Misplaced Pages

Baldwin Hills (mountain range)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Subsidence is a general term for downward vertical movement of the Earth's surface, which can be caused by both natural processes and human activities. Subsidence involves little or no horizontal movement, which distinguishes it from slope movement .

#714285

64-756: The Baldwin Hills are a low mountain range surrounded by and rising above the Los Angeles Basin plain in central Los Angeles County , California . The Pacific Ocean is to the west, the Santa Monica Mountains to the north, Downtown Los Angeles to the northeast, and the Palos Verdes Hills to the south—with all easily viewed from the Baldwin Hills. The headwaters of the urban river known as Ballona Creek are in

128-606: A broad anticline that is truncated by the Santa Monica fault zone. The central block contains both marine and non-marine clastic rock units interbedded with volcanic rocks that are late Cretaceous to Pliocene in age. Pliocene and Quaternary strata are most visible within the central block. Structurally, there is a synclinal trough. The northeastern block contains fine to coarse grained clastic marine rocks of Cenozoic age. Locally, middle Miocene volcanics can be seen as well as Eocene to Miocene aged non-marine sedimentary rocks. There

192-630: A comparative analysis of various land subsidence monitoring techniques. The results indicated that InSAR offered the highest coverage, lowest annual cost per point of information and the highest point density. Additionally, they found that, aside from continuous acquisition systems typically installed in areas with rapid subsidence, InSAR had the highest measurement frequencies. In contrast, leveling, non-permanent GNSS, and non-permanent extensometers generally provided only one or two measurements per year. These methods project future land subsidence trends by extrapolating from existing data, treating subsidence as

256-459: A function solely of time. The extrapolation can be performed either visually or by fitting appropriate curves. Common functions used for fitting include linear, bilinear, quadratic, and/or exponential models. For example, this method has been successfully applied for predicting mining-induced subsidence. These approaches evaluate land subsidence based on its relationship with one or more influencing factors, such as changes in groundwater levels,

320-525: A general timeline to categorize the sequence of depositional events in the LA Basin's evolution and they are as follows: During pre- Turonian , metamorphosed sedimentary and volcanic rocks are present that serve as the two major basement rock units for the LA Basin. Large-scale movement along the Newport–Inglewood zone juxtaposed the two bedrock units along the east and west margins. During this phase,

384-452: A higher probability of experiencing seismic activity. The region experiences earthquakes that are mostly mild (magnitude ≤2.25). However moderate earthquakes (magnitude 4.9 to 6.4) have been reported. Earthquakes of moderate magnitude are very infrequent. This fault zone is the most notable feature within the basin that is a single strand with local (fault) splays. The fault zone is also marked by low hills, scarps, and ten anticlinal folds in

448-472: A major unconformity at the base of the middle Miocene units. Emergence did not occur at the same rate or in all sections of the basin. During this time, the basin was covered by a marine embayment. Rivers sourced in the highlands brought large amounts of detritus to the northeastern edge of the basin. During this period, the Topanga formation was also being deposited. The present form and structural relief of

512-431: A number of years, a cumulative drying occurs as the tree grows. That can lead to the opposite of subsidence, known as heave or swelling of the soil, when the tree declines or is felled. As the cumulative moisture deficit is reversed, which can last up to 25 years, the surface level around the tree will rise and expand laterally. That often damages buildings unless the foundations have been strengthened or designed to cope with

576-489: A result of increased effective stress . In this way, land subsidence has the potential of becoming self-perpetuating, having rates up to 5 cm/yr. Water management used to be tuned primarily to factors such as crop optimization but, to varying extents, avoiding subsidence has come to be taken into account as well. When differential stresses exist in the Earth, these can be accommodated either by geological faulting in

640-545: A right-stepping en echelon pattern. It is located in the southwest portion of the basin and is a strike-slip margin. There are several oil fields that run parallel to this fault. This fault lies on the eastern border of the basin and mergers with the Elsinore Fault in the canyon of the Santa Ana River, one of the upper branches of the fault. This fault is a reverse right-oblique fault. It is most known for

