Misplaced Pages

Automatic vehicle location

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Automatic vehicle location ( AVL or ~ locating ; telelocating in EU) is a means for automatically determining and transmitting the geographic location of a vehicle . This vehicle location data , from one or more vehicles, may then be collected by a vehicle tracking system to manage an overview of vehicle travel. As of 2017, GPS technology has reached the point of having the transmitting device be smaller than the size of a human thumb (thus easier to conceal), able to run 6 months or more between battery charges, easy to communicate with smartphones (merely requiring a duplicate SIM card from one's mobile phone carrier in most cases) — all for less than $ 20 USD.

#951048

87-523: Most commonly, the location is determined using GPS and the transmission mechanism is SMS , GPRS , or a satellite or terrestrial radio from the vehicle to a radio receiver. A single antenna unit covering all the needed frequency bands can be employed. GSM and EVDO are the most common services applied, because of the low data rate needed for AVL, and the low cost and near-ubiquitous nature of these public networks. The low bandwidth requirements also allow for satellite technology to receive telemetry data at

174-422: A communications satellite , a satellite transponder receives signals over a range of uplink frequencies, usually from a satellite ground station ; the transponder amplifies them, and re-transmits them on a different set of downlink frequencies to receivers on Earth, often without changing the content of the received signal or signals. A communications satellite ’s channels are called transponders because each

261-408: A moving map display , or recorded or used by some other system, such as a vehicle guidance system. Although usually not formed explicitly in the receiver processing, the conceptual time differences of arrival (TDOAs) define the measurement geometry. Each TDOA corresponds to a hyperboloid of revolution (see Multilateration ). The line connecting the two satellites involved (and its extensions) forms

348-590: A 1970s-era system based on the United States Coast Guard LORAN maritime navigation system. The LORAN system was intended for ships but signal levels on the US east- and west-coast areas were adequate for use with receivers in automobiles. The system may have been marketed under the Motorola model name Metricom . It consisted of an LF LORAN receiver and data interface box/modem connected to

435-529: A computer assisted dispatch system which automates the process. For example, the computer assisted dispatch system may check the location of a call for service and then pick a list of the four closest ambulances. This narrows the dispatcher's choice from the entire fleet to an easier choice of four vehicles. Some wireless carriers such as Nextel have decided GPS was the best way to provide the mandated location data for wireless Enhanced 9-1-1. Newer Nextel radios have embedded GPS receivers which are polled if 9-1-1

522-450: A directive making GPS freely available for civilian use, once it was sufficiently developed, as a common good. The first Block II satellite was launched on February 14, 1989, and the 24th satellite was launched in 1994. The GPS program cost at this point, not including the cost of the user equipment but including the costs of the satellite launches, has been estimated at US$ 5 billion (equivalent to $ 10 billion in 2023). Initially,

609-517: A full complement of 24 satellites in 2027. The GPS project was launched in the United States in 1973 to overcome the limitations of previous navigation systems, combining ideas from several predecessors, including classified engineering design studies from the 1960s. The U.S. Department of Defense developed the system, which originally used 24 satellites, for use by the United States military, and became fully operational in 1993. Civilian use

696-414: A lap they swipe or touch the receiver which is connected to a computer and log their lap time. NASCAR uses transponders and cable loops placed at numerous points around the track to determine the lineup during a caution period. This system replaced a dangerous race back to the start-finish line . Many modern automobiles have keys with transponders hidden inside the plastic head of the key. The user of

783-429: A liaison. The U.S. Department of Defense is required by law to "maintain a Standard Positioning Service (as defined in the federal radio navigation plan and the standard positioning service signal specification) that will be available on a continuous, worldwide basis" and "develop measures to prevent hostile use of GPS and its augmentations without unduly disrupting or degrading civilian uses". USA-203 from Block IIR-M

870-429: A low frequency switched packet radio network have also been used as an alternative to GPS based systems. Automatic vehicle locating is a powerful tool for managing fleets of vehicles such as service vehicles, emergency vehicles, and public transport vehicles such as buses and trains. It is also used to track mobile assets, such as non wheeled construction equipment, non motorized trailers, and mobile power generators. AVL

