Misplaced Pages

Belle II experiment

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

36°9′28″N 140°4′30″E  /  36.15778°N 140.07500°E  / 36.15778; 140.07500

#872127

45-571: The Belle   II experiment is a particle physics experiment designed to study the properties of B mesons (heavy particles containing a bottom quark ) and other particles. Belle   II is the successor to the Belle experiment , and commissioned at the SuperKEKB accelerator complex at KEK in Tsukuba , Ibaraki prefecture , Japan . The Belle   II detector was "rolled in" (moved into

90-487: A Hilbert space , which is also treated in quantum field theory . Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles. Ordinary matter is made from first- generation quarks ( up , down ) and leptons ( electron , electron neutrino ). Collectively, quarks and leptons are called fermions , because they have

135-402: A microsecond . They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays . Mesons are also produced in cyclotrons or other particle accelerators . Particles have corresponding antiparticles with the same mass but with opposite electric charges . For example, the antiparticle of the electron is the positron . The electron has

180-502: A quantum spin of half-integers (−1/2, 1/2, 3/2, etc.). This causes the fermions to obey the Pauli exclusion principle , where no two particles may occupy the same quantum state . Quarks have fractional elementary electric charge (−1/3 or 2/3) and leptons have whole-numbered electric charge (0 or 1). Quarks also have color charge , which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because

225-1058: A " Theory of Everything ", or "TOE". There are also other areas of work in theoretical particle physics ranging from particle cosmology to loop quantum gravity . In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce medical isotopes for research and treatment (for example, isotopes used in PET imaging ), or used directly in external beam radiotherapy . The development of superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN . Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating

270-412: A cylindrical shape to cover the e e collisions happening on the central axis of the detector. The detector is asymmetric in beam direction, because the initial energy of the electron beam is larger than the positron beam. Much of the original Belle detector has been upgraded to cope with the higher instantaneous luminosity provided by the SuperKEKB accelerator. The main components are the following, from

315-452: A fourth generation of fermions does not exist. Bosons are the mediators or carriers of fundamental interactions, such as electromagnetism , the weak interaction , and the strong interaction . Electromagnetism is mediated by the photon , the quanta of light . The weak interaction is mediated by the W and Z bosons . The strong interaction is mediated by the gluon , which can link quarks together to form composite particles. Due to

360-872: A long and growing list of beneficial practical applications with contributions from particle physics. Major efforts to look for physics beyond the Standard Model include the Future Circular Collider proposed for CERN and the Particle Physics Project Prioritization Panel (P5) in the US that will update the 2014 P5 study that recommended the Deep Underground Neutrino Experiment , among other experiments. Facade pattern The facade pattern (also spelled façade )

405-430: A negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter . Some particles, such as the photon , are their own antiparticle. These elementary particles are excitations of the quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics,

450-503: A subsystem. See also the UML class and sequence diagram below. A Facade is used when an easier or simpler interface to an underlying object is desired. Alternatively, an adapter can be used when the wrapper must respect a particular interface and must support polymorphic behavior. A decorator makes it possible to add or alter behavior of an interface at run-time. The facade pattern is typically used when In this UML class diagram ,

495-435: A wide range of exotic particles . All particles and their interactions observed to date can be described almost entirely by the Standard Model. Dynamics of particles are also governed by quantum mechanics ; they exhibit wave–particle duality , displaying particle-like behaviour under certain experimental conditions and wave -like behaviour in others. In more technical terms, they are described by quantum state vectors in

SECTION 10

#1732782356873

540-427: Is a software design pattern commonly used in object-oriented programming . Analogous to a façade in architecture, it is an object that serves as a front-facing interface masking more complex underlying or structural code. A facade can: Developers often use the facade design pattern when a system is very complex or difficult to understand because the system has many interdependent classes or because its source code

585-425: Is a particle physics theory suggesting that systems with higher energy have a smaller number of dimensions. A third major effort in theoretical particle physics is string theory . String theorists attempt to construct a unified description of quantum mechanics and general relativity by building a theory based on small strings, and branes rather than particles. If the theory is successful, it may be considered

630-554: Is called the Standard Model . The reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity , string theory and supersymmetry theory . Practical particle physics is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider . Theoretical particle physics

675-717: Is currently operating the Belle II experiment. The collaboration handles the collision data recorded at the experiment, performs the data analysis and delivers the results in form of scientific journal articles, conference talks, etc. As on October 5, 2023, it included 1,174 members from 124 institutes and 27 countries around the globe. In October 2021 the Software development team within the Belle II Collaboration has published Belle II Analysis Software Framework or basf2, as open-source software on GitHub . This

720-532: Is explained by the Standard Model , which gained widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks . It describes the strong , weak , and electromagnetic fundamental interactions , using mediating gauge bosons . The species of gauge bosons are eight gluons , W , W and Z bosons , and the photon . The Standard Model also contains 24 fundamental fermions (12 particles and their associated anti-particles), which are

765-595: Is in model building where model builders develop ideas for what physics may lie beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data. It may involve work on supersymmetry , alternatives to the Higgs mechanism , extra spatial dimensions (such as the Randall–Sundrum models ), Preon theory, combinations of these, or other ideas. Vanishing-dimensions theory

810-517: Is the main package used to simulate, reconstruct and analyse the recorded collision events at the Belle II experiment and there are several other separate satellite packages, used for DAQ , computation of the systematic uncertainties, etc. The backend of the reconstruction and analysis libraries are written in C++ , while the analysis steering and facade are implemented in Python language. To coordinate

855-471: Is the study of these particles in the context of cosmology and quantum theory . The two are closely interrelated: the Higgs boson was postulated by theoretical particle physicists and its presence confirmed by practical experiments. The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton , through his work on stoichiometry , concluded that each element of nature

900-617: Is unavailable. This pattern hides the complexities of the larger system and provides a simpler interface to the client. It typically involves a single wrapper class that contains a set of members required by the client. These members access the system on behalf of the facade client and hide the implementation details. The Facade design pattern is one of the twenty-three well-known GoF design patterns that describe how to solve recurring design problems to design flexible and reusable object-oriented software, that is, objects that are easier to implement, change, test, and reuse. What problems can

945-600: Is used to extract the parameters of the Standard Model with less uncertainty. This work probes the limits of the Standard Model and therefore expands scientific understanding of nature's building blocks. Those efforts are made challenging by the difficulty of calculating high precision quantities in quantum chromodynamics . Some theorists working in this area use the tools of perturbative quantum field theory and effective field theory , referring to themselves as phenomenologists . Others make use of lattice field theory and call themselves lattice theorists . Another major effort

SECTION 20

#1732782356873

990-507: The Client class doesn't access the subsystem classes directly. Instead, the Client works through a Facade class that implements a simple interface in terms of (by delegating to) the subsystem classes ( Class1 , Class2 , and Class3 ). The Client depends only on the simple Facade interface and is independent of the complex subsystem. The sequence diagram shows the run-time interactions: The Client object works through

1035-488: The LHC 's record of 2.14 × 10 cms set with proton–proton collisions in 2018. A few days later, SuperKEKB pushed the luminosity record to 2.4 × 10 cms . In June 2022 the luminosity record was nearly doubled to 4.7 × 10 cms . The Belle II experiment is being governed by Belle II Collaboration, which is an international worldwide scientific community. The Belle II Collaboration has designed, produced, assembled and

1080-544: The atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons . Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing

1125-401: The weak interaction , and the strong interaction . Quarks cannot exist on their own but form hadrons . Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons . Two baryons, the proton and the neutron , make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of

1170-469: The Facade design pattern solve? Clients that access a complex subsystem directly refer to (depend on) many different objects having different interfaces (tight coupling), which makes the clients hard to implement, change, test, and reuse. What solution does the Facade design pattern describe? Define a Facade object that This enables to work through a Facade object to minimize the dependencies on

1215-408: The Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of quantum field theories . This reclassification marked the beginning of modern particle physics. The current state of the classification of all elementary particles

1260-571: The aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be massless . All bosons have an integer quantum spin (0 and 1) and can have the same quantum state . Most aforementioned particles have corresponding antiparticles , which compose antimatter . Normal particles have positive lepton or baryon number , and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are

1305-517: The collision point of SuperKEKB) in April 2017. Belle   II started taking data in early 2018. Over its running period, Belle   II is expected to collect around 50 times more data than its predecessor, mostly due to a 40-fold increase in an instantaneous luminosity provided by SuperKEKB as compared to the previous KEKB accelerator. Many interesting analyses of the Belle and BaBar experiments were limited by statistical uncertainties, which

1350-597: The constituents of all matter . Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson . On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for

1395-450: The development of nuclear weapons . Throughout the 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the " particle zoo ". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to matter-antimatter imbalance . After the formulation of

Belle II experiment - Misplaced Pages Continue

1440-478: The first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model. Modern particle physics research is focused on subatomic particles , including atomic constituents, such as electrons , protons , and neutrons (protons and neutrons are composite particles called baryons , made of quarks ), that are produced by radioactive and scattering processes; such particles are photons , neutrinos , and muons , as well as

1485-538: The gravitational interaction, but it has not been detected or completely reconciled with current theories. Many other hypothetical particles have been proposed to address the limitations of the Standard Model. Notably, supersymmetric particles aim to solve the hierarchy problem , axions address the strong CP problem , and various other particles are proposed to explain the origins of dark matter and dark energy . The world's major particle physics laboratories are: Theoretical particle physics attempts to develop

1530-424: The hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything ). In recent years, measurements of neutrino mass have provided

1575-480: The innermost to the outermost systems.: The Belle II experiment data taking is separated into three phases: On November 22, 2018, the Belle II detector was completed with the installation of the VerteX Detector (VXD). On March 25, 2019, the first collisions of the actual physics program were detected. On 15 June 2020, the SuperKEKB reached an instantaneous luminosity of 2.22 × 10 cms — surpassing

1620-433: The interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement . There are three known generations of quarks (up and down, strange and charm , top and bottom ) and leptons (electron and its neutrino, muon and its neutrino , tau and its neutrino ), with strong indirect evidence that

1665-497: The models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics ). There are several major interrelated efforts being made in theoretical particle physics today. One important branch attempts to better understand the Standard Model and its tests. Theorists make quantitative predictions of observables at collider and astronomical experiments, which along with experimental measurements

1710-483: The photon or gluon, have no antiparticles. Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue. The gluon can have eight color charges , which are the result of quarks' interactions to form composite particles (gauge symmetry SU(3) ). The neutrons and protons in

1755-473: The previous e e experiments and improve precision on the already measured physics observables. The physics program of Belle II includes the studies of the following particles or processes: The majority of the Belle II dataset will be recorded at Upsilon(4S) center-of-mass energy, while a small portion of it will be taken at Upsilon(5S) and as energy scans. Belle II is a general purpose high-energy particle detector with almost full solid angle coverage. It has

1800-426: The primary colors . More exotic hadrons can have other types, arrangement or number of quarks ( tetraquark , pentaquark ). An atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1 , which has one of its electrons replaced with a muon. The graviton is a hypothetical particle that can mediate

1845-444: The same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript . For example, the electron and the positron are denoted e and e . When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles. Some particles, such as

Belle II experiment - Misplaced Pages Continue

1890-622: The scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics . The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons , and electrons and electron neutrinos . The three fundamental interactions known to be mediated by bosons are electromagnetism ,

1935-401: The software development, the Belle II Collaboration uses industrial collaboration tools such as Atlassian Jira , Confluence and git -based BitBucket service. Particle physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation . The field also studies combinations of elementary particles up to

1980-682: Was composed of a single, unique type of particle. The word atom , after the Greek word atomos meaning "indivisible", has since then denoted the smallest particle of a chemical element , but physicists later discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron . The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn ), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to

2025-441: Was the main motivation to build a new generation of B-factory - Belle II. The target dataset is 50,000   fb at Belle   II compared to 988   fb (with 711   fb at the Υ(4S) energy ) at Belle. The dataset of good runs from Belle II before Long shutdown 1 was 424   fb (with 363   fb at the Υ(4S) energy .) This immense dataset would allow studies of rare physics processes, which were out of reach for

#872127