine, boasting higher thrust and efficiency than previous engines. Unlike Atlas II and the later Atlas V , there was no option for solid rocket motors to be added to

10080-498: The way vectors add, the component of the force in the x ^ {\displaystyle {\hat {\mathbf {x} }}} or in the y ^ {\displaystyle {\hat {\mathbf {y} }}} directions are also proportionate to the respective components of the distances, r x ″ = A x = − k r x {\displaystyle r''_{x}=A_{x}=-kr_{x}} . Hence,

10185-505: Was called Cape Canaveral Air Force Station (CCAFS). The Atlas III made its sixth and final flight on 3 February 2005, with a classified payload for the United States National Reconnaissance Office . Although its career was short, Atlas III performed 6 successful missions with no failures. The GX rocket, formerly under development by Galaxy Express Corporation , was originally intended to use

10290-577: Was developed and built by RUAG Space in Switzerland . The RUAG fairing uses carbon fiber composite construction and is based on a similar flight-proven fairing for the Ariane 5 . Three configurations are manufactured to support the Atlas V: 20.7 m (68 ft), 23.4 m (77 ft), and 26.5 m (87 ft) long. While the classic 4.2 m (14 ft) fairing covers only the payload,

10395-649: Was developed by Lockheed Martin Commercial Launch Services (LMCLS) as part of the U.S. Air Force Evolved Expendable Launch Vehicle (EELV) program and made its inaugural flight on 21 August 2002. The vehicle operates from SLC-41 at Cape Canaveral Space Force Station (CCSFS). It also operated from SLC-3E at Vandenberg Space Force Base until 2022. LMCLS continued to market the Atlas V to commercial customers worldwide until January 2018, when United Launch Alliance (ULA) assumed control of commercial marketing and sales. The Atlas V first stage,

10500-534: Was limited. In 2010, NASA contracted with ULA to launch the MAVEN mission on an Atlas V 401 for approximately US$ 187 million. The 2013 cost of this configuration for the U.S. Air Force under their block buy of 36 launch vehicles was US$ 164 million. In 2015, the TDRS-M launch on an Atlas 401 cost NASA US$ 132.4 million. Starting in 2016, ULA provided pricing for the Atlas V through its RocketBuilder website, advertising

10605-516: Was modified by Copernicus to place the Sun at the centre to help simplify the model. The model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the modern understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our Solar System are elliptical, not circular (or epicyclic ), as had previously been believed, and that

10710-430: Was powered by one or two Pratt & Whitney (later Aerojet Rocketdyne ) RL-10 engines, fueled by liquid hydrogen and liquid oxygen. Compared to the Atlas II, the added thrust and efficiency of the first stage of Atlas III allowed for one RL-10 engine to be removed from Centaur, and Atlas III was the first Atlas to offer a single-engine Centaur. The engines of a dual-engine Centaur were mounted directly on

10815-453: Was the Atlas IIIA , but the Atlas IIIB , featuring a stretched twin-engine version of the Centaur upper stage, was also produced. The first stage of Atlas III was derived from that of Atlas II. Its propellant tanks were 3 m (9.8 ft) longer than those on Atlas II, making more propellant available to the engine and increasing the vehicle's performance. Over 183 tons of RP-1 and liquid oxygen propellants were stored inside

10920-765: Was to be roughly equivalent to the Delta ;IV Heavy , which used RS-68 engines developed and produced domestically by Aerojet Rocketdyne. A 2006 report, prepared by the RAND Corporation for the Office of the Secretary of Defense , stated that Lockheed Martin had decided not to develop an Atlas V heavy-lift vehicle (HLV). The report recommended for the U.S. Air Force and the National Reconnaissance Office (NRO) to "determine

11025-470: Was unchanged between the Atlas IIIA and IIIB variants. The Atlas Roll Control Module, which contained several hydrazine thrusters and helped maintain roll stability on Atlas II, was removed on the Atlas III. The dual-chamber RD-180 was therefore responsible for gimballing to control the rocket's pitch, yaw, and roll during first-stage flight. The second stage of Atlas III was the Centaur. It

#56943