Misplaced Pages

Binary Black Hole Grand Challenge Alliance

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Gravitational waves are transient displacements in a gravitational field  – generated by the relative motion of gravitating masses – that radiate outward from their source at the speed of light . They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves . In 1916, Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime .

#79920

75-442: The Binary Black Hole Grand Challenge Alliance ( BBH Challenge Alliance ) was a scientific collaboration of international physics institutes and research groups dedicated to simulating the sources and predicting the waveforms for gravitational waves , in anticipation of gravitational radiation experiments such as LIGO . The BBH Challenge Alliance was established in 1993. This was an alliance of numerical relativity groups engaged in

150-438: A 5 σ {\displaystyle 5\sigma } -significance will be achieved by 2025 by combining the measurements of several collaborations. Gravitational waves are constantly passing Earth ; however, even the strongest have a minuscule effect and their sources are generally at a great distance. For example, the waves given off by the cataclysmic final merger of GW150914 reached Earth after travelling over

225-783: A decay in the orbit by about 1 × 10 meters per day or roughly the diameter of a proton . At this rate, it would take the Earth approximately 3 × 10 times more than the current age of the universe to spiral onto the Sun. This estimate overlooks the decrease in r over time, but the radius varies only slowly for most of the time and plunges at later stages, as r ( t ) = r 0 ( 1 − t t coalesce ) 1 / 4 , {\displaystyle r(t)=r_{0}\left(1-{\frac {t}{t_{\text{coalesce}}}}\right)^{1/4},} with r 0 {\displaystyle r_{0}}

300-424: A hyper-compact stellar system . Or it may carry gas, allowing the recoiling black hole to appear temporarily as a " naked quasar ". The quasar SDSS J092712.65+294344.0 is thought to contain a recoiling supermassive black hole. Neutron star merger A neutron star merger is the stellar collision of neutron stars . When two neutron stars fall into mutual orbit, they gradually spiral inward due to

375-516: A "cross"-polarized gravitational wave, h × , the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of circularly polarized waves. Gravitational waves are polarized because of the nature of their source. In general terms, gravitational waves are radiated by large, coherent motions of immense mass, especially in regions where gravity

450-408: A "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest. A kicked black hole can also carry a star cluster with it, forming

525-471: A billion light-years , as a ripple in spacetime that changed the length of a 4 km LIGO arm by a thousandth of the width of a proton , proportionally equivalent to changing the distance to the nearest star outside the Solar System by one hair's width. This tiny effect from even extreme gravitational waves makes them observable on Earth only with the most sophisticated detectors. The effects of

600-483: A changing quadrupole moment . That is, the system will give off gravitational waves. In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the Sun . However, the total energy of the Earth orbiting the Sun ( kinetic energy + gravitational potential energy ) is about 1.14 × 10 joules of which only 200 watts (joules per second) is lost through gravitational radiation, leading to

675-497: A complete relativistic theory of gravitation. He conjectured, like Poincare, that the equation would produce gravitational waves, but, as he mentions in a letter to Schwarzschild in February 1916, these could not be similar to electromagnetic waves. Electromagnetic waves can be produced by dipole motion, requiring both a positive and a negative charge. Gravitation has no equivalent to negative charge. Einstein continued to work through

750-497: A detailed version of the "sticky bead argument". This later led to a series of articles (1959 to 1989) by Bondi and Pirani that established the existence of plane wave solutions for gravitational waves. Paul Dirac further postulated the existence of gravitational waves, declaring them to have "physical significance" in his 1959 lecture at the Lindau Meetings . Further, it was Dirac who predicted gravitational waves with

825-464: A form of radiant energy similar to electromagnetic radiation . Newton's law of universal gravitation , part of classical mechanics , does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that is absent from Newtonian physics. In gravitational-wave astronomy , observations of gravitational waves are used to infer data about

SECTION 10

#1732772567080

900-446: A frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth. In the above example, it is assumed that the wave is linearly polarized with a "plus" polarization, written h + . Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees. In particular, in