957-563: A manageable level to permit accurate navigation. During Labor Day weekend in 1973, a meeting of about twelve military officers at the Pentagon discussed the creation of a Defense Navigation Satellite System (DNSS) . It was at this meeting that the real synthesis that became GPS was created. Later that year, the DNSS program was named Navstar. Navstar is often erroneously considered an acronym for "NAVigation System using Timing And Ranging" but

SECTION 10

#1732781160952

1044-461: A minimum, four satellites must be in view of the receiver for it to compute four unknown quantities (three position coordinates and the deviation of its own clock from satellite time). Each GPS satellite continually broadcasts a signal ( carrier wave with modulation ) that includes: Conceptually, the receiver measures the TOAs (according to its own clock) of four satellite signals. From the TOAs and

1131-479: A moderately higher cost, but across a global coverage area and into very remote locations not covered well by terrestrial radio or public carriers. Other options for determining actual location, for example in environments where GPS illumination is poor, are dead reckoning , i.e. inertial navigation , or active RFID systems or cooperative RTLS systems. These systems may be applied in combination in some cases. In addition, terrestrial radio positioning systems using

1218-516: A piece equipment, such as a digger, is loaded on the back of a flat bed truck and then driven away. Typically the ignition wouldn’t need to be turned on and as such most of the AVL products available wouldn’t typically be activated. Only products that included a unit that was activated by a motion sensor or GeoFence alarm event, would be activated. Both AVL and EATS systems track, but often for different purposes. Vehicle location technologies can be used in

1305-431: A receiver start-up situation. Most receivers have a track algorithm , sometimes called a tracker , that combines sets of satellite measurements collected at different times—in effect, taking advantage of the fact that successive receiver positions are usually close to each other. After a set of measurements are processed, the tracker predicts the receiver location corresponding to the next set of satellite measurements. When

1392-520: A result, differences in transponder functionality also might influence the functional description of related optical modules like transceivers and muxponders . Another type of transponder occurs in identification friend or foe (IFF) systems in military aviation and in air traffic control secondary surveillance radar (beacon radar) systems for general aviation and commercial aviation . Primary radar works best with large all-metal aircraft, but not so well on small, composite aircraft. Its range

1479-454: A separate radio system use cellular or PCS data services to communicate location data from vehicles to their dispatching center. Location data is periodically polled from each vehicle in a fleet by a central controller or computer. In the simplest systems, data from the GPS receiver is displayed on a map allowing humans to determine the location of each vehicle. More complex systems feed the data into

1566-547: A separate two-way radio. The receiver and interface calculated a latitude and longitude in degrees, decimal degrees format based on the LORAN signals. This was sent over the radio as MDC-1200 or MDC-4800 data to a system controller, which plotted the mobile's approximate location on a map. The system worked reliably but sometimes had problems with electrical noise in urban areas. Sparking electric trolley poles or industrial plants which radiated electrical noise sometime overwhelmed

1653-418: A ship's radar screen. Sonar transponders operate under water and are used to measure distance and form the basis of underwater location marking, position tracking and navigation . Electronic toll collection systems such as E-ZPass in the eastern United States use RFID transponders to identify vehicles. Transponders are used in races for lap timing. A cable loop is dug into the race circuit near to

1740-567: Is a separate transceiver or repeater . With digital video data compression and multiplexing , several video and audio channels may travel through a single transponder on a single wideband carrier . Original analog video only has one channel per transponder, with subcarriers for audio and automatic transmission identification service ( ATIS ). Non-multiplexed radio stations can also travel in single channel per carrier (SCPC) mode, with multiple carriers (analog or digital) per transponder. This allows each station to transmit directly to

1827-421: Is activated when the ignition is switched on/off. E.A.T.S (Events Activated Tracking system) This type of system is primarily used in connection with vehicle or driver security solutions. If, for example a thief breaks into your car and attempts to steal it, the tracking system can be triggered by the immobiliser unit or motion sensor being activated. A monitoring bureau will then be automatically notified that

