Bioconductor is a free , open source and open development software project for the analysis and comprehension of genomic data generated by wet lab experiments in molecular biology .
100-410: Bioconductor is based primarily on the statistical R programming language , but does contain contributions in other programming languages. It has two releases each year that follow the semiannual releases of R. At any one time there is a release version , which corresponds to the released version of R, and a development version , which corresponds to the development version of R. Most users will find
200-469: A population , for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics . Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population. Consider independent identically distributed (IID) random variables with
300-497: A ) and ( b ) minimize the error when the model predicts Y for a given range of values of X . Analysts may also attempt to build models that are descriptive of the data, in an aim to simplify analysis and communicate results. A data product is a computer application that takes data inputs and generates outputs , feeding them back into the environment. It may be based on a model or algorithm. For instance, an application that analyzes data about customer purchase history, and uses
400-502: A chosen version of R. In addition to bugfixes and updates, a new release typically adds packages. The table below maps a Bioconductor release to a R version and shows the number of available Bioconductor software packages for that release. Statistics Statistics (from German : Statistik , orig. "description of a state , a country" ) is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data . In applying statistics to
500-651: A cluster of typical film lengths? - Is there a correlation between country of origin and MPG? - Do different genders have a preferred payment method? - Is there a trend of increasing film length over the years? Barriers to effective analysis may exist among the analysts performing the data analysis or among the audience. Distinguishing fact from opinion, cognitive biases, and innumeracy are all challenges to sound data analysis. You are entitled to your own opinion, but you are not entitled to your own facts. Daniel Patrick Moynihan Effective analysis requires obtaining relevant facts to answer questions, support
600-634: A conclusion or formal opinion , or test hypotheses . Facts by definition are irrefutable, meaning that any person involved in the analysis should be able to agree upon them. For example, in August 2010, the Congressional Budget Office (CBO) estimated that extending the Bush tax cuts of 2001 and 2003 for the 2011–2020 time period would add approximately $ 3.3 trillion to the national debt. Everyone should be able to agree that indeed this
700-418: A decade earlier in 1795. The modern field of statistics emerged in the late 19th and early 20th century in three stages. The first wave, at the turn of the century, was led by the work of Francis Galton and Karl Pearson , who transformed statistics into a rigorous mathematical discipline used for analysis, not just in science, but in industry and politics as well. Galton's contributions included introducing
800-458: A given probability distribution : standard statistical inference and estimation theory defines a random sample as the random vector given by the column vector of these IID variables. The population being examined is described by a probability distribution that may have unknown parameters. A statistic is a random variable that is a function of the random sample, but not a function of unknown parameters . The probability distribution of
900-484: A given probability of containing the true value is to use a credible interval from Bayesian statistics : this approach depends on a different way of interpreting what is meant by "probability" , that is as a Bayesian probability . In principle confidence intervals can be symmetrical or asymmetrical. An interval can be asymmetrical because it works as lower or upper bound for a parameter (left-sided interval or right sided interval), but it can also be asymmetrical because
1000-471: A given situation and carry the computation, several methods have been proposed: the method of moments , the maximum likelihood method, the least squares method and the more recent method of estimating equations . Interpretation of statistical information can often involve the development of a null hypothesis which is usually (but not necessarily) that no relationship exists among variables or that no change occurred over time. The best illustration for
1100-527: A higher likelihood of being input incorrectly. Textual data spell checkers can be used to lessen the amount of mistyped words. However, it is harder to tell if the words themselves are correct. Once the datasets are cleaned, they can then be analyzed. Analysts may apply a variety of techniques, referred to as exploratory data analysis , to begin understanding the messages contained within the obtained data. The process of data exploration may result in additional data cleaning or additional requests for data; thus,
SECTION 10
#17327833591781200-555: A mathematical discipline only took shape at the very end of the 17th century, particularly in Jacob Bernoulli 's posthumous work Ars Conjectandi . This was the first book where the realm of games of chance and the realm of the probable (which concerned opinion, evidence, and argument) were combined and submitted to mathematical analysis. The method of least squares was first described by Adrien-Marie Legendre in 1805, though Carl Friedrich Gauss presumably made use of it
1300-1033: A meaningful order to those values, and permit any order-preserving transformation. Interval measurements have meaningful distances between measurements defined, but the zero value is arbitrary (as in the case with longitude and temperature measurements in Celsius or Fahrenheit ), and permit any linear transformation. Ratio measurements have both a meaningful zero value and the distances between different measurements defined, and permit any rescaling transformation. Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables , whereas ratio and interval measurements are grouped together as quantitative variables , which can be either discrete or continuous , due to their numerical nature. Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented with