975-405: A friendly competition to tackle the grand challenge of simulating binary black hole collisions for the purpose of understanding gravitational wave signatures that would be detected by experiments such as LIGO. This astronomy -related article is a stub . You can help Misplaced Pages by expanding it . Gravitational waves Gravitational waves transport energy as gravitational radiation ,

1050-411: A gamma-ray burst event detected in 2015, may be directly related to GW170817 and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray , optical and x-ray emissions, as well as to the nature of the associated host galaxies , are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be

1125-530: A kilonova, which may be more common in the universe than previously understood, according to the researchers. Also in October 2018, scientists presented a new way to use information from gravitational wave events (especially those involving the merger of neutron stars like GW170817) to determine the Hubble constant , which establishes the rate of expansion of the universe . The two earlier methods for finding

1200-434: A neutron star merger occurring any less than 10 parsecs from Earth would result in conclusive human extinction. By comparison, for short Gamma Ray Bursts (sGRB) the lethal zone extends hundreds of parsecs. Other sources such as near-earth supernovae emit high-energy photons in the form of gamma rays and x-rays ; these would destroy Earth's ozone layer , exposing the population to fatal levels of UVB radiation from

1275-412: A pair of solar mass neutron stars in a circular orbit at a separation of 1.89 × 10 m (189,000 km) has an orbital period of 1,000 seconds, and an expected lifetime of 1.30 × 10 seconds or about 414,000 years. Such a system could be observed by LISA if it were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have masses in

1350-407: A passing gravitational wave, in an extremely exaggerated form, can be visualized by imagining a perfectly flat region of spacetime with a group of motionless test particles lying in a plane, e.g., the surface of a computer screen. As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles, i.e., following the observer's line of vision into the screen,

1425-559: A possible r -process site since the reaction was first proposed in 1999, but the mechanism became widely accepted after multi-messenger event GW170817 was observed in 2017. On 17 August 2017, the LIGO and Virgo interferometers observed GW170817 , a gravitational wave associated with the merger of two neutron stars in NGC 4993 , an elliptical galaxy in the constellation Hydra about 140 million light years away. GW170817 co-occurred with

1500-481: A short (roughly 2-second long) gamma-ray burst , GRB 170817A , first detected 1.7 seconds after the GW merger signal, and a visible light observational event first observed 11 hours afterwards, SSS17a . The co-occurrence of GW170817 with GRB 170817A in both space and time strongly implies that neutron star mergers create short gamma-ray bursts. The subsequent detection of Swope Supernova Survey event 2017a (SSS17a) in

1575-779: A total orbital lifetime that may have been billions of years. In August 2017, LIGO and Virgo observed the first binary neutron star inspiral in GW170817 , and 70 observatories collaborated to detect the electromagnetic counterpart, a kilonova in the galaxy NGC 4993 , 40 megaparsecs away, emitting a short gamma ray burst ( GRB 170817A ) seconds after the merger, followed by a longer optical transient ( AT 2017gfo ) powered by r-process nuclei. Advanced LIGO detectors should be able to detect such events up to 200 megaparsecs away; at this range, around 40 detections per year would be expected. Black hole binaries emit gravitational waves during their in-spiral, merger , and ring-down phases. Hence, in

SECTION 20

#1732772567080

1650-476: A universal gravitational wave background . North American Nanohertz Observatory for Gravitational Waves states, that they were created over cosmological time scales by supermassive black holes, identifying the distinctive Hellings-Downs curve in 15 years of radio observations of 25 pulsars. Similar results are published by European Pulsar Timing Array, who claimed a 3 σ {\displaystyle 3\sigma } -significance . They expect that

1725-553: A well defined energy density in 1964. After the Chapel Hill conference, Joseph Weber started designing and building the first gravitational wave detectors now known as Weber bars . In 1969, Weber claimed to have detected the first gravitational waves, and by 1970 he was "detecting" signals regularly from the Galactic Center ; however, the frequency of detection soon raised doubts on the validity of his observations as

1800-424: Is about 130,000 seconds or 36 hours. The orbital frequency will vary from 1 orbit per second at the start, to 918 orbits per second when the orbit has shrunk to 20 km at merger. The majority of gravitational radiation emitted will be at twice the orbital frequency. Just before merger, the inspiral could be observed by LIGO if such a binary were close enough. LIGO has only a few minutes to observe this merger out of