704-545: A shallow marine environment. Tectonic instability coupled with volcanic activity in rapidly subsiding areas during the Middle Miocene set the stage for the modern basin. The basin formed in a submarine environment and was later brought back above sea level when the rate of subsidence slowed. There is much discussion in the literature about the geologic time boundaries when each basin forming event took place. While exact ages may not be clear, Yerkes et al. (1965) provided

SECTION 10

#1732782467715

768-638: Is a basal marine conglomeratic sandstone, followed by a dominantly basaltic middle layer of multiple submarine lava flows and tuffs. The youngest part of this unit is a sedimentary breccia, conglomerate, sandstone, and a siltstone . The earliest deposits of the Topanga Group appear to reflect the continuation of a shift in shoreline that can be seen in both the Sespe and Vaqueros formations. Eruptions from one or more of volcanic centers locally and temporarily interrupted sedimentation. The Puente Formation

832-585: Is a deep-marine formation that is characterized by pro-delta sediments and an overlapping fan system. This unit lies above the Topanga Group giving it a Late Miocene depositional age and is divided into four members. The La Vida Member is a micaceous, platy siltstone with subordinate amounts of thin-bedded feldspathic sandstone. The next member is the Soquel, which is a thick bedded to massive micaceous sandstone. Locally abundant siltstone, conglomerate, and intraformational breccia can also be seen in this member. Above

896-432: Is a large decline from the almost 1 billion barrels per year produced in the late 1970s. Oil fields include: Subsidence Processes that lead to subsidence include dissolution of underlying carbonate rock by groundwater ; gradual compaction of sediments ; withdrawal of fluid lava from beneath a solidified crust of rock; mining; pumping of subsurface fluids, such as groundwater or petroleum ; or warping of

960-522: Is a largely unconsolidated unit and is composed mostly of gravel and floodplain sediments. The sediments that mark the top of the basin can be found in modern streams/rivers and at the base of the foothills. The history of this basin begins with the subduction of Pacific plate underneath the North American plate in the beginning of the Mesozoic. During this subduction event, two smaller plates,

1024-444: Is a mid-Miocene fault block that revealed a northwest trending ridge of Paleocene age rocks. This structural feature is important because it revealed many oil traps and orientation of the beds indicate the age of subsidence in this portion of the basin. This particular anticline is the most notable subsurface feature within the basin. Deformation events such as erosion of the uplifted crustal blocks, initiation of various faults, and

1088-700: Is a sedimentary basin located in Southern California , in a region known as the Peninsular Ranges . The basin is also connected to an anomalous group of east–west trending chains of mountains collectively known as the Transverse Ranges . The present basin is a coastal lowland area, whose floor is marked by elongate low ridges and groups of hills that is located on the edge of the Pacific plate . The Los Angeles Basin, along with

1152-419: Is also an anticline in the northeastern block. Homogeneous evolution of this basin did not occur due to dynamic tectonic activity. Despite the active setting, there are over 9,100 m of strata within the basin. The dynamic setting was also responsible for the heterogeneous deposition of each formation. It is common for rock units of the same depositional event to have different names in different locations within

1216-401: Is marked by two sandstone, siltstone and shale units. There are also characteristic mollusk fossils that indicate the area was dominately shallow marine. The Topanga Group is the next major formation in the stratigraphic sequence and infills the topography on older rocks. It is a mixed sedimentary and volcanic unit whose base is an erosional unconformity. The unit consists of 3 parts: First

1280-451: Is relatively predictable in its magnitude, manifestation and extent, except where a sudden pillar or near-surface tunnel collapse occurs (usually very old workings ). Mining-induced subsidence is nearly always very localized to the surface above the mined area, plus a margin around the outside. The vertical magnitude of the subsidence itself typically does not cause problems, except in the case of drainage (including natural drainage)–rather, it

1344-417: Is remarkable due to the relatively small size and youth of the basin. The basin currently has about 40 active oil fields that collectively have 4,000 operating wells. In 1904, there were over 1,150 wells in the city of Los Angeles alone. Tight spacing and continued pumping of the wells resulted in most of the wells to dry up. Most recent data indicates that 255 million barrels of oil were produced in 2013. This