1400-499: A novice is the predicament encountered by a criminal trial. The null hypothesis, H 0 , asserts that the defendant is innocent, whereas the alternative hypothesis, H 1 , asserts that the defendant is guilty. The indictment comes because of suspicion of the guilt. The H 0 (status quo) stands in opposition to H 1 and is maintained unless H 1 is supported by evidence "beyond a reasonable doubt". However, "failure to reject H 0 " in this case does not imply innocence, but merely that
1500-561: A number is rising or falling may not be the key factor. More important may be the number relative to another number, such as the size of government revenue or spending relative to the size of the economy (GDP) or the amount of cost relative to revenue in corporate financial statements. This numerical technique is referred to as normalization or common-sizing. There are many such techniques employed by analysts, whether adjusting for inflation (i.e., comparing real vs. nominal data) or considering population increases, demographics, etc. Analysts apply
1600-404: A population, so results do not fully represent the whole population. Any estimates obtained from the sample only approximate the population value. Confidence intervals allow statisticians to express how closely the sample estimate matches the true value in the whole population. Often they are expressed as 95% confidence intervals. Formally, a 95% confidence interval for a value is a range where, if
1700-412: A problem, it is common practice to start with a population or process to be studied. Populations can be diverse topics, such as "all people living in a country" or "every atom composing a crystal". Ideally, statisticians compile data about the entire population (an operation called a census ). This may be organized by governmental statistical institutes. Descriptive statistics can be used to summarize
1800-497: A sample using indexes such as the mean or standard deviation , and inferential statistics , which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location ) seeks to characterize the distribution's central or typical value, while dispersion (or variability ) characterizes
1900-645: A scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments . When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples . Representative sampling assures that inferences and conclusions can reasonably extend from
2000-465: A statistician would use a modified, more structured estimation method (e.g., difference in differences estimation and instrumental variables , among many others) that produce consistent estimators . The basic steps of a statistical experiment are: Experiments on human behavior have special concerns. The famous Hawthorne study examined changes to the working environment at the Hawthorne plant of
2100-637: A test and confidence intervals . Jerzy Neyman in 1934 showed that stratified random sampling was in general a better method of estimation than purposive (quota) sampling. Today, statistical methods are applied in all fields that involve decision making, for making accurate inferences from a collated body of data and for making decisions in the face of uncertainty based on statistical methodology. The use of modern computers has expedited large-scale statistical computations and has also made possible new methods that are impractical to perform manually. Statistics continues to be an area of active research, for example on
SECTION 20
#17327833591782200-554: A text label for numbers). Data is collected from a variety of sources. A list of data sources are available for study & research. The requirements may be communicated by analysts to custodians of the data; such as, Information Technology personnel within an organization. Data collection or data gathering is the process of gathering and measuring information on targeted variables in an established system, which then enables one to answer relevant questions and evaluate outcomes. The data may also be collected from sensors in
2300-399: A transformation is sensible to contemplate depends on the question one is trying to answer." A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features of a collection of information , while descriptive statistics in the mass noun sense is the process of using and analyzing those statistics. Descriptive statistics
2400-419: A value accurately rejecting the null hypothesis (sometimes referred to as the p-value ). The standard approach is to test a null hypothesis against an alternative hypothesis. A critical region is the set of values of the estimator that leads to refuting the null hypothesis. The probability of type I error is therefore the probability that the estimator belongs to the critical region given that null hypothesis
2500-554: A variety of analytical techniques. For example; with financial information, the totals for particular variables may be compared against separately published numbers that are believed to be reliable. Unusual amounts, above or below predetermined thresholds, may also be reviewed. There are several types of data cleaning, that are dependent upon the type of data in the set; this could be phone numbers, email addresses, employers, or other values. Quantitative data methods for outlier detection, can be used to get rid of data that appears to have
2600-515: Is a certain unemployment rate (X) necessary for a certain inflation rate (Y)?"). Whereas (multiple) regression analysis uses additive logic where each X-variable can produce the outcome and the X's can compensate for each other (they are sufficient but not necessary), necessary condition analysis (NCA) uses necessity logic, where one or more X-variables allow the outcome to exist, but may not produce it (they are necessary but not sufficient). Each single necessary condition must be present and compensation
