Misplaced Pages

Bessemer process

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#41958

73-405: The Bessemer process was the first inexpensive industrial process for the mass production of steel from molten pig iron before the development of the open hearth furnace . The key principle is removal of impurities from the iron by oxidation with air being blown through the molten iron. The oxidation also raises the temperature of the iron mass and keeps it molten. The modern process

146-400: A greenhouse gas , through chemical reactions, as well as through the combustion of fossil fuels to generate the high temperatures needed to reach the activation energies of the chemical reactions. The availability of electricity and its effect on materials gave rise to several processes for plating or separating metals. The physical shaping of materials by forming their liquid form using

219-530: A forerunner of today's continuous casting processes and remarkably, Bessemer's original idea has been implemented in the direct continuous casting of steel strip. Bessemer died in March 1898 at Denmark Hill , London. He is buried in West Norwood cemetery , London SE27. Other influential Victorians such as Sir Henry Tate , Sir Henry Doulton and Baron de Reuters are buried in the same cemetery. Bessemer

292-404: A full day of heating, stirring and reheating to achieve this. The blowing of air through the molten pig iron introduces oxygen into the melt which results in oxidation , removing impurities found in the pig iron, such as silicon , manganese , and carbon in the form of oxides . These oxides either escape as gas or form a solid slag . The refractory lining of the converter also plays a role in

365-428: A lower rate on a proportion of their output in order to encourage production, but not so large a proportion that they might decide to reduce their selling prices. By this method he hoped to cause the new process to gain in standing and market share. He realised that the technical problem was due to impurities in the iron and concluded that the solution lay in knowing when to turn off the flow of air in his process so that

438-518: A major industrial centre. Bessemer had been trying to reduce the cost of steel-making for military ordnance, and developed his system for blowing air through molten pig iron to remove the impurities. This made steel easier, quicker and cheaper to manufacture, and revolutionised structural engineering. One of the most significant inventors of the Second Industrial Revolution , Bessemer also made at least 128 other inventions in

511-680: A meeting of the British Association in Cheltenham which he titled "The Manufacture of Malleable Iron and Steel without Fuel." It was published in full in The Times . The Bessemer process involved using oxygen in air blown through molten pig iron to burn off the impurities and thus create steel. James Nasmyth had been working on a similar idea for some time prior to this. A reluctant patentor, and in this instance still working through some problems in his method, Nasmyth abandoned

584-421: A mould Many materials exist in an impure form. Purification or separation provides a usable product. Distillation is the purification of volatile substances by evaporation and condensation In additive manufacturing , material is progressively added to the piece until the desired shape and size are obtained. The nature of an organic molecule means it can be transformed at the molecular level to create

657-580: A number of English puddlers visited this place to see my new process. Several of them have since returned to England and may have spoken of my invention there." It is suggested Kelly's process was less developed and less successful than Bessemer's process. Sir Henry Bessemer described the origin of his invention in his autobiography written in 1890. During the outbreak of the Crimean War , many English industrialists and inventors became interested in military technology. According to Bessemer, his invention

730-508: A patent that was taken out in May 1878. Sidney Gilchrist Thomas's invention consisted of using dolomite or sometimes limestone linings for the Bessemer converter rather than clay, and it became known as the 'basic' Bessemer rather than the 'acid' Bessemer process. An additional advantage was that the processes formed more slag in the converter, and this could be recovered and used very profitably as

803-667: A phosphate fertilizer. In 1898, Scientific American published an article called Bessemer Steel and its Effect on the World explaining the significant economic effects of the increased supply in cheap steel. They noted that the expansion of railroads into previously sparsely inhabited regions of the country had led to settlement in those regions, and had made the trade of certain goods profitable, which had previously been too costly to transport. The Bessemer process revolutionized steel manufacture by decreasing its cost, from £40 per long ton to £6–7 per long ton, along with greatly increasing

SECTION 10

#1732775885042

876-414: A range of products. A list by process: Sir Henry Bessemer Sir Henry Bessemer FRS (19 January 1813 – 15 March 1898) was an English inventor, whose steel-making process would become the most important technique for making steel in the nineteenth century for almost one hundred years. He also played a significant role in establishing the town of Sheffield , nicknamed ‘Steel City’, as

949-507: A screw extruder to extract sugar from sugar cane, and others in the fields of iron, steel and glass. These are described in some detail in his autobiography. After suffering from seasickness in 1868, he designed the SS Bessemer (also called the "Bessemer Saloon"), a passenger steamship with a cabin on gimbals designed to stay level, however rough the sea, to save her passengers from seasickness. The mechanism – hydraulics controlled by