SECTION 20

#1732782467715

1408-521: Is split into two sub-facies known as the Pico and Repetto Members . These members represent a distinct change in the depositional environment and are of Pleistocene age. The Repetto is the older of the two members and is composed of interbedded fine to coarse grained siltstone, mudstone, and sandstone. The Pico Member is mostly made of massive siltstones and sandstones interbedded with minor silty-sandstones. Holocene alluvium and Quaternary sediments

1472-468: Is the Whittier and Newport–Inglewood faults that have dictated the seismic behavior within the basin. The Los Angeles basin is still active tectonically and the region continues to experience earthquakes as a result. Due to the number of faults and fault splays, seismic activity is not concentrated in one particular area. The cities that are overlain by the Newport–Inglewood and Whittier fault zones have

1536-415: Is the associated surface compressive and tensile strains, curvature, tilts and horizontal displacement that are the cause of the worst damage to the natural environment, buildings and infrastructure. Where mining activity is planned, mining-induced subsidence can be successfully managed if there is co-operation from all of the stakeholders. This is accomplished through a combination of careful mine planning,

1600-523: Is the first to appear above the great unconformity and is marked by interbedded mudstones, sandstones and pebbly sandstones. This bed sequence indicates an alluvial fan, meandering stream or braided stream origin. Upward from the Sespe Formation toward the Vaqueros , the grains become finer and the beds become thinner; indicating a transition to a shallow marine environment. The Vaqueros Formation

1664-469: Is used to correlate strata throughout the basin. The record of the Cenozoic activity begins above this unconformity. The stratigraphic record for this basin indicates that it began as a non-marine environment and then transgressed to a deep ocean system. The oldest basement units of this basin are of both sedimentary and igneous origin. The sedimentary unit was metamorphosed as a result of slippage of

1728-582: The Earth's crust by tectonic forces. Subsidence resulting from tectonic deformation of the crust is known as tectonic subsidence and can create accommodation for sediments to accumulate and eventually lithify into sedimentary rock . Ground subsidence is of global concern to geologists , geotechnical engineers , surveyors , engineers , urban planners , landowners, and the public in general. Pumping of groundwater or petroleum has led to subsidence of as much as 9 meters (30 ft) in many locations around

1792-707: The Inglewood Oil Field in the southern Baldwin Hills. The Baldwin Hills Parklands are 480 acres (190 ha) of public parks managed by California State Parks , Los Angeles County Parks and Recreation , City of Los Angeles Parks and Recreation , Culver City Parks and Recreation , and the California Mountains Recreation and Conservation Authority . Los Angeles Basin The Los Angeles Basin

1856-652: The Newport–Inglewood fault and is known as the Catalina Schist . The Catalina Schist can be found on the southwestern edge of the basin and is predominantly a chlorite-quartz schist. Closer to the Newport–Inglewood fault zone, garnet -bearing schists and metagabbros occur. The Santa Monica Slate can be observed in the northwestern block of the basin. The eastern complex is characterized by Santiago Peak Volcanics. This rock unit contains andesitic breccias , flow, agglomerates and tuffs . The Sespe Formation

1920-682: The Santa Barbara Channel , the Ventura Basin , the San Fernando Valley , and the San Gabriel Basin , lies within the greater Southern California region. The majority of the jurisdictional land area of the city of Los Angeles physically lies within this basin. On the north, northeast, and east, the lowland basin is bound by the Santa Monica Mountains and Puente, Elysian, and Repetto hills. To

1984-459: The Holocene is characterized by non marine gravel, sand and silt. This phase also includes the late-stage compressional deformation responsible for the formation of the hydrocarbon traps. Four major faults are present in the region and divide the basin in the central, northwest, southwest, and northeast structural blocks. These blocks not only denote their geographic location, but they indicate

Baldwin Hills (mountain range) - Misplaced Pages Continue

2048-591: The Monterey and Juan de Fuca plates, also began to subduct underneath the North American plate. Around 20Ma, the Monterey plate attached to and followed the motion of the Pacific plate. Later, subduction of the Pacific-Monterey ceased and the plate margin was converted to a transform boundary. The North America/Pacific-Monterey transform boundary began to move north and created crustal extension. This rifting

2112-688: The Santa Monica Mountains, such as above Beverly Hills and flows along the north base of Baldwin Hills through an active geological watergap, on the way to the Pacific Ocean in Santa Monica Bay . La Cienega Boulevard goes through a pass in the ridge of the Baldwin Hills between Inglewood and Culver City, and northeast of Los Angeles International Airport . La Cienega Boulevard is a parkway road passing alongside open space of large private corporate lands with oil wells of

2176-809: The Soquel lies the Yorba Member. This member is a sandy siltstone that is interbedded with a fine-grained sandstone. The Sycamore Canyon Member contains lenses of conglomerate, conglomeratic sandstone, and sandstone. Sandy siltstone and fine-grained sandstones are interbedded with the aforementioned rock types. The Monterey Formation is characterized by abnormally high silica content compared to most clastic rocks. There are also silica-cemented rocks known as porcelanite and porcelanite shale . While this formation has distinguishable beds, there are many shale, sandstone, and mudstone beds that have normal amounts of silica. This sequence of this formation indicates an off-shore marine environment. The Fernando Formation

2240-487: The Whittier, Brea-Olinda, Sansinena, oil fields. There is an anticline that runs parallel to the Whittier fault that is evidence for compressional deformation during the late Miocene to early Pliocene. Thinning and pinch-out of the Pliocene sandstones are evidence for uplift during this same time period. The Anaheim nose is a subsurface feature that was discovered by geophysical surveys and exploratory drilling in 1930. It

2304-409: The area. The subsidence was brought to a halt when secondary recovery wells pumped enough water into the oil reservoir to stabilize it. Land subsidence can occur in various ways during an earthquake. Large areas of land can subside drastically during an earthquake because of offset along fault lines. Land subsidence can also occur as a result of settling and compacting of unconsolidated sediment from

2368-422: The asthenosphere. If mass is added to a local area of the crust (e.g., through deposition ), the crust subsides to compensate and maintain isostatic balance . The opposite of isostatic subsidence is known as isostatic rebound —the action of the crust returning (sometimes over periods of thousands of years) to a state of isostacy, such as after the melting of large ice sheets or the drying-up of large lakes after

2432-589: The basin lies on the boundary of the Transverse and Peninsular Ranges, this basin experiences both compressional and strike slip tectonics. During the early Pliocene, also identified as the "Basin Disruption" phase, deformation and folding occurred as a result of fault movement and a slight rotation event. While movement along the San Andreas Fault is responsible for the placement of the basin, it

2496-402: The basin was above sea level. The hallmarks of this phase were successive shoreline transgression and regression cycles. Deposition of older marine and non-marine sediments began to fill the basin. Towards the end of this phase, the shoreline began to retreat and deposition continued. After the deposition of the pre-Turonian units, there was a large emergence and erosion that can be observed as

2560-471: The basin was largely established during this phase of accelerated subsidence and deposition which occurred during the late Miocene and continued through the early Pleistocene. Clastic sedimentary rocks from the highland areas (to the north and east) moved down the submarine slopes and infilled the basin floor. Subsidence and sedimentation most likely began in the southern portion basin. Subsidence and Deposition occurred simultaneously, without interruption, until

2624-587: The basin's evolution, which began in the Upper Cretaceous and ended in the Pleistocene . This basin can be classified as an irregular pull-apart basin accompanied by rotational tectonics during the post- early Miocene . Before the formation of the basin, the area that encompasses the Los Angeles basin began above ground. A rapid transgression and regression of the shoreline moved the area to

Baldwin Hills (mountain range) - Misplaced Pages Continue

2688-401: The basin. The thickness of these oil sands range from hundreds to thousands of feet. Anticlines and faulted anticlines are the structural features that are also responsible for trapping oil. The first reported oil-producing well was discovered in 1892 on the land that is presently beneath Dodger Stadium . This basin was responsible for half of the states oil production until the (90's?). This

2752-478: The basin. This may be a result of large variation in clast size as with the upper Pliocene Pico Formation in the northwestern part of the basin and the Upper Fernando Formation in the southwest part of the basin. The Los Angeles Basin contains what is known as the " Great Unconformity " which has been interpreted as a large-scale erosional event in the basement rock unit. This unconformity

2816-401: The brittle crust , or by ductile flow in the hotter and more fluid mantle . Where faults occur, absolute subsidence may occur in the hanging wall of normal faults. In reverse, or thrust, faults, relative subsidence may be measured in the footwall. The crust floats buoyantly in the asthenosphere , with a ratio of mass below the "surface" in proportion to its own density and the density of

2880-571: The development of the submarine channel led to the anticline's formation. Fold initiation began in the late-Miocene to early Pliocene period of deformation. There are many other anticlines within the basin and isopach data suggests that the formation of these folds occurred mostly during the Pliocene. The La Brea Tar Pits are pools of stagnant asphaltum that have been found on the basin's surface. These "pools" are important because hundreds of thousands of late Pleistocene bones and plants have been found. These pits allowed scientists to better understand

2944-408: The ecosystem at that particular point in the geologic past. Accumulations of oil and gas occur almost wholly within strata of the younger sequence and in areas that are within or adjacent to the coastal belt. The Puente formation has proved to be the most notable reservoir for petroleum in the basin. The primary reason for the high abundance of oil is because the oil sands are well saturated within

3008-507: The effect. High buildings can create land subsidence by pressing the soil beneath with their weight. The problem is already felt in New York City , San Francisco Bay Area , Lagos . Land subsidence leads to the lowering of the ground surface, altering the topography. This elevation reduction increases the risk of flooding , particularly in river flood plains and delta areas. Earth fissures are linear fractures that appear on

3072-673: The excessive extraction of groundwater, making it a growing problem throughout the world. Groundwater fluctuations can also indirectly affect the decay of organic material. The habitation of lowlands , such as coastal or delta plains, requires drainage . The resulting aeration of the soil leads to the oxidation of its organic components, such as peat , and this decomposition process may cause significant land subsidence. This applies especially when groundwater levels are periodically adapted to subsidence, in order to maintain desired unsaturated zone depths, exposing more and more peat to oxygen. In addition to this, drained soils consolidate as

3136-521: The ground level. Since exploitation of the Slochteren ( Netherlands ) gas field started in the late 1960s the ground level over a 250 km area has dropped by a current maximum of 30 cm. Extraction of petroleum likewise can cause significant subsidence. The city of Long Beach, California , has experienced 9 meters (30 ft) over the course of 34 years of petroleum extraction, resulting in damage of over $ 100 million to infrastructure in

3200-473: The initiation of the modern basin. This movement caused the southwestern block to be uplifted relative to the central basin block. The central part of the basin continued to experience sediment deposition through the Pleistocene from flooding and erosional debris from the surrounding mountains and Puente Hills. This infill was responsible for the final retreat of the shoreline from the basin. Deposition in

3264-402: The land surface, characterized by openings or offsets. These fissures can be several meters deep, several meters wide, and extend for several kilometers. They form when the deformation of an aquifer, caused by pumping, concentrates stress in the sediment. This inhomogeneous deformation results in the differential compaction of the sediments. Ground fissures develop when this tensile stress exceeds

SECTION 50

#1732782467715

3328-443: The last ice age. Lake Bonneville is a famous example of isostatic rebound. Due to the weight of the water once held in the lake, the earth's crust subsided nearly 200 feet (61 m) to maintain equilibrium. When the lake dried up, the crust rebounded. Today at Lake Bonneville , the center of the former lake is about 200 feet (61 m) higher than the former lake edges. Many soils contain significant proportions of clay. Because of

3392-444: The late Pliocene. Until the rate of deposition gradually overtook the rate of subsidence, and the sea level began to fall. Towards the end of this phase, the margins of the basin began to rise above sea level. During the early Pleistocene, deposition began to outpace subsidence in the depressed parts of the basin and the shoreline began to move southward. This phase also had movement along the Newport–Inglewood fault zone that resulted in

3456-525: The shaking of an earthquake. The Geospatial Information Authority of Japan reported immediate subsidence caused by the 2011 Tōhoku earthquake . In Northern Japan, subsidence of 0.50 m (1.64 ft) was observed on the coast of the Pacific Ocean in Miyako , Tōhoku , while Rikuzentakata, Iwate measured 0.84 m (2.75 ft). In the south at Sōma, Fukushima , 0.29 m (0.95 ft)

3520-718: The southeast, the basin is bordered by the Santa Ana Mountains and the San Joaquin Hills . The western boundary of the basin is marked by the Continental Borderland and is part of the onshore portion. The California borderland is characterized by northwest trending offshore ridges and basins. The Los Angeles Basin is notable for its great structural relief and complexity in relation to its geologic youth and small size for its prolific oil production. Yerkes et al. identify five major stages of

3584-500: The strata present and major structural features. The southwestern block was uplifted prior to the middle Miocene and is composed mostly of marine strata and contains two major anticlines. This block also contains the steeply-dipping Palos Verdes Hills fault zone. The middle Miocene volcanics can be seen locally within the southwest block. The northwestern block consists of clastic marine sediments of Late Cretaceous to Pleistocene age. Middle Miocene volcanics are also present. This block has

3648-620: The subsurface creates voids (i.e., caves ). If the roof of a void becomes too weak, it can collapse and the overlying rock and earth will fall into the space, causing subsidence at the surface. This type of subsidence can cause sinkholes which can be many hundreds of meters deep. Several types of sub-surface mining , and specifically methods which intentionally cause the extracted void to collapse (such as pillar extraction, longwall mining and any metalliferous mining method which uses "caving" such as "block caving" or "sub-level caving") will result in surface subsidence. Mining-induced subsidence

3712-405: The taking of preventive measures, and the carrying out of repairs post-mining. If natural gas is extracted from a natural gas field the initial pressure (up to 60 MPa (600 bar )) in the field will drop over the years. The pressure helps support the soil layers above the field. If the gas is extracted, the overburden pressure sediment compacts and may lead to earthquakes and subsidence at

3776-595: The tensile strength of the sediment. Land subsidence can lead to differential settlements in buildings and other infrastructures , causing angular distortions. When these angular distortions exceed certain values, the structures can become damaged, resulting in issues such as tilting or cracking. Land subsidence causes vertical displacements (subsidence or uplift). Although horizontal displacements also occur, they are generally less significant. The following are field methods used to measure vertical and horizontal displacements in subsiding areas: Tomás et al. conducted

3840-441: The very small particle size, they are affected by changes in soil moisture content. Seasonal drying of the soil results in a lowering of both the volume and the surface of the soil. If building foundations are above the level reached by seasonal drying, they move, possibly resulting in damage to the building in the form of tapering cracks. Trees and other vegetation can have a significant local effect on seasonal drying of soils. Over

3904-665: The volume of groundwater extraction , and clay content. This model assumes that changes in piezometric levels affecting aquifers and aquitards occur only in the vertical direction. It allows for subsidence calculations at a specific point using only vertical soil parameters. Quasi-three-dimensional seepage models apply Terzaghi 's one-dimensional consolidation equation to estimate subsidence, integrating some aspects of three-dimensional effects. The fully coupled three-dimensional model simulates water flow in three dimensions and calculates subsidence using Biot's three-dimensional consolidation theory. Machine learning has become

SECTION 60

#1732782467715

3968-413: The world and incurring costs measured in hundreds of millions of US dollars. Land subsidence caused by groundwater withdrawal will likely increase in occurrence and related damages, primarily due to global population and economic growth, which will continue to drive higher groundwater demand. Subsidence frequently causes major problems in karst terrains, where dissolution of limestone by fluid flow in

4032-488: Was accompanied with the rotation of the western Transverse Ranges. This rotation is responsible for the placement and northwest–southeast orientation of the LA Basin. Early in the Miocene, before deposition of the Topanga, high heat flow and transtension caused the extension of the basin. As the crust thinned, the basin began to subside from isostatic pressure as a result of large amounts of sediment deposition. Because

4096-672: Was observed. The maximum amount of subsidence was 1.2 m (3.93 ft), coupled with horizontal diastrophism of up to 5.3 m (17.3 ft) on the Oshika Peninsula in Miyagi Prefecture . Groundwater-related subsidence is the subsidence (or the sinking) of land resulting from groundwater extraction. It is a growing problem in the developing world as cities increase in population and water use, without adequate pumping regulation and enforcement. One estimate has 80% of serious land subsidence problems associated with

#714285