SECTION 20

#1732781160952

1914-405: Is also limited by terrain and rain or snow and also detects unwanted objects such as automobiles, hills and trees. Furthermore, it cannot always estimate the altitude of an aircraft. Secondary radar overcomes these limitations but it depends on a transponder in the aircraft to respond to interrogations from the ground station to make the plane more visible. Depending on the type of interrogation,

2001-543: Is dialed. The 9-1-1 center is provided with latitude and longitude from the radio's GPS receiver. In centers with computer-aided dispatch , the system may assign an address to the call based on these coordinates or may project an icon depicting the caller's location onto a map of the area. The main purpose of using AVL is not only to locate the vehicles, but also to obtain information about engine data, fuel consumption, driver data and sensor data from i.e. doors, freezer room on trucks or air pressure. Such data can be obtained via

2088-433: Is given in the following scenario; A car breaks down by the side of the road and the occupant calls a vehicle recovery company. The vehicle recovery company has several vehicles operating in the area. Without needing to call each driver to check his location the dispatcher can pinpoint the nearest recovery vehicle and assign it to the new job. If you were to incorporate the other aspects of vehicle telematics into this scenario;

2175-410: Is increasingly crossover between the different systems and those with experience of this sector will be able to draw on a number of examples which break the rule. A.V.L (Automatic Vehicle Location) This type of vehicle tracking is normally used in the fleet or driver management sector. The unit is configured to automatically transmit its location at a set time interval, e.g. every 5 minutes. The unit

2262-412: Is mandatory in controlled airspace in many countries. Some countries have also required, or are moving toward requiring, that all aircraft be equipped with Mode S, even in uncontrolled airspace . However, in the field of general aviation there have been objections to these moves, because of the cost, size, limited benefit to the users in uncontrolled airspace, and, in the case of balloons and gliders ,

2349-427: Is often utilized by government agencies, such as Public Safety and Parks and Recreation, to track the movement of patrol units, emergency responders, and field workers. Another purpose of tracking is to provide graded service or to manage a large driver and crewing staff effectively. For example, suppose an ambulance fleet has an objective of arriving at the location of a call for service within six minutes of receiving

2436-527: Is owned and operated by the United States government as a national resource. The Department of Defense is the steward of GPS. The Interagency GPS Executive Board (IGEB) oversaw GPS policy matters from 1996 to 2004. After that, the National Space-Based Positioning, Navigation and Timing Executive Committee was established by presidential directive in 2004 to advise and coordinate federal departments and agencies on matters concerning

2523-760: Is unhealthy For a more complete list, see List of GPS satellites On February 10, 1993, the National Aeronautic Association selected the GPS Team as winners of the 1992 Robert J. Collier Trophy , the US's most prestigious aviation award. This team combines researchers from the Naval Research Laboratory, the U.S. Air Force, the Aerospace Corporation , Rockwell International Corporation, and IBM Federal Systems Company. The citation honors them "for

2610-502: The CAN-bus , via direct connections to AVL systems or via open bus systems such as UFDEX that both sends and receives data via SMS or GPRS in pure ASCII text format. Because most AVL consists of two parts, GPS and GSM modem with additional embedded AVL software contained in a microcontroller , most AVL systems are fixed for its purposes unless they connect to an open bus system for expansion possibilities. With an open bus system

2697-503: The Doppler effect , they could pinpoint where the satellite was along its orbit. The Director of the APL gave them access to their UNIVAC I computer to perform the heavy calculations required. Early the next year, Frank McClure, the deputy director of the APL, asked Guier and Weiffenbach to investigate the inverse problem: pinpointing the user's location, given the satellite's. (At the time,

Automatic vehicle location - Misplaced Pages Continue

2784-504: The navigation equations gives the position of the receiver along with the difference between the time kept by the receiver's on-board clock and the true time-of-day, thereby eliminating the need for a more precise and possibly impractical receiver based clock. Applications for GPS such as time transfer , traffic signal timing, and synchronization of cell phone base stations , make use of this cheap and highly accurate timing. Some GPS applications use this time for display, or, other than for

2871-460: The Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephone or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although