1875-491: Is not fully understood, it is not easy to model the gravitational radiation emitted by them. As noted above, a mass distribution will emit gravitational radiation only when there is spherically asymmetric motion among the masses. A spinning neutron star will generally emit no gravitational radiation because neutron stars are highly dense objects with a strong gravitational field that keeps them almost perfectly spherical. In some cases, however, there might be slight deformities on

1950-407: Is so strong that Newtonian gravity begins to fail. The effect does not occur in a purely spherically symmetric system. A simple example of this principle is a spinning dumbbell . If the dumbbell spins around its axis of symmetry, it will not radiate gravitational waves; if it tumbles end over end, as in the case of two planets orbiting each other, it will radiate gravitational waves. The heavier

2025-687: Is under development. A space-based observatory, the Laser Interferometer Space Antenna (LISA), is also being developed by the European Space Agency . Gravitational waves do not strongly interact with matter in the way that electromagnetic radiation does. This allows for the observation of events involving exotic objects in the distant universe that cannot be observed with more traditional means such as optical telescopes or radio telescopes ; accordingly, gravitational wave astronomy gives new insights into

2100-411: The r -process can occur. This reaction accounts for the nucleosynthesis of around half of the isotopes in elements heavier than iron. The mergers also produce kilonovae , which are transient sources of isotropic longer wave electromagnetic radiation due to the radioactive decay of heavy r -process nuclei that are produced and ejected during the merger process. Kilonovae had been discussed as

2175-412: The LIGO and Virgo detectors received gravitational wave signals at nearly the same time as gamma ray satellites and optical telescopes saw signals from a source located about 130 million light years away. The possibility of gravitational waves and that those might travel at the speed of light was discussed in 1893 by Oliver Heaviside , using the analogy between the inverse-square law of gravitation and

2250-485: The Sun . Compared to these, neutron star mergers are unique in that they emit multiple sources of harmful radiation, including emission from the radioactive decay of heavy elements scattered by the sGRB cocoon, the sGRB afterglow itself, and cosmic rays accelerated by the blast. In order of arrival, the photons are first after the merger, and the cosmic rays arrive hundreds to thousands of years later. (See: Multi-messenger astronomy ) The ejected material sweeps up

2325-463: The complexity of the equations of general relativity to find an alternative wave model. The result was published in June 1916, and there he came to the conclusion that the gravitational wave must propagate with the speed of light, and there must, in fact, be three types of gravitational waves dubbed longitudinal–longitudinal, transverse–longitudinal, and transverse–transverse by Hermann Weyl . However,

Binary Black Hole Grand Challenge Alliance - Misplaced Pages Continue

2400-518: The electrostatic force . In 1905, Henri Poincaré proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations and suggested that, in analogy to an accelerating electrical charge producing electromagnetic waves , accelerated masses in a relativistic field theory of gravity should produce gravitational waves. In 1915 Einstein published his general theory of relativity ,

2475-404: The quadrupole moment (or the l -th time derivative of the l -th multipole moment ) of an isolated system's stress–energy tensor must be non-zero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current that is necessary for the emission of electromagnetic radiation . Gravitational waves carry energy away from their sources and, in

2550-597: The BICEP2 collaboration claimed that they had detected the imprint of gravitational waves in the cosmic microwave background . However, they were later forced to retract this result. In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss , Kip Thorne and Barry Barish for their role in the detection of gravitational waves. In 2023, NANOGrav, EPTA, PPTA, and IPTA announced that they found evidence of

2625-647: The Hubble constant—one based on redshifts and another based on the cosmic distance ladder —disagree by about 10%. This difference, the Hubble tension , might be reconciled by using kilonovae as another type of standard candle . In April 2019, the LIGO and Virgo gravitational wave observatories announced the detection of a candidate event that is, with a probability 99.94%, the merger of two neutron stars. Despite extensive follow-up observations, no electromagnetic counterpart could be identified. In 2023, an observation of