2700-493: Is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. In statistical applications, data analysis can be divided into descriptive statistics , exploratory data analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features in
2800-578: Is a precursor to data analysis, and data analysis is closely linked to data visualization and data dissemination. Analysis refers to dividing a whole into its separate components for individual examination. Data analysis is a process for obtaining raw data , and subsequently converting it into information useful for decision-making by users. Data is collected and analyzed to answer questions, test hypotheses, or disprove theories. Statistician John Tukey , defined data analysis in 1961, as: "Procedures for analyzing data, techniques for interpreting
2900-575: Is another type of observational study in which people with and without the outcome of interest (e.g. lung cancer) are invited to participate and their exposure histories are collected. Various attempts have been made to produce a taxonomy of levels of measurement . The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one (injective) transformation. Ordinal measurements have imprecise differences between consecutive values, but have
3000-465: Is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions. "The relationship between the data and what they describe merely reflects the fact that certain kinds of statistical statements may have truth values which are not invariant under some transformations. Whether or not
3100-834: Is called error term, disturbance or more simply noise. Both linear regression and non-linear regression are addressed in polynomial least squares , which also describes the variance in a prediction of the dependent variable (y axis) as a function of the independent variable (x axis) and the deviations (errors, noise, disturbances) from the estimated (fitted) curve. Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Most studies only sample part of
Bioconductor - Misplaced Pages Continue
3200-428: Is distinguished from inferential statistics (or inductive statistics), in that descriptive statistics aims to summarize a sample , rather than use the data to learn about the population that the sample of data is thought to represent. Statistical inference is the process of using data analysis to deduce properties of an underlying probability distribution . Inferential statistical analysis infers properties of
3300-477: Is necessary as inputs to the analysis, which is specified based upon the requirements of those directing the analytics (or customers, who will use the finished product of the analysis). The general type of entity upon which the data will be collected is referred to as an experimental unit (e.g., a person or population of people). Specific variables regarding a population (e.g., age and income) may be specified and obtained. Data may be numerical or categorical (i.e.,
3400-522: Is not possible. Users may have particular data points of interest within a data set, as opposed to the general messaging outlined above. Such low-level user analytic activities are presented in the following table. The taxonomy can also be organized by three poles of activities: retrieving values, finding data points, and arranging data points. - How long is the movie Gone with the Wind? - What comedies have won awards? - Which funds underperformed
3500-418: Is one that explores the association between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a cohort study , and then look for the number of cases of lung cancer in each group. A case-control study
3600-451: Is proposed for the statistical relationship between the two data sets, an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify the sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis
3700-408: Is rejected when it is in fact true, giving a "false positive") and Type II errors (null hypothesis fails to be rejected when it is in fact false, giving a "false negative"). Multiple problems have come to be associated with this framework, ranging from obtaining a sufficient sample size to specifying an adequate null hypothesis. Statistical measurement processes are also prone to error in regards to
3800-402: Is true ( statistical significance ) and the probability of type II error is the probability that the estimator does not belong to the critical region given that the alternative hypothesis is true. The statistical power of a test is the probability that it correctly rejects the null hypothesis when the null hypothesis is false. Referring to statistical significance does not necessarily mean that
3900-481: Is true or false. For example, the hypothesis might be that "Unemployment has no effect on inflation", which relates to an economics concept called the Phillips Curve . Hypothesis testing involves considering the likelihood of Type I and type II errors , which relate to whether the data supports accepting or rejecting the hypothesis. Regression analysis may be used when the analyst is trying to determine
4000-493: Is what CBO reported; they can all examine the report. This makes it a fact. Whether persons agree or disagree with the CBO is their own opinion. As another example, the auditor of a public company must arrive at a formal opinion on whether financial statements of publicly traded corporations are "fairly stated, in all material respects". This requires extensive analysis of factual data and evidence to support their opinion. When making
4100-449: Is widely employed in government, business, and natural and social sciences. The mathematical foundations of statistics developed from discussions concerning games of chance among mathematicians such as Gerolamo Cardano , Blaise Pascal , Pierre de Fermat , and Christiaan Huygens . Although the idea of probability was already examined in ancient and medieval law and philosophy (such as the work of Juan Caramuel ), probability theory as
Bioconductor - Misplaced Pages Continue
4200-765: The Boolean data type , polytomous categorical variables with arbitrarily assigned integers in the integral data type , and continuous variables with the real data type involving floating-point arithmetic . But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented. Other categorizations have been proposed. For example, Mosteller and Tukey (1977) distinguished grades, ranks, counted fractions, counts, amounts, and balances. Nelder (1990) described continuous counts, continuous ratios, count ratios, and categorical modes of data. (See also: Chrisman (1998), van den Berg (1991). ) The issue of whether or not it
4300-494: The MECE principle . Each layer can be broken down into its components; each of the sub-components must be mutually exclusive of each other and collectively add up to the layer above them. The relationship is referred to as "Mutually Exclusive and Collectively Exhaustive" or MECE. For example, profit by definition can be broken down into total revenue and total cost. In turn, total revenue can be analyzed by its components, such as
4400-487: The Western Electric Company . The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected productivity. It turned out that productivity indeed improved (under
4500-546: The forecasting , prediction , and estimation of unobserved values either in or associated with the population being studied. It can include extrapolation and interpolation of time series or spatial data , as well as data mining . Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis , linear algebra , stochastic analysis , differential equations , and measure-theoretic probability theory . Formal discussions on inference date back to
4600-432: The limit to the true value of such parameter. Other desirable properties for estimators include: UMVUE estimators that have the lowest variance for all possible values of the parameter to be estimated (this is usually an easier property to verify than efficiency) and consistent estimators which converges in probability to the true value of such parameter. This still leaves the question of how to obtain estimators in
4700-719: The mathematicians and cryptographers of the Islamic Golden Age between the 8th and 13th centuries. Al-Khalil (717–786) wrote the Book of Cryptographic Messages , which contains one of the first uses of permutations and combinations , to list all possible Arabic words with and without vowels. Al-Kindi 's Manuscript on Deciphering Cryptographic Messages gave a detailed description of how to use frequency analysis to decipher encrypted messages, providing an early example of statistical inference for decoding . Ibn Adlan (1187–1268) later made an important contribution on
4800-485: The Bioconductor software packages focused on the analysis of single channel Affymetrix and two or more channel cDNA / Oligo microarrays. As the project has matured, the functional scope of the software packages broadened to include the analysis of all types of genomic data, such as SAGE, sequence , or SNP data. The broad goals of the projects are to: Each release of Bioconductor is developed to work best with
4900-519: The R programming environment. Utilizing a rich array of statistical and graphical features in R, many Bioconductor packages have been developed to meet various data analysis needs. The use of these packages provides a basic understanding of the R programming / command language. As a result, R and Bioconductor packages, which have a strong computing background, are used by most biologists who will benefit significantly from their ability to analyze datasets. All these results provide biologists with easy access to
5000-508: The SP-500? - What is the gross income of all stores combined? - How many manufacturers of cars are there? - What director/film has won the most awards? - What Marvel Studios film has the most recent release date? - Rank the cereals by calories. - What is the range of car horsepowers? - What actresses are in the data set? - What is the age distribution of shoppers? - Are there any outliers in protein? - Is there
5100-548: The analysis of genomic data without requiring programming expertise . The project was started in the Fall of 2001 and is overseen by the Bioconductor core team, based primarily at the Fred Hutchinson Cancer Research Center , with other members coming from international institutions. Most Bioconductor components are distributed as R packages , which are add-on modules for R. Initially most of
SECTION 50
#17327833591785200-439: The collection, analysis, interpretation or explanation, and presentation of data , or as a branch of mathematics . Some consider statistics to be a distinct mathematical science rather than a branch of mathematics. While many scientific investigations make use of data, statistics is generally concerned with the use of data in the context of uncertainty and decision-making in the face of uncertainty. In applying statistics to
5300-540: The concepts of standard deviation , correlation , regression analysis and the application of these methods to the study of the variety of human characteristics—height, weight and eyelash length among others. Pearson developed the Pearson product-moment correlation coefficient , defined as a product-moment, the method of moments for the fitting of distributions to samples and the Pearson distribution , among many other things. Galton and Pearson founded Biometrika as
5400-542: The concepts of sufficiency , ancillary statistics , Fisher's linear discriminator and Fisher information . He also coined the term null hypothesis during the Lady tasting tea experiment, which "is never proved or established, but is possibly disproved, in the course of experimentation". In his 1930 book The Genetical Theory of Natural Selection , he applied statistics to various biological concepts such as Fisher's principle (which A. W. F. Edwards called "probably
5500-425: The data in order to identify relationships among the variables; for example, using correlation or causation . In general terms, models may be developed to evaluate a specific variable based on other variable(s) contained within the dataset, with some residual error depending on the implemented model's accuracy ( e.g. , Data = Model + Error). Inferential statistics includes utilizing techniques that measure