2958-524: The Earth's center) and the offset of the receiver clock relative to the GPS time are computed simultaneously, using the navigation equations to process the TOFs. The receiver's Earth-centered solution location is usually converted to latitude , longitude and height relative to an ellipsoidal Earth model. The height may then be further converted to height relative to the geoid , which is essentially mean sea level. These coordinates may be displayed, such as on

3045-910: The GPS and implement the next generation of GPS Block III satellites and Next Generation Operational Control System (OCX) which was authorized by the U.S. Congress in 2000. When Selective Availability was discontinued, GPS was accurate to about 5 meters (16 ft). GPS receivers that use the L5 band have much higher accuracy of 30 centimeters (12 in), while those for high-end applications such as engineering and land surveying are accurate to within 2 cm ( 3 ⁄ 4  in) and can even provide sub-millimeter accuracy with long-term measurements. Consumer devices such as smartphones can be accurate to 4.9 m (16 ft) or better when used with assistive services like Wi-Fi positioning . As of July 2023 , 18 GPS satellites broadcast L5 signals, which are considered pre-operational prior to being broadcast by

3132-664: The GPS and related systems. The executive committee is chaired jointly by the Deputy Secretaries of Defense and Transportation. Its membership includes equivalent-level officials from the Departments of State, Commerce, and Homeland Security, the Joint Chiefs of Staff and NASA . Components of the executive office of the president participate as observers to the executive committee, and the FCC chairman participates as

3219-668: The GPS service, including new signals for civil use and increased accuracy and integrity for all users, all the while maintaining compatibility with existing GPS equipment. Modernization of the satellite system has been an ongoing initiative by the U.S. Department of Defense through a series of satellite acquisitions to meet the growing needs of the military, civilians, and the commercial market. As of early 2015, high-quality Standard Positioning Service (SPS) GPS receivers provided horizontal accuracy of better than 3.5 meters (11 ft), although many factors such as receiver and antenna quality and atmospheric issues can affect this accuracy. GPS

3306-410: The GPS system would be made available for civilian use as of September 16, 1983; however, initially this civilian use was limited to an average accuracy of 100 meters (330 ft) by use of Selective Availability (SA), a deliberate error introduced into the GPS data that military receivers could correct for. As civilian GPS usage grew, there was increasing pressure to remove this error. The SA system

3393-740: The Global Positioning System (GPS) its 60th Anniversary Award, nominated by IAF member, the American Institute for Aeronautics and Astronautics (AIAA). The IAF Honors and Awards Committee recognized the uniqueness of the GPS program and the exemplary role it has played in building international collaboration for the benefit of humanity. On December 6, 2018, Gladys West was inducted into the Air Force Space and Missile Pioneers Hall of Fame in recognition of her work on an extremely accurate geodetic Earth model, which

3480-441: The LORAN signals, affecting the system's ability to determine the mobile's geolocation. Because of the limited resolution, this type of system was impractical for small communities or operational areas such as a pit mine or port. To track and locate vehicles along fixed routes, a technology called Signpost transmitters is employed. This is used on transit routes and rail lines where the vehicles to be tracked continually operated on

3567-480: The Navy TRANSIT system were too slow for the high speeds of Air Force operation. The Naval Research Laboratory (NRL) continued making advances with their Timation (Time Navigation) satellites, first launched in 1967, second launched in 1969, with the third in 1974 carrying the first atomic clock into orbit and the fourth launched in 1977. Another important predecessor to GPS came from a different branch of

Automatic vehicle location - Misplaced Pages Continue

3654-582: The Navy was developing the submarine-launched Polaris missile, which required them to know the submarine's location.) This led them and APL to develop the TRANSIT system. In 1959, ARPA (renamed DARPA in 1972) also played a role in TRANSIT. TRANSIT was first successfully tested in 1960. It used a constellation of five satellites and could provide a navigational fix approximately once per hour. In 1967,

3741-604: The SLBM situation. In 1960, the Air Force proposed a radio-navigation system called MOSAIC (MObile System for Accurate ICBM Control) that was essentially a 3-D LORAN System. A follow-on study, Project 57, was performed in 1963 and it was "in this study that the GPS concept was born". That same year, the concept was pursued as Project 621B, which had "many of the attributes that you now see in GPS" and promised increased accuracy for U.S. Air Force bombers as well as ICBMs. Updates from

3828-524: The TOTs, the receiver forms four time of flight (TOF) values, which are (given the speed of light) approximately equivalent to receiver-satellite ranges plus time difference between the receiver and GPS satellites multiplied by speed of light, which are called pseudo-ranges. The receiver then computes its three-dimensional position and clock deviation from the four TOFs. In practice the receiver position (in three dimensional Cartesian coordinates with origin at

3915-607: The U.S. Navy developed the Timation satellite, which proved the feasibility of placing accurate clocks in space, a technology required for GPS. In the 1970s, the ground-based OMEGA navigation system, based on phase comparison of signal transmission from pairs of stations, became the first worldwide radio navigation system. Limitations of these systems drove the need for a more universal navigation solution with greater accuracy. Although there were wide needs for accurate navigation in military and civilian sectors, almost none of those

4002-442: The U.S. Secretary of Defense, William Perry , in view of the widespread growth of differential GPS services by private industry to improve civilian accuracy. Moreover, the U.S. military was developing technologies to deny GPS service to potential adversaries on a regional basis. Selective Availability was removed from the GPS architecture beginning with GPS-III. Since its deployment, the U.S. has implemented several improvements to

4089-469: The United States government created, controls, and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. The GPS project was started by the U.S. Department of Defense in 1973. The first prototype spacecraft was launched in 1978 and the full constellation of 24 satellites became operational in 1993. After Korean Air Lines Flight 007 was shot down when it mistakenly entered Soviet airspace, President Ronald Reagan announced that

4176-512: The United States military. In 1964, the United States Army orbited its first Sequential Collation of Range ( SECOR ) satellite used for geodetic surveying. The SECOR system included three ground-based transmitters at known locations that would send signals to the satellite transponder in orbit. A fourth ground-based station, at an undetermined position, could then use those signals to fix its location precisely. The last SECOR satellite

4263-425: The ability to globally degrade the system was no longer necessary. As a result, United States President Bill Clinton signed a bill ordering that Selective Availability be disabled on May 1, 2000; and, in 2007 , the US government announced that the next generation of GPS satellites would not include the feature at all. Advances in technology and new demands on the existing system have now led to efforts to modernize

4350-451: The axis of the hyperboloid. The receiver is located at the point where three hyperboloids intersect. It is sometimes incorrectly said that the user location is at the intersection of three spheres. While simpler to visualize, this is the case only if the receiver has a clock synchronized with the satellite clocks (i.e., the receiver measures true ranges to the satellites rather than range differences). There are marked performance benefits to

4437-478: The basic position calculations, do not use it at all. Transponder In telecommunications , a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of transmitter and responder . In air navigation or radio frequency identification , a flight transponder is an automated transceiver in an aircraft that emits a coded identifying signal in response to an interrogating received signal. In

SECTION 50

#1732781160952

4524-494: The bearing from two fixed sites to the mobile. This creates a triangle with endpoints at the two fixed points and the mobile. Trigonometry tells you roughly where the mobile transmitter is located. In wireless telephone systems, the phones transmit continually when off-hook, making continual tracking and the collection of many location samples possible. This is one type of location system required by Federal Communications Commission Rules for wireless Enhanced 911 . Motorola offered

4611-546: The car may not even be aware that the transponder is there, because there are no buttons to press. When a key is inserted into the ignition lock cylinder and turned, the car's computer sends a signal to the transponder. Unless the transponder replies with a valid code, the computer will not allow the engine to be started. Transponder keys have no battery; they are energized by the signal itself. Transponders may also be used by residents to enter their gated communities . However, having more than one transponder causes problems. If

4698-648: The clocks on GPS satellites, as observed by those on Earth, run 38 microseconds faster per day than those on the Earth. The design of GPS corrects for this difference; because without doing so, GPS calculated positions would accumulate errors of up to 10 kilometers per day (6 mi/d). When the Soviet Union launched its first artificial satellite ( Sputnik 1 ) in 1957, two American physicists, William Guier and George Weiffenbach, at Johns Hopkins University 's Applied Physics Laboratory (APL) monitored its radio transmissions. Within hours they realized that, because of