1022-522: A steersman watching a spirit level – worked in model form and in a trial version built in his garden in Denmark Hill, London. However, it never received a proper seagoing test as, when the ship demolished part of the Calais pier on her maiden voyage, investor confidence was lost and the ship was scrapped. Bessemer also obtained a patent in 1857 for the casting of metal between contrarotating rollers –

1095-430: A time. They were usually operated in pairs, one being blown while another was being filled or tapped. By the early 19th century the puddling process was widespread. Until technological advances made it possible to work at higher heats, slag impurities could not be removed entirely, but the reverberatory furnace made it possible to heat iron without placing it directly in the fire, offering some degree of protection from

1168-522: A ton. Sidney Gilchrist Thomas , a Londoner with a Welsh father, was an industrial chemist who decided to tackle the problem of phosphorus in iron, which resulted in the production of low grade steel. Believing that he had discovered a solution, he contacted his cousin, Percy Gilchrist , who was a chemist at the Blaenavon Ironworks . The manager at the time, Edward Martin, offered Sidney equipment for large-scale testing and helped him draw up

1241-460: A vast array of uses. Mushet's patent ultimately lapsed due to Mushet's inability to pay the patent fees and was acquired by Bessemer. Bessemer earned over 5 million dollars in royalties from the patents. The first company to license the process was the Manchester firm of W & J Galloway , and they did so before Bessemer announced it at Cheltenham in 1856. They are not included in his list of

1314-580: A visit to London in 1857. During the first half of 1858, Göransson, together with a small group of engineers, experimented with the Bessemer process at Edsken near Hofors , Sweden before he finally succeeded. Later in 1858 he again met with Henry Bessemer in London, managed to convince him of his success with the process, and negotiated the right to sell his steel in England. Production continued in Edsken, but it

1387-652: Is named after its inventor, the Englishman Henry Bessemer , who took out a patent on the process in 1856. The process was said to be independently discovered in 1851 by the American inventor William Kelly though the claim is controversial. The process using a basic refractory lining is known as the "basic Bessemer process" or Gilchrist–Thomas process after the English discoverers Percy Gilchrist and Sidney Gilchrist Thomas . A system akin to

1460-440: Is no longer commercially used, at the time of its invention it was of enormous industrial importance because it lowered the cost of production steel, leading to steel being widely substituted for cast iron and wrought iron . Bessemer's attention was drawn to the problem of steel manufacture in the course of an attempt to improve the construction of guns. Bessemer licensed the patent for his process to five ironmasters , but from

1533-528: The American Academy of Arts and Sciences . Sheffield's Kelham Island Industrial Heritage Museum maintains an early example of a Bessemer converter for public viewing. A school was named after him in the town of Hitchin , and when the school was demolished in the 1980s the new road built in its place was named Bessemer Close in 1995. Bessemer Way in Rotherham is also named in his honour. In 2009,

SECTION 20

#1732775885042

1606-518: The Forest of Dean . His method was to first burn off, as far as possible, all the impurities and carbon, then reintroduce carbon and manganese by adding an exact amount of spiegeleisen , an alloy of iron and manganese with trace amounts of carbon and silicon . This had the effect of improving the quality of the finished product, increasing its malleability —its ability to withstand rolling and forging at high temperatures and making it more suitable for

1679-715: The Lackawanna Iron & Coal Company in Scranton, Pennsylvania , had also investigated the process in Europe. He built a mill in 1876 using the Bessemer process for steel rails and quadrupled his production. Bessemer steel was used in the United States primarily for railroad rails. During the construction of the Brooklyn Bridge, a major dispute arose over whether crucible steel should be used instead of

1752-601: The Bessemer process has existed since the 11th century in East Asia. Economic historian Robert Hartwell writes that the Chinese of the Song dynasty (960–1279 CE) innovated a "partial decarbonization" method of repeated forging of cast iron under a cold blast. Sinologist Joseph Needham and historian of metallurgy Theodore A. Wertime have described the method as a predecessor to the Bessemer process of making steel. This process

1825-601: The Bessemer process, was developed in Europe. In 1740, Benjamin Huntsman developed the crucible technique for steel manufacture, at his workshop in the district of Handsworth in Sheffield . This process had an enormous impact on the quantity and quality of steel production, but it was unrelated to the Bessemer-type process employing decarburization. The Japanese may have made use of a Bessemer-type process, which

1898-628: The United Kingdom and negotiate with the Bank of England on their behalf. Holley secured a license for Griswold and Winslow to use Bessemer's patented processes and returned to the United States in late 1863. The trio began setting up a mill in Troy, New York in 1865. The factory contained a number of Holley's innovations that greatly improved productivity over Bessemer's factory in Sheffield, and

1971-467: The United States. His A Treatise on Ordnance and Armor is an important work on contemporary weapons manufacturing and steel-making practices. In 1862, he visited Bessemer's Sheffield works, and became interested in licensing the process for use in the US. Upon returning to the US, Holley met with two iron producers from Troy, New York , John F. Winslow and John Augustus Griswold , who asked him to return to

2044-452: The blister steel bars were broken into pieces and melted in small crucibles, each containing 20 kg or so. This produced higher quality crucible steel but increased the cost. The Bessemer process reduced the time needed to make lower-grade steel to about half an hour while requiring only the coke needed initially to melt the pig iron. The earliest Bessemer converters produced steel for £7 a long ton , although it initially sold for around £40

2117-431: The blowing air, prevented Bessemer steel from being used for many structural applications. Open-hearth steel was suitable for structural applications. Steel greatly improved the productivity of railroads. Steel rails lasted ten times longer than iron rails. Steel rails, which became heavier as prices fell, could carry heavier locomotives, which could pull longer trains. Steel rail cars were longer and were able to increase

2190-591: The cause of this was the lack of trained personnel and investment in technology rather than anything intrinsic to the process itself. For example, one of the major causes of the decline of the giant ironmaking company Bolckow Vaughan of Middlesbrough was its failure to upgrade its technology. The basic process, the Thomas-Gilchrist process, remained in use longer, especially in Continental Europe, where iron ores were of high phosphorus content and

2263-598: The cheaper Bessemer steel. In 1877, Abram Hewitt wrote a letter urging against the use of Bessemer steel in the construction of the Brooklyn Bridge . Bids had been submitted for both crucible steel and Bessemer steel; John A. Roebling's Sons submitted the lowest bid for Bessemer steel, but at Hewitt's direction, the contract was awarded to J. Lloyd Haigh Co. Using the Bessemer process, it took between 10 and 20 minutes to convert three to five tons of iron into steel – it would previously take at least

Bessemer process - Misplaced Pages Continue

2336-475: The conversion — clay linings may be used when there is little phosphorus in the raw material, and Bessemer himself used ganister sandstone – this is known as the acid Bessemer process. When the phosphorus content is high, dolomite , or sometimes magnesite , linings are required in the basic Bessemer limestone process, see below . In order to produce steel with desired properties, additives such as spiegeleisen (a ferromanganese alloy), can be added to

2409-460: The factory. The Nuremberg powder, which was made by hand, retailed in London for £5 12 s per pound and he eventually reduced the price to half a crown £ – 2 / 6 , or about 1/40th. The profits from sale of the paint allowed him to pursue his other inventions. Bessemer patented a method for making a continuous ribbon of plate glass in 1848, but it was not commercially successful ( , chapter 8). He gained experience in designing furnaces, which

2482-471: The fields of iron, steel and glass. Unlike many inventors, he managed to bring his own projects to fruition and profited financially from their success. He was knighted for his contribution to science in 1879, and in the same year was made a fellow of the Royal Society . Bessemer's father, Anthony , was born in London into a Huguenot family, but moved to Paris when he was about 21 years old. He

2555-532: The firm of Henry Bessemer & Co. was underselling them to the extent of UK£10–£15 a ton. This argument to the pocket quickly had its effect, and licences were applied for in such numbers that, in royalties for the use of his process, Bessemer received a sum in all considerably exceeding a million pounds sterling. However Mushet received nothing and by 1866 was destitute and in ill health. In that year his 16-year-old daughter, Mary, travelled to London alone, to confront Bessemer at his offices, arguing that his success

2628-556: The four to whom he refunded the license fees. However, they subsequently rescinded their license in 1858 in return for the opportunity to invest in a partnership with Bessemer and others. This partnership began to manufacture steel in Sheffield from 1858, initially using imported charcoal pig iron from Sweden . This was the first commercial production. A 20% share in the Bessemer patent was also purchased for use in Sweden and Norway by Swedish trader and Consul Göran Fredrik Göransson during