2700-633: The Universe when space expanded by a large factor in a very short amount of time. If this expansion was not symmetric in all directions, it may have emitted gravitational radiation detectable today as a gravitational wave background . This background signal is too weak for any currently operational gravitational wave detector to observe, and it is thought it may be decades before such an observation can be made. Water waves, sound waves, and electromagnetic waves are able to carry energy , momentum , and angular momentum and by doing so they carry those away from

2775-536: The area where GW170817 and GRB 170817A were known to have occurred—and its having the expected characteristics of a kilonova —strongly imply that neutron star mergers are responsible for kilonovae as well. In February 2018, the Zwicky Transient Facility began to track neutron star events via gravitational wave observation, as evidenced by "systematic samples of tidal disruption events ". Later that year, astronomers reported that GRB 150101B ,

2850-513: The case of orbiting bodies, this is associated with an in-spiral or decrease in orbit. Imagine for example a simple system of two masses – such as the Earth–Sun system – moving slowly compared to the speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the x – y plane. To a good approximation, the masses follow simple Keplerian orbits . However, such an orbit represents

2925-507: The construction of GEO600 , LIGO , and Virgo . After years of producing null results, improved detectors became operational in 2015. On 11 February 2016, the LIGO-Virgo collaborations announced the first observation of gravitational waves , from a signal (dubbed GW150914 ) detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36 solar masses merging about 1.3 billion light-years away. During

3000-661: The decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor Jr. received the Nobel Prize in Physics for this discovery. The first direct observation of gravitational waves was made in September 2015, when a signal generated by the merger of two black holes was received by the LIGO gravitational wave detectors in Livingston, Louisiana, and in Hanford, Washington. The 2017 Nobel Prize in Physics

3075-455: The detection of gravitational waves using laser interferometers. The idea of using a laser interferometer for this seems to have been floated independently by various people, including M.E. Gertsenshtein and V. I. Pustovoit in 1962, and Vladimir B. Braginskiĭ in 1966. The first prototypes were developed in the 1970s by Robert L. Forward and Rainer Weiss. In the decades that followed, ever more sensitive instruments were constructed, culminating in

Binary Black Hole Grand Challenge Alliance - Misplaced Pages Continue

3150-457: The distance (not distance squared) from the source. Inspiraling binary neutron stars are predicted to be a powerful source of gravitational waves as they coalesce , due to the very large acceleration of their masses as they orbit close to one another. However, due to the astronomical distances to these sources, the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 10 . Scientists demonstrate

3225-401: The dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. In an extreme case, such as when the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off. Some more detailed examples: More technically, the second time derivative of

3300-502: The early 1990s the physics community rallied around a concerted effort to predict the waveforms of gravitational waves from these systems with the Binary Black Hole Grand Challenge Alliance . The largest amplitude of emission occurs during the merger phase, which can be modeled with the techniques of numerical relativity. The first direct detection of gravitational waves, GW150914 , came from

3375-490: The existence of these waves with highly-sensitive detectors at multiple observation sites. As of 2012 , the LIGO and VIRGO observatories were the most sensitive detectors, operating at resolutions of about one part in 5 × 10 . The Japanese detector KAGRA was completed in 2019; its first joint detection with LIGO and VIRGO was reported in 2021. Another European ground-based detector, the Einstein Telescope ,

3450-426: The final fraction of a second of the merger, it released more than 50 times the power of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as gravitational waves. The signal

3525-528: The general theory of relativity. In principle, gravitational waves can exist at any frequency. Very low frequency waves can be detected using pulsar timing arrays. In this technique, the timing of approximately 100 pulsars spread widely across our galaxy is monitored over the course of years. Detectable changes in the arrival time of their signals can result from passing gravitational waves generated by merging supermassive black holes with wavelengths measured in lightyears. These timing changes can be used to locate

3600-505: The implied rate of energy loss of the Milky Way would drain our galaxy of energy on a timescale much shorter than its inferred age. These doubts were strengthened when, by the mid-1970s, repeated experiments from other groups building their own Weber bars across the globe failed to find any signals, and by the late 1970s consensus was that Weber's results were spurious. In the same period, the first indirect evidence of gravitational waves

3675-537: The initial radius and t coalesce {\displaystyle t_{\text{coalesce}}} the total time needed to fully coalesce. More generally, the rate of orbital decay can be approximated by where r is the separation between the bodies, t time, G the gravitational constant , c the speed of light , and m 1 and m 2 the masses of the bodies. This leads to an expected time to merger of Compact stars like white dwarfs and neutron stars can be constituents of binaries. For example,

3750-462: The interstellar medium and creates a supernova-remnant -like bubble holding a lethal dose of cosmic rays. If the Earth were to be engulfed by the remnant, these cosmic rays—like the gamma rays—would deplete the ozone and could interact with the atmosphere, yielding weakly-interacting muons . The flux density of these generated particles would be sufficient to sterilize the planet, penetrating even deep into caves and underwater. The danger to life lies in

3825-501: The kilonova GRB 230307A was published, including likely observations of the spectra of tellurium and lanthanide elements. In 2019, analysis of data from the Chandra X-ray Observatory revealed another binary neutron star merger at a distance of 6.6 billion light years, an x-ray signal called XT2. The merger produced a magnetar ; its emissions could be detected for several hours. The cosmic rays emitted by

SECTION 50

#1732772567080

3900-401: The kind of oscillations associated with gravitational waves as produced by a pair of masses in a circular orbit . In this case the amplitude of the gravitational wave is constant, but its plane of polarization changes or rotates at twice the orbital rate, so the time-varying gravitational wave size, or 'periodic spacetime strain', exhibits a variation as shown in the animation. If the orbit of

3975-614: The loss of energy emitted as gravitational radiation . When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit —a black hole . The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds. These events are believed to create short gamma-ray bursts . The merger of neutron stars momentarily creates an environment of such extreme neutron flux that

4050-489: The masses is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's quadrupole formula . As with other waves , there are a number of characteristics used to describe a gravitational wave: The speed, wavelength, and frequency of a gravitational wave are related by the equation c = λf , just like the equation for a light wave . For example, the animations shown here oscillate roughly once every two seconds. This would correspond to

4125-449: The merger of two black holes. A supernova is a transient astronomical event that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away into the surrounding space at extremely high velocities (up to 10% of

4200-429: The motion is not spherically symmetric, the motion can cause gravitational waves which propagate away at the speed of light . As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of strain . Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. The magnitude of this effect is inversely proportional to

4275-400: The nature of Einstein's approximations led many (including Einstein himself) to doubt the result. In 1922, Arthur Eddington showed that two of Einstein's types of waves were artifacts of the coordinate system he used, and could be made to propagate at any speed by choosing appropriate coordinates, leading Eddington to jest that they "propagate at the speed of thought". This also cast doubt on

4350-437: The order of the Sun , and diameters in the order of the Earth. They cannot get much closer together than 10,000 km before they will merge and explode in a supernova which would also end the emission of gravitational waves. Until then, their gravitational radiation would be comparable to that of a neutron star binary. When the orbit of a neutron star binary has decayed to 1.89 × 10 m (1890 km), its remaining lifetime

4425-441: The paper was rewritten with the opposite conclusion and published elsewhere. In 1956, Felix Pirani remedied the confusion caused by the use of various coordinate systems by rephrasing the gravitational waves in terms of the manifestly observable Riemann curvature tensor . At the time, Pirani's work was overshadowed by the community's focus on a different question: whether gravitational waves could transmit energy . This matter

4500-478: The particles will follow the distortion in spacetime, oscillating in a " cruciform " manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation. The oscillations depicted in the animation are exaggerated for the purpose of discussion – in reality a gravitational wave has a very small amplitude (as formulated in linearized gravity ). However, they help illustrate

4575-525: The particles' ability to disrupt DNA, causing birth defects and mutations. Relative to supernovae, binary neutron star (BNS) mergers influence a similar volume of space, but they are much rarer and have a stronger dependence on the orientation of the event with respect to Earth. Accordingly, the overall threat of a BNS event to human extinction is extremely low. Neutron star mergers are rare, so most stars will form out of gas clouds which have few r -process metals. Our own solar system, however, did form from

SECTION 60

#1732772567080

4650-510: The physicality of the third (transverse–transverse) type that Eddington showed always propagate at the speed of light regardless of coordinate system. In 1936, Einstein and Nathan Rosen submitted a paper to Physical Review in which they claimed gravitational waves could not exist in the full general theory of relativity because any such solution of the field equations would have a singularity. The journal sent their manuscript to be reviewed by Howard P. Robertson , who anonymously reported that

4725-464: The singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates. Einstein, who was unfamiliar with the concept of peer review, angrily withdrew the manuscript, never to publish in Physical Review again. Nonetheless, his assistant Leopold Infeld , who had been in contact with Robertson, convinced Einstein that the criticism was correct, and

4800-443: The source of the waves. Using this technique, astronomers have discovered the 'hum' of various SMBH mergers occurring in the universe. Stephen Hawking and Werner Israel list different frequency bands for gravitational waves that could plausibly be detected, ranging from 10  Hz up to 10  Hz. The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c . Within

4875-457: The source. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other – the angular momentum is radiated away by gravitational waves. The waves can also carry off linear momentum, a possibility that has some interesting implications for astrophysics . After two supermassive black holes coalesce, emission of linear momentum can produce

4950-545: The sources of gravitational waves. Sources that can be studied this way include binary star systems composed of white dwarfs , neutron stars , and black holes ; events such as supernovae ; and the formation of the early universe shortly after the Big Bang . The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the Hulse–Taylor binary pulsar , which matched

5025-459: The speed of gravitational waves, and, further, the speed of any massless particle. Such particles include the gluon (carrier of the strong force), the photons that make up light (hence carrier of electromagnetic force), and the hypothetical gravitons (which are the presumptive field particles associated with gravity; however, an understanding of the graviton, if any exist, requires an as-yet unavailable theory of quantum gravity). In August 2017,

5100-414: The speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are generated by a changing quadrupole moment , which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place

5175-403: The surface called "mountains", which are bumps extending no more than 10 centimeters (4 inches) above the surface, that make the spinning spherically asymmetric. This gives the star a quadrupole moment that changes with time, and it will emit gravitational waves until the deformities are smoothed out. Many models of the Universe suggest that there was an inflationary epoch in the early history of

5250-400: The theory of special relativity , the constant c is not only about light; instead it is the highest possible speed for any interaction in nature. Formally, c is a conversion factor for changing the unit of time to the unit of space. This makes it the only speed which does not depend either on the motion of an observer or a source of light and/or gravity. Thus, the speed of "light" is also

5325-401: The workings of the universe. In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early universe. This is not possible with conventional astronomy, since before recombination the universe was opaque to electromagnetic radiation. Precise measurements of gravitational waves will also allow scientists to test more thoroughly

5400-653: Was discovered. In 1974, Russell Alan Hulse and Joseph Hooton Taylor, Jr. discovered the first binary pulsar , which earned them the 1993 Nobel Prize in Physics . Pulsar timing observations over the next decade showed a gradual decay of the orbital period of the Hulse–Taylor pulsar that matched the loss of energy and angular momentum in gravitational radiation predicted by general relativity. This indirect detection of gravitational waves motivated further searches, despite Weber's discredited result. Some groups continued to improve Weber's original concept, while others pursued

5475-554: Was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the Southern Celestial Hemisphere , in the rough direction of (but much farther away than) the Magellanic Clouds . The confidence level of this being an observation of gravitational waves was 99.99994%. A year earlier,

5550-439: Was settled by a thought experiment proposed by Richard Feynman during the first "GR" conference at Chapel Hill in 1957. In short, his argument known as the " sticky bead argument " notes that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done work . Shortly after, Hermann Bondi published

5625-419: Was subsequently awarded to Rainer Weiss , Kip Thorne and Barry Barish for their role in the direct detection of gravitational waves. In Albert Einstein 's general theory of relativity , gravity is treated as a phenomenon resulting from the curvature of spacetime . This curvature is caused by the presence of mass. (See: Stress–energy tensor ) If the masses move, the curvature of spacetime changes. If

#79920