5600-425: The data that they generate. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also occur. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Statistics is a mathematical body of science that pertains to
5700-441: The data while CDA focuses on confirming or falsifying existing hypotheses . Predictive analytics focuses on the application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a species of unstructured data . All of the above are varieties of data analysis. Data integration
5800-475: The data. Stephen Few described eight types of quantitative messages that users may attempt to understand or communicate from a set of data and the associated graphs used to help communicate the message. Customers specifying requirements and analysts performing the data analysis may consider these messages during the course of the process. Author Jonathan Koomey has recommended a series of best practices for understanding quantitative data. These include: For
5900-487: The degree and source of the uncertainty involved in the conclusions. He emphasized procedures to help surface and debate alternative points of view. Effective analysts are generally adept with a variety of numerical techniques. However, audiences may not have such literacy with numbers or numeracy ; they are said to be innumerate. Persons communicating the data may also be attempting to mislead or misinform, deliberately using bad numerical techniques. For example, whether
6000-406: The effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted. Each can be very effective. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements with different levels using
6100-413: The environment, including traffic cameras, satellites, recording devices, etc. It may also be obtained through interviews, downloads from online sources, or reading documentation. Data, when initially obtained, must be processed or organized for analysis. For instance, these may involve placing data into rows and columns in a table format ( known as structured data ) for further analysis, often through
SECTION 60
#17327833591786200-495: The evidence was insufficient to convict. So the jury does not necessarily accept H 0 but fails to reject H 0 . While one can not "prove" a null hypothesis, one can test how close it is to being true with a power test , which tests for type II errors . What statisticians call an alternative hypothesis is simply a hypothesis that contradicts the null hypothesis. Working from a null hypothesis , two broad categories of error are recognized: Standard deviation refers to
6300-478: The expected value assumes on a given sample (also called prediction). Mean squared error is used for obtaining efficient estimators , a widely used class of estimators. Root mean square error is simply the square root of mean squared error. Many statistical methods seek to minimize the residual sum of squares , and these are called " methods of least squares " in contrast to Least absolute deviations . The latter gives equal weight to small and big errors, while
6400-474: The experimental conditions). However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and blindness . The Hawthorne effect refers to finding that an outcome (in this case, worker productivity) changed due to observation itself. Those in the Hawthorne study became more productive not because the lighting was changed but because they were being observed. An example of an observational study
6500-452: The extent to which independent variable X affects dependent variable Y (e.g., "To what extent do changes in the unemployment rate (X) affect the inflation rate (Y)?"). This is an attempt to model or fit an equation line or curve to the data, such that Y is a function of X. Necessary condition analysis (NCA) may be used when the analyst is trying to determine the extent to which independent variable X allows variable Y (e.g., "To what extent
6600-402: The extent to which individual observations in a sample differ from a central value, such as the sample or population mean, while Standard error refers to an estimate of difference between sample mean and population mean. A statistical error is the amount by which an observation differs from its expected value . A residual is the amount an observation differs from the value the estimator of
6700-450: The extent to which members of the distribution depart from its center and each other. Inferences made using mathematical statistics employ the framework of probability theory , which deals with the analysis of random phenomena. A standard statistical procedure involves the collection of data leading to a test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model. A hypothesis
6800-432: The first journal of mathematical statistics and biostatistics (then called biometry ), and the latter founded the world's first university statistics department at University College London . The second wave of the 1910s and 20s was initiated by William Sealy Gosset , and reached its culmination in the insights of Ronald Fisher , who wrote the textbooks that were to define the academic discipline in universities around
6900-402: The former gives more weight to large errors. Residual sum of squares is also differentiable , which provides a handy property for doing regression . Least squares applied to linear regression is called ordinary least squares method and least squares applied to nonlinear regression is called non-linear least squares . Also in a linear regression model the non deterministic part of the model
7000-605: The given parameters of a total population to deduce probabilities that pertain to samples. Statistical inference, however, moves in the opposite direction— inductively inferring from samples to the parameters of a larger or total population. A common goal for a statistical research project is to investigate causality , and in particular to draw a conclusion on the effect of changes in the values of predictors or independent variables on dependent variables . There are two major types of causal statistical studies: experimental studies and observational studies . In both types of studies,
