Misplaced Pages

GB-1

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A glide bomb or stand-off bomb is a standoff weapon with flight control surfaces to give it a flatter, gliding flight path than that of a conventional bomb without such surfaces. This allows it to be released at a distance from the target rather than right over it, allowing a successful attack without exposing the launching aircraft to anti-aircraft defenses near the target. Glide bombs can accurately deliver warheads in a manner comparable to cruise missiles at a fraction of the cost—sometimes by installing flight control kits on simple unguided bombs —and they are very difficult for surface-to-air missiles to intercept due to their tiny radar signatures and short flight times. The only effective countermeasure in most cases is to shoot down enemy aircraft before they approach within launching range, making glide bombs very potent weapons where wartime exigencies prevent this.

#810189

41-525: The GB-1 , also known as the "Grapefruit bomb" and as XM-108 , was a glide bomb produced by Aeronca Aircraft for the United States Army Air Forces during World War II . Intended to allow bombers to release bombs from outside the range of enemy defenses, over one thousand GB-1s were used in combat before the end of the war. The U.S. Army Air Corps – which would later become the U.S. Army Air Forces – initiated development of

82-609: A flare seeker (GB-13), and active radar homing (GB-14) were developed, however none progressed beyond the testing stage. A version for use in dispersing chemical agents, the GB-11 , was also trialled but cancelled due to the end of the war; the GT-1 torpedo-delivering glider was also derived from the GB-1. Production of the GB-1 was terminated in January 1945; following the end of the war,

123-437: A 12-foot (3.7 m) wing and twin-tail empennage of conventional small-aircraft design to a standard M34 2,000-pound (910 kg) bomb. A gyrostabilizer -based autopilot controlling azimuth was used, allowing the bomb to be set to a specific course following release at a specific altitude and target distance; gliding at a speed of 230 miles per hour (370 km/h), range from a release height of 15,000 feet (4,600 m)

164-421: A Hs 293 sank the troopship HMT  Rohna from Mediterranean convoy KMF 26 . Several defensive measures were implemented right away. Ships capable of maneuvering at high speed were instructed to make tight turns across the weapon's flight path in order to complicate the missile operator's efforts. Attacking aircraft were interdicted with air patrols and heavy-caliber anti-aircraft weapons , disrupting either

205-549: A glide bomb design in March 1941. Intended to allow bombers to stand off outside the range of enemy flak while releasing their bombload, while also potentially allowing for more precise targeting due to the shallow glide path the bomb would follow, the design resulted in three prototypes; one developed by Aeronca designated GB-1; a design by Bellanca designated GB-2 , and the Timm Aircraft -designed GB-3 . The GB-1 mated

246-557: A rack under each of the bomber's wings – and the accuracy of the GB-1 proving to be significantly worse than that of ordinary bombs. Despite this, by May 1944 the first releases of GB-1s were undertaken. On 28 May 1944, 42 of 113 glide bombs released hit Cologne , after being released 18 miles from the Eifeltor marshaling yard in the city at 195 miles per hour (314 km/h); many failed to hold an electrical charge in their batteries, causing their autopilots to fail. German gunners mistook

287-520: A simulation is accessible through available ground data. Laser designators may be mounted on aircraft, ground vehicles, naval vessels, or handheld. Depending on the wavelength of light used by the designator, the designation laser may or may not be visible to the personnel deploying it. This is the case with 1064  nm laser designators used by JTACs as that wavelength of light is difficult to see under standard Gen III/III+ night vision devices. Other imaging devices with "see-spot" capabilities to "see"

328-424: A small liquid-fueled rocket fired to speed the weapon up and get it out in front of the releasing aircraft, which was flown to approach the target just off to one side. The bomb then dropped close to the water and glided in parallel to the launch aircraft, with the bomb aimer adjusting the flight left or right. As long as the bomb was dropped at roughly the right range so it did not run out of altitude while gliding in,

369-603: Is a laser light source which is used to designate a target . Laser designators provide targeting for laser-guided bombs , missiles , or precision artillery munitions, such as the Paveway series of bombs, AGM-114 Hellfire , or the M712 Copperhead round, respectively. When a target is marked by a designator, the beam is invisible and does not shine continuously. Instead, a series of coded laser pulses, also called PRF codes ( pulse repetition frequency ), are fired at