4785-560: The dispatcher, rather than phoning the recovery vehicle operative, could transmit the job details directly to the operative's mobile data device, who would then use the in-vehicle satellite navigation to aid his journey to the job. EATS technology is predominantly used when applying vehicle tracking to vehicle security solutions. An example of this distinction is given in the following scenario; A construction company owns some pieces of plant machinery that are regularly left unattended, at weekends, on building sites. Thieves break onto one site and

4872-496: The distance from the satellite to the ground station. With the distance information collected from multiple ground stations, the location coordinates of any satellite at any time can be calculated with great precision. Each GPS satellite carries an accurate record of its own position and time, and broadcasts that data continuously. Based on data received from multiple GPS satellites , an end user's GPS receiver can calculate its own four-dimensional position in spacetime ; However, at

4959-451: The distance traveled between two position measurements drops below or near the random error of position measurement. GPS units can use measurements of the Doppler shift of the signals received to compute velocity accurately. More advanced navigation systems use additional sensors like a compass or an inertial navigation system to complement GPS. GPS requires four or more satellites to be visible for accurate navigation. The solution of

5046-488: The following scenarios: Global Positioning System The Global Positioning System ( GPS ), originally Navstar GPS , is a satellite-based radio navigation system owned by the United States Space Force and operated by Mission Delta 31 . It is one of the global navigation satellite systems (GNSS) that provide geolocation and time information to a GPS receiver anywhere on or near

5133-407: The highest-quality signal was reserved for military use, and the signal available for civilian use was intentionally degraded, in a policy known as Selective Availability . This changed on May 1, 2000, with U.S. President Bill Clinton signing a policy directive to turn off Selective Availability to provide the same accuracy to civilians that was afforded to the military. The directive was proposed by

5220-543: The most significant development for safe and efficient navigation and surveillance of air and spacecraft since the introduction of radio navigation 50 years ago". Two GPS developers received the National Academy of Engineering Charles Stark Draper Prize for 2003: GPS developer Roger L. Easton received the National Medal of Technology on February 13, 2006. Francis X. Kane (Col. USAF, ret.)

5307-440: The new measurements are collected, the receiver uses a weighting scheme to combine the new measurements with the tracker prediction. In general, a tracker can (a) improve receiver position and time accuracy, (b) reject bad measurements, and (c) estimate receiver speed and direction. The disadvantage of a tracker is that changes in speed or direction can be computed only with a delay, and that derived direction becomes inaccurate when

SECTION 60

#1732781160952

5394-487: The nuclear triad, also had requirements for a more accurate and reliable navigation system. The U.S. Navy and U.S. Air Force were developing their own technologies in parallel to solve what was essentially the same problem. To increase the survivability of ICBMs, there was a proposal to use mobile launch platforms (comparable to the Soviet SS-24 and SS-25 ) and so the need to fix the launch position had similarity to

5481-466: The power requirements during long flights. Transponders are used on some military aircraft to ensure ground personnel can verify the functionality of a missile’s flight termination system prior to launch. Such radar-enhancing transponders are needed as the enclosed weapon bays on modern aircraft interfere with prelaunch, flight termination system verification performed by range safety personnel during training test launches. The transponders re-radiate

5568-524: The precision needed for GPS. The design of GPS is based partly on similar ground-based radio-navigation systems, such as LORAN and the Decca Navigator System , developed in the early 1940s. In 1955, Friedwardt Winterberg proposed a test of general relativity —detecting time slowing in a strong gravitational field using accurate atomic clocks placed in orbit inside artificial satellites. Special and general relativity predicted that

5655-419: The progress of the vehicle and assess whether or not the vehicle was on schedule . These systems are an alternative inside tunnels or other conveyances where GPS signals are blocked by terrain. The low price and ubiquity of Global Positioning System or GPS equipment has lent itself to more accurate and reliable telelocation systems. GPS signals are impervious to most electrical noise sources and do not require

5742-652: The reason for the ultra-secrecy at that time. The nuclear triad consisted of the United States Navy's submarine-launched ballistic missiles (SLBMs) along with United States Air Force (USAF) strategic bombers and intercontinental ballistic missiles (ICBMs). Considered vital to the nuclear deterrence posture, accurate determination of the SLBM launch position was a force multiplier . Precise navigation would enable United States ballistic missile submarines to get an accurate fix of their positions before they launched their SLBMs. The USAF, with two thirds of

5829-408: The reference atomic clocks at the ground control stations; any drift of the clocks aboard the satellites from the reference time maintained on the ground stations is corrected regularly. Since the speed of radio waves ( speed of light ) is constant and independent of the satellite speed, the time delay between when the satellite transmits a signal and the ground station receives it is proportional to

5916-496: The request. Using an AVL system allows to evaluate the locations of all vehicles in service with drivers and other crew in order to pick the vehicle that will most likely arrive at the destination fastest, (meeting the service objective). Amateur radio and some cellular or PCS wireless systems use direction finding or triangulation of transmitter signals radiated by the mobile. This is sometimes called radio direction finding or RDF . The simplest forms of these systems calculate

6003-426: The same linear route. A transponder or RFID chip along the vehicle route would be polled as the train or bus traverses its route . As each transponder was passed, the moving vehicle would query and receive an ack , or handshake, from the signpost transmitter. A transmitter on the mobile would report passing the signpost to a system controller. This allows supervision, a call center , or a dispatch center to monitor

6090-530: The satellite, rather than paying for a whole transponder, or using landlines to send it to an earth station for multiplexing with other stations. In fiber-optic communications , a transponder is the element that sends and receives the optical signal from a fiber . A transponder is typically characterized by its data rate and the maximum distance the signal can travel. The term "transponder" can apply to different items with important functional differences, mentioned across academic and commercial literature: As

6177-850: The signals allowing for much longer communication distances. The International Maritime Organization 's International Convention for the Safety of Life at Sea (SOLAS) requires the Automatic Identification System (AIS) to be fitted aboard international voyaging ships with 300 or more  gross tonnage  (GT), and all passenger ships regardless of size. AIS transmitters/receivers are generally called transponders , but they generally transmit autonomously, although coast stations can interrogate class B transponders on smaller vessels for additional information. In addition, navigational aids often have transponders called RACON (radar beacons) designed to make them stand out on

6264-436: The start/finish line. Each individual runner or car has an active transponder with a unique ID code. When the individual passes the start/finish line, the lap time and the racing position is shown on the score board. Passive and active RFID systems are used in motor sports , and off-road events such as Enduro and Hare and Hounds racing, the riders have a transponder on their person, normally on their arm. When they complete

6351-467: The transponder sends back a transponder code (or "squawk code", Mode A) or altitude information (Mode C) to help air traffic controllers to identify the aircraft and to maintain separation between planes. Another mode called Mode S (Mode Select) is designed to help avoiding over-interrogation of the transponder (having many radars in busy areas) and to allow automatic collision avoidance. Mode S transponders are backward compatible with Modes A and C. Mode S

6438-478: The unit has been activated and begin tracking the vehicle. Some products on the market are a hybrid of both AVL and EATS technology. However industry practice has tended to lean towards a separation of these functions. It is worth taking note that vehicle tracking products tend to fall into one, not both of the technologies. AVL technology is predominantly used when applying vehicle tracking to fleet or driver management solutions. The use of Automatic Vehicle Location

6525-403: The user carrying a clock synchronized with the satellites. Foremost is that only three satellites are needed to compute a position solution. If it were an essential part of the GPS concept that all users needed to carry a synchronized clock, a smaller number of satellites could be deployed, but the cost and complexity of the user equipment would increase. The description above is representative of

6612-493: The user to install an entire system. Usually only a receiver to collect signals from the satellite segment is installed in each vehicle and radio or GSM to communicate the collected location data with a dispatch point. Large private telelocation or AVL systems send data from GPS receivers in vehicles to a dispatch center over their private, user-owned radio backbone. These systems are used for businesses like parcel delivery and ambulances. Smaller systems which do not justify building

6699-475: The users can send invoices based on goods delivered with exact location, time and date data where if connected to scale, RFID or barcode readers, can make a fairly good automated system to avoid human errors. In countries with high prices on gasoline external fuel sensors are used to prevent cases of fuel theft. Another scenario for sensor functions is to connect the AVL to driver information, to collect data about driving time, stops, or even driver absence from

6786-542: The vehicle. If the driver/worker conditions is such as the hourly rates for driving and working outside is not the same, this can be monitored by sensors, by using iButton or other personal identification devices. Later by analyzing log-file it is possible to get reports on any kind of events, like stops, visited streets, speed limits violations, etc. It might be helpful to draw a distinction between vehicle location systems which track automatically and event activated tracking systems which track when triggered by an event. There

6873-579: Was allowed from the 1980s. Roger L. Easton of the Naval Research Laboratory , Ivan A. Getting of The Aerospace Corporation , and Bradford Parkinson of the Applied Physics Laboratory are credited with inventing it. The work of Gladys West on the creation of the mathematical geodetic Earth model is credited as instrumental in the development of computational techniques for detecting satellite positions with

6960-420: Was concerned with the curving of the paths of radio waves ( atmospheric refraction ) traversing the ionosphere from NavSTAR satellites. After Korean Air Lines Flight 007 , a Boeing 747 carrying 269 people, was shot down by a Soviet interceptor aircraft after straying in prohibited airspace because of navigational errors, in the vicinity of Sakhalin and Moneron Islands , President Ronald Reagan issued

7047-490: Was destroyed in a launch failure). The effect of the ionosphere on radio transmission was investigated in a geophysics laboratory of Air Force Cambridge Research Laboratory , renamed to Air Force Geophysical Research Lab (AFGRL) in 1974. AFGRL developed the Klobuchar model for computing ionospheric corrections to GPS location. Of note is work done by Australian space scientist Elizabeth Essex-Cohen at AFGRL in 1974. She

7134-625: Was inducted into the U.S. Air Force Space and Missile Pioneers Hall of Fame at Lackland A.F.B., San Antonio, Texas, March 2, 2010, for his role in space technology development and the engineering design concept of GPS conducted as part of Project 621B. In 1998, GPS technology was inducted into the Space Foundation Space Technology Hall of Fame . On October 4, 2011, the International Astronautical Federation (IAF) awarded

7221-626: Was launched in 1969. With these parallel developments in the 1960s, it was realized that a superior system could be developed by synthesizing the best technologies from 621B, Transit, Timation, and SECOR in a multi-service program. Satellite orbital position errors, induced by variations in the gravity field and radar refraction among others, had to be resolved. A team led by Harold L. Jury of Pan Am Aerospace Division in Florida from 1970 to 1973, used real-time data assimilation and recursive estimation to do so, reducing systematic and residual errors to

7308-549: Was never considered as such by the GPS Joint Program Office (TRW may have once advocated for a different navigational system that used that acronym). With the individual satellites being associated with the name Navstar (as with the predecessors Transit and Timation), a more fully encompassing name was used to identify the constellation of Navstar satellites, Navstar-GPS . Ten " Block I " prototype satellites were launched between 1978 and 1985 (an additional unit

7395-530: Was seen as justification for the billions of dollars it would cost in research, development, deployment, and operation of a constellation of navigation satellites. During the Cold War arms race , the nuclear threat to the existence of the United States was the one need that did justify this cost in the view of the United States Congress. This deterrent effect is why GPS was funded. It is also

7482-661: Was temporarily disabled during the Gulf War , as a shortage of military GPS units meant that many US soldiers were using civilian GPS units sent from home. In the 1990s, Differential GPS systems from the US Coast Guard , Federal Aviation Administration , and similar agencies in other countries began to broadcast local GPS corrections, reducing the effect of both SA degradation and atmospheric effects (that military receivers also corrected for). The U.S. military had also developed methods to perform local GPS jamming, meaning that

7569-529: Was ultimately used to determine the orbit of the GPS constellation. On February 12, 2019, four founding members of the project were awarded the Queen Elizabeth Prize for Engineering with the chair of the awarding board stating: "Engineering is the foundation of civilisation; ...They've re-written, in a major way, the infrastructure of our world." The GPS satellites carry very stable atomic clocks that are synchronized with one another and with

#951048