7100-437: The goal of discovering useful information, informing conclusions, and supporting decision-making . Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively. Data mining
7200-492: The initialization of the iterative phases mentioned in the lead paragraph of this section. Descriptive statistics , such as, the average or median, can be generated to aid in understanding the data. Data visualization is also a technique used, in which the analyst is able to examine the data in a graphical format in order to obtain additional insights, regarding the messages within the data. Mathematical formulas or models (also known as algorithms ), may be applied to
7300-680: The leap from facts to opinions, there is always the possibility that the opinion is erroneous . There are a variety of cognitive biases that can adversely affect analysis. For example, confirmation bias is the tendency to search for or interpret information in a way that confirms one's preconceptions. In addition, individuals may discredit information that does not support their views. Analysts may be trained specifically to be aware of these biases and how to overcome them. In his book Psychology of Intelligence Analysis , retired CIA analyst Richards Heuer wrote that analysts should clearly delineate their assumptions and chains of inference and specify
7400-407: The message more clearly and efficiently to the audience. Data visualization uses information displays (graphics such as, tables and charts) to help communicate key messages contained in the data. Tables are a valuable tool by enabling the ability of a user to query and focus on specific numbers; while charts (e.g., bar charts or line charts), may help explain the quantitative messages contained in
7500-424: The most celebrated argument in evolutionary biology ") and Fisherian runaway , a concept in sexual selection about a positive feedback runaway effect found in evolution . The final wave, which mainly saw the refinement and expansion of earlier developments, emerged from the collaborative work between Egon Pearson and Jerzy Neyman in the 1930s. They introduced the concepts of " Type II " error, power of
7600-412: The overall result is significant in real world terms. For example, in a large study of a drug it may be shown that the drug has a statistically significant but very small beneficial effect, such that the drug is unlikely to help the patient noticeably. Although in principle the acceptable level of statistical significance may be subject to debate, the significance level is the largest p-value that allows
7700-415: The population data. Numerical descriptors include mean and standard deviation for continuous data (like income), while frequency and percentage are more useful in terms of describing categorical data (like education). When a census is not feasible, a chosen subset of the population called a sample is studied. Once a sample that is representative of the population is determined, data is collected for
7800-544: The population. Sampling theory is part of the mathematical discipline of probability theory . Probability is used in mathematical statistics to study the sampling distributions of sample statistics and, more generally, the properties of statistical procedures . The use of any statistical method is valid when the system or population under consideration satisfies the assumptions of the method. The difference in point of view between classic probability theory and sampling theory is, roughly, that probability theory starts from
7900-494: The problem of how to analyze big data . When full census data cannot be collected, statisticians collect sample data by developing specific experiment designs and survey samples . Statistics itself also provides tools for prediction and forecasting through statistical models . To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from
8000-470: The publication of Natural and Political Observations upon the Bills of Mortality by John Graunt . Early applications of statistical thinking revolved around the needs of states to base policy on demographic and economic data, hence its stat- etymology . The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics
8100-405: The relationships between particular variables. For example, regression analysis may be used to model whether a change in advertising ( independent variable X ), provides an explanation for the variation in sales ( dependent variable Y ). In mathematical terms, Y (sales) is a function of X (advertising). It may be described as ( Y = aX + b + error), where the model is designed such that (
8200-404: The release version appropriate for their needs. In addition there are many genome annotation packages available that are mainly, but not solely, oriented towards different types of microarrays . While computational methods continue to be developed to interpret biological data, the Bioconductor project is an open source software repository that hosts a wide range of statistical tools developed in
8300-485: The results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." There are several phases that can be distinguished, described below. The phases are iterative , in that feedback from later phases may result in additional work in earlier phases. The CRISP framework , used in data mining , has similar steps. The data
8400-461: The results to recommend other purchases the customer might enjoy. Once data is analyzed, it may be reported in many formats to the users of the analysis to support their requirements. The users may have feedback, which results in additional analysis. As such, much of the analytical cycle is iterative. When determining how to communicate the results, the analyst may consider implementing a variety of data visualization techniques to help communicate
8500-412: The revenue of divisions A, B, and C (which are mutually exclusive of each other) and should add to the total revenue (collectively exhaustive). Analysts may use robust statistical measurements to solve certain analytical problems. Hypothesis testing is used when a particular hypothesis about the true state of affairs is made by the analyst and data is gathered to determine whether that state of affairs
8600-461: The same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation . Instead, data are gathered and correlations between predictors and response are investigated. While the tools of data analysis work best on data from randomized studies , they are also applied to other kinds of data—like natural experiments and observational studies —for which
8700-439: The sample data to draw inferences about the population represented while accounting for randomness. These inferences may take the form of answering yes/no questions about the data ( hypothesis testing ), estimating numerical characteristics of the data ( estimation ), describing associations within the data ( correlation ), and modeling relationships within the data (for example, using regression analysis ). Inference can extend to
8800-399: The sample members in an observational or experimental setting. Again, descriptive statistics can be used to summarize the sample data. However, drawing the sample contains an element of randomness; hence, the numerical descriptors from the sample are also prone to uncertainty. To draw meaningful conclusions about the entire population, inferential statistics are needed. It uses patterns in
8900-405: The sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative. Statistics offers methods to estimate and correct for any bias within the sample and data collection procedures. There are also methods of experimental design that can lessen these issues at the outset of a study, strengthening its capability to discern truths about
9000-482: The sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation. Two main statistical methods are used in data analysis : descriptive statistics , which summarize data from
9100-412: The sampling and analysis were repeated under the same conditions (yielding a different dataset), the interval would include the true (population) value in 95% of all possible cases. This does not imply that the probability that the true value is in the confidence interval is 95%. From the frequentist perspective, such a claim does not even make sense, as the true value is not a random variable . Either
9200-408: The statistic, though, may have unknown parameters. Consider now a function of the unknown parameter: an estimator is a statistic used to estimate such function. Commonly used estimators include sample mean , unbiased sample variance and sample covariance . A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on
9300-453: The test to reject the null hypothesis. This test is logically equivalent to saying that the p-value is the probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic . Therefore, the smaller the significance level, the lower the probability of committing type I error. Data analysis Data analysis is the process of inspecting, cleansing , transforming , and modeling data with
9400-420: The true value is or is not within the given interval. However, it is true that, before any data are sampled and given a plan for how to construct the confidence interval, the probability is 95% that the yet-to-be-calculated interval will cover the true value: at this point, the limits of the interval are yet-to-be-observed random variables . One approach that does yield an interval that can be interpreted as having
9500-416: The two sided interval is built violating symmetry around the estimate. Sometimes the bounds for a confidence interval are reached asymptotically and these are used to approximate the true bounds. Statistics rarely give a simple Yes/No type answer to the question under analysis. Interpretation often comes down to the level of statistical significance applied to the numbers and often refers to the probability of
9600-485: The unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the z-score , the chi square statistic and Student's t-value . Between two estimators of a given parameter, the one with lower mean squared error is said to be more efficient . Furthermore, an estimator is said to be unbiased if its expected value is equal to the true value of the unknown parameter being estimated, and asymptotically unbiased if its expected value converges at
9700-640: The use of sample size in frequency analysis. Although the term statistic was introduced by the Italian scholar Girolamo Ghilini in 1589 with reference to a collection of facts and information about a state, it was the German Gottfried Achenwall in 1749 who started using the term as a collection of quantitative information, in the modern use for this science. The earliest writing containing statistics in Europe dates back to 1663, with
9800-528: The use of spreadsheet(excel) or statistical software. Once processed and organized, the data may be incomplete, contain duplicates, or contain errors. The need for data cleaning will arise from problems in the way that the datum are entered and stored. Data cleaning is the process of preventing and correcting these errors. Common tasks include record matching, identifying inaccuracy of data, overall quality of existing data, deduplication, and column segmentation. Such data problems can also be identified through
9900-415: The variables under examination, analysts typically obtain descriptive statistics for them, such as the mean (average), median , and standard deviation . They may also analyze the distribution of the key variables to see how the individual values cluster around the mean. The consultants at McKinsey and Company named a technique for breaking a quantitative problem down into its component parts called
10000-468: The world. Fisher's most important publications were his 1918 seminal paper The Correlation between Relatives on the Supposition of Mendelian Inheritance (which was the first to use the statistical term, variance ), his classic 1925 work Statistical Methods for Research Workers and his 1935 The Design of Experiments , where he developed rigorous design of experiments models. He originated
#177822