2701-473: The freight to car weight from 1:1 to 2:1. As early as 1895 in the UK it was being noted that the heyday of the Bessemer process was over and that the open hearth method predominated. The Iron and Coal Trades Review said that it was "in a semi-moribund condition. Year after year, it has not only ceased to make progress, but it has absolutely declined." It has been suggested, both at that time and more recently, that

2774-570: The growth of the United States as a major world steel producer. Using the Bessemer process, Carnegie Steel was able to reduce the costs of steel railroad rails from $ 100 per ton to $ 50 per ton between 1873 and 1875. The price of steel continued to fall until Carnegie was selling rails for $ 18 per ton by the 1890s. Prior to the opening of Carnegie's Thomson Works, steel output in the United States totaled around 157,000 tons per year. By 1910, American companies were producing 26 million tons of steel annually. William Walker Scranton , manager and owner of

2847-431: The impurities were burned off but just the right amount of carbon remained. However, despite spending tens of thousands of pounds on experiments, he could not find the answer. Certain grades of steel are sensitive to the 78% nitrogen which was part of the air blast passing through the steel. The solution was first discovered by English metallurgist Robert Forester Mushet , who had carried out thousands of experiments in

2920-401: The impurity of the fuel source. Thus, with the advent of this technology, coal began to replace charcoal fuel. The Bessemer process allowed steel to be produced without fuel, using the impurities of the iron to create the necessary heat. This drastically reduced the costs of steel production, but raw materials with the required characteristics could be difficult to find. High-quality steel

2993-521: The manufacture of gold paint. As he relates in his autobiography, he examined the bronze powder made in Nuremberg which was the only place where it was made at the time. He then copied and improved the product and made it capable of being made on a simple production line. It was an early example of reverse engineering where a product is analysed, and then reproduced. The process was kept secret, with only members of his immediate family having access to

Bessemer process - Misplaced Pages Continue

3066-406: The molten steel once the impurities have been removed. When the required steel had been formed, it was poured into ladles and then transferred into moulds while the lighter slag was left behind. The conversion process, called the "blow", was completed in approximately 20 minutes. During this period, the progress of the oxidation of the impurities was judged by the appearance of the flame issuing from

3139-406: The mouth of the converter. The modern use of photoelectric methods of recording the characteristics of the flame greatly aided the blower in controlling final product quality. After the blow, the liquid metal was recarburized to the desired point and other alloying materials were added, depending on the desired product. A Bessemer converter could treat a "heat" (batch of hot metal) of 5 to 30 tons at

3212-513: The open-hearth process was not able to remove all phosphorus; almost all inexpensive construction steel in Germany was produced with this method in the 1950s and 1960s. It was eventually superseded by basic oxygen steelmaking . In the U.S., commercial steel production using this method stopped in 1968. It was replaced by processes such as the basic oxygen (Linz–Donawitz) process , which offered better control of final chemistry. The Bessemer process

3285-406: The outset, the companies had great difficulty producing good-quality steel. Mr Göran Fredrik Göransson , a Swedish ironmaster, using the purer charcoal pig iron of that country, was the first to make good steel by the process, but only after many attempts. His results prompted Bessemer to try a purer iron obtained from Cumberland hematite , but even with this he had only limited success because

3358-471: The owners gave a successful public exhibition in 1867. The Troy factory attracted the attention of the Pennsylvania Railroad , which wanted to use the new process to manufacture steel rail. It funded Holley's second mill as part of its Pennsylvania Steel subsidiary. Between 1866 and 1877, the partners were able to license a total of 11 Bessemer steel mills. One of the investors they attracted

3431-399: The patent for his process to four ironmasters , for a total of £27,000, but the licensees failed to produce the quality of steel he had promised—it was "rotten hot and rotten cold", according to his friend, William Clay —and he later bought them back for £32,500. His plan had been to offer the licenses to one company in each of several geographic areas, at a royalty price per ton that included

3504-592: The process is likely derived from accounts of other Europeans who had traveled to Japan. Wagner believes that the Japanese process may have been similar to the Bessemer process, but cautions that alternative explanations are also plausible. In the early to mid-1850s, the American inventor William Kelly experimented with a method similar to the Bessemer process. Wagner writes that Kelly may have been inspired by techniques introduced by Chinese ironworkers hired by Kelly in 1854. The claim that both Kelly and Bessemer invented

3577-426: The project after hearing Bessemer at the meeting. Bessemer acknowledged the efforts of Nasmyth by offering him a one-third share of the value of his patent. Nasmyth turned it down as he was about to retire. Many industries were constrained by the lack of steel, being reliant on cast iron and wrought iron alone. Examples include railway structures such as bridges and tracks, where the treacherous nature of cast iron

3650-602: The public house "The Fountain" in Sheffield city centre was renamed "The Bessemer" in homage to Henry Bessemer, who had a huge impact on the Steel City 's development. In Workington, Cumbria, the local Wetherspoons pub is now named after him. In 2002 the Institute of Materials, Minerals and Mining (IOM3) was established from mergers encompassing historical organisations including the Iron and Steel Institute , of which Bessemer

3723-549: The quantity of carbon was difficult to control. Robert Forester Mushet had carried out thousands of experiments at Darkhill Ironworks , in the Forest of Dean , and had shown that the quantity of carbon could be controlled by removing almost all of it from the iron and then adding an exact amount of carbon and manganese , in the form of spiegeleisen . This improved the quality of the finished product and increased its malleability. When Bessemer tried to induce makers to take up his improved system, he met with general rebuffs and

SECTION 50

#1732775885042

3796-409: The same process remains controversial. When Bessemer's patent for the process was reported by Scientific American , Kelly responded by writing a letter to the magazine. In the letter, Kelly states that he had previously experimented with the process and claimed that Bessemer knew of Kelly's discovery. He wrote that "I have reason to believe my discovery was known in England three or four years ago, as

3869-588: The scale and speed of production of this vital raw material. The process also decreased the labor requirements for steel-making. Before it was introduced, steel was far too expensive to make bridges or the framework for buildings and thus wrought iron had been used throughout the Industrial Revolution . After the introduction of the Bessemer process, steel and wrought iron became similarly priced, and some users, primarily railroads, turned to steel. Quality problems, such as brittleness caused by nitrogen in

3942-475: The time, steel was used to make only small items like cutlery and tools, but was too expensive for cannons. Starting in January 1855, he began working on a way to produce steel in the massive quantities required for artillery and by October he filed his first patent related to the Bessemer process. He patented the method a year later in 1856. William Kelley was awarded priority patent in 1857. Bessemer licensed

4015-621: Was Andrew Carnegie , who saw great promise in the new steel technology after a visit to Bessemer in 1872, and saw it as a useful adjunct to his existing businesses, the Keystone Bridge Company and the Union Iron Works. Holley built the new steel mill for Carnegie, and continued to improve and refine the process. The new mill, known as the Edgar Thomson Steel Works , opened in 1875, and started

4088-610: Was knighted by Queen Victoria for his contribution to science on 26 June 1879, and in the same year was made a fellow of the Royal Society . An honorary membership was conferred on Bessemer by the Institution of Engineers and Shipbuilders in Scotland in 1891. He was elected an International Member of the American Philosophical Society in 1894. In 1895, he was elected a Foreign Honorary Member of

4161-589: Was an inventor who, while engaged by the Paris Mint, made a machine for making medallions that could produce steel dies from a larger model. He became a member of the French Academy of Science , for his improvements to the optical microscope when he was 26. He was forced to leave Paris by the French Revolution , and returned to Britain. There he invented a process for making gold chains, which

4234-577: Was based on the results of her father's work. Bessemer decided to pay Mushet an annual pension of £300, a very considerable sum, which he paid for over 20 years, possibly with a view to keeping the Mushets from legal action. Bessemer also had works in Greenwich , London, adjacent to the River Thames, from about 1865. W. M. Lord has said with regard to this success that "Sir Henry Bessemer

4307-546: Was burnt for each ton of steel produced. Such steel when rolled into bars was sold at £50 to £60 (approximately £3,390 to £4,070 in 2008) a long ton . The most difficult and work-intensive part of the process, however, was the production of wrought iron done in finery forges in Sweden. This process was refined in the 18th century with the introduction of Benjamin Huntsman 's crucible steel -making techniques, which added an additional three hours firing time and required additional large quantities of coke. In making crucible steel,

4380-408: Was eventually driven to undertake the exploitation of the process himself. He erected steelworks in Sheffield in a business partnership with others, such as W & J Galloway & Sons , and began to manufacture steel. At first the output was insignificant, but gradually the magnitude of the operations was enlarged until the competition became effective, and steel traders generally became aware that

4453-416: Was far too small for the industrial-scale production needed. In 1862 Göransson built a new factory for his Högbo Iron and Steel Works company on the shore of Lake Storsjön, where the town of Sandviken was founded. The company was renamed Sandviken's Ironworks, continued to grow and eventually became Sandvik in the 1970s. Alexander Lyman Holley contributed significantly to the success of Bessemer steel in

SECTION 60

#1732775885042

4526-459: Was first described by the prolific scholar and polymath government official Shen Kuo (1031–1095) in 1075, when he visited Cizhou. Hartwell states that perhaps the earliest center where this was practiced was the great iron-production district along the Henan – Hebei border during the 11th century. In the 15th century, the finery process , another process which shares the air-blowing principle with

4599-481: Was inexpensive. Use of electric arc furnace technology competed favourably with the Bessemer process resulting in its obsolescence. Basic oxygen steelmaking is essentially an improved version of the Bessemer process (decarburization by blowing oxygen as gas into the heat rather than burning the excess carbon away by adding oxygen carrying substances into the heat). The advantages of pure oxygen blast over air blast were known to Henry Bessemer, but 19th-century technology

4672-413: Was inspired by a conversation with Napoleon III in 1854 pertaining to the steel required for better artillery. Bessemer claimed that it "was the spark which kindled one of the greatest revolutions that the present century had to record, for during my solitary ride in a cab that night from Vincennes to Paris, I made up my mind to try what I could to improve the quality of iron in the manufacture of guns." At

4745-703: Was keenly felt by many engineers and designers. There had been many accidents when cast iron beams collapsed suddenly, such as the Dee Bridge disaster of May 1847, the Wootton bridge collapse and the Bull bridge accident of 1860. The problem recurred at the Tay Bridge disaster of 1879, and failures continued until all cast iron under-bridges were replaced by steel structures. Wrought iron structures were much more reliable with very few failures. Though this process

4818-449: Was made by the reverse process of adding carbon to carbon-free wrought iron , usually imported from Sweden . The manufacturing process, called the cementation process , consisted of heating bars of wrought iron together with charcoal for periods of up to a week in a long stone box. This produced blister steel . The blister steel was put in a crucible with wrought iron and melted, producing crucible steel . Up to 3 tons of expensive coke

4891-641: Was not advanced enough to allow for the production of the large quantities of pure oxygen necessary to make it economical. Industrial process Industrial processes are procedures involving chemical , physical , electrical , or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry. Certain chemical process yield important basic materials for society, e.g., ( cement , steel , aluminum , and fertilizer ). However, these chemical reactions contribute to climate change by emitting carbon dioxide ,

4964-564: Was observed by European travellers in the 17th century. The adventurer Johan Albrecht de Mandelslo describes the process in a book published in English in 1669. He writes, "They have, among others, particular invention for the melting of iron, without the using of fire, casting it into a tun done about on the inside without about half a foot of earth, where they keep it with continual blowing, take it out by ladles full, to give it what form they please." According to historian Donald Wagner, Mandelslo did not personally visit Japan, so his description of

5037-471: Was president from 1871 to 1873; the latter organisation instituted the Bessemer Gold Medal under his tenure. IOM3 still recognises Bessemer's legacy with an annual award of the medal for outstanding services to the steel industry; recent recipients include Indira Samarasekera . That a man who did so much for industrial development did not receive higher recognition from his own government was

5110-418: Was so fast (10–20 minutes for a heat) that it allowed little time for chemical analysis or adjustment of the alloying elements in the steel. Bessemer converters did not remove phosphorus efficiently from the molten steel; as low-phosphorus ores became more expensive, conversion costs increased. The process permitted only limited amount of scrap steel to be charged, further increasing costs, especially when scrap

5183-459: Was somewhat exceptional. He had developed his process from an idea to a practical reality in his own lifetime and he was sufficiently of a businessman to have profited by it. In so many cases, inventions were not developed quickly and the plums went to other persons than the inventors." Bessemer was a prolific inventor and held at least 129 patents, spanning from 1838 to 1883. These included military ordnance, movable dies for embossed postage stamps,

5256-465: Was successful, and enabled him to buy a small estate in the village of Charlton , near Hitchin in Hertfordshire , where Henry was born. According to Bessemer he was given his name by his godfather Henry Caslon , who employed his father as a punchcutter . The invention from which Bessemer made his first fortune was a series of six steam-powered machines for making bronze powder , used in

5329-464: Was to be of great use for his new steel-making process. Henry Bessemer worked on the problem of manufacturing cheap steel for ordnance production from 1850 to 1855 when he patented his method. However, William Kelly , an American inventor in Kentucky, received a priority patent in 1857, effectively nullifying Bessemer's 1855 US patent. On 24 August 1856 Bessemer first described the process to

#41958