410-557: The 'Bat' and its earlier variant, the 'Pelican' . The longer-range Bat used an active radar seeker and was used in the Pacific on August 13, 1944, but could not distinguish between targets in a cluttered environment and could be easily spoofed by even simple radar countermeasures. Only four examples of an experimental glide bomb, the ' Pratt-Read LBE ', were produced. After the war, the increasing sophistication of electronics allowed these systems to be developed as practical devices; from

451-827: The AN/PEQ-1 SOFLAM of the United States, the Russian LPR series of handheld devices. U.S. Air Force Joint Terminal Air Controllers and Marine Corps Forward Air Controllers typically employ a lightweight device, such as the AN/PED-1 Lightweight Laser Designator Rangefinder (LLDR), permitting them to designate targets for Close Air Support aircraft flying overhead and in close proximity to friendly forces. While many designators are binocular-based and may utilize tripods, smaller handheld laser designators, like

SECTION 10

#1732801887811

492-528: The European theater against these weapons. While early models proved inadequate, by the time the Allies were preparing for the invasion of France in 1944 more capable systems were deployed, and the success rate of guided weapons declined considerably. Even more important to the defeat of the weapons was Allied command of the airspace and the interception of incoming bombers by Allied fighter aircraft. The Hs 293

533-776: The F-16 , F-15E , B-1 , B-52 , and A-10C . It also operates on multiple international fighter platforms. The U.S. Navy currently employ LITENING and ATFLIR targeting pods on a variety of strike aircraft. The Litening II is widely used by many other of the world's air forces. The United Kingdom's Royal Air Force use the Litening III system and the French use the TALIOS (Targeting Long-range Identification Optronic System) , Damocles and ATLIS II . Many modern armed forces employ handheld laser designation systems. Examples include

574-595: The Hs 293D models. The use was problematic – as the bomb approaches the target, even tiny amounts of control input would cause the target to jump around the TV display, so much of the difficulty was in developing control systems that would become progressively less sensitive as the pilot required. A wire-guided version was also developed, but this Hs 293B variant was never deployed. In 1939 Sir Dennistoun Burney and Nevil Shute Norway , worked together on an air-launched gliding torpedo,

615-465: The Royal Navy ships they were attacking. By 1941, accurate bombing was as difficult as ever, with the added problem of evading anti-aircraft fire. The German solution was the development of a number of glide bombs employing radio control guidance. One was created by fitting a control package on the rear of an otherwise standard bomb, starting with their 1400 kg armor-piercing bomb to create

656-461: The Ruhrstahl SD 1400 , commonly referred to as Fritz -X . This weapon was designed specifically to pierce the deck armor of heavy cruisers and battleships. The bomb aimer dropped the bomb from high altitude while the aircraft was still approaching the ship, and guided it to impact with the target by sending commands to spoilers attached to its rear. This proved to be difficult to do, because as

697-510: The "Toraplane", and a gliding bomb, "Doravane". Despite much work and many trials the Toraplane could not be launched with repeatable accuracy and it was abandoned in 1942. The US Army Air Force started a wide-spanning development program of both glide bombs, known as "GB", and similar systems designed to fall more vertically, as "VG". Several models of both concepts were used in limited numbers during WWII. The first to be used operationally

738-545: The 1960s air forces deployed a number of such systems, including the USAF's AGM-62 Walleye . Contrast seekers were also steadily improved, becoming very effective in the widely used AGM-65 Maverick missile. Both were standard systems until the 1980s when the development of laser guidance and GPS based systems made them unnecessary for all but the most accurate of roles. Various TV-based systems remain in limited service for super-accurate uses, but have otherwise been removed. In

779-489: The B.E. Meyers & Co. IZLID 1000P exist as well. Northrop Grumman's LLDR, using an eye-safe laser wavelength, recognizes targets, finds the range to a target, and fixes target locations for laser-guided, GPS-guided, and conventional munitions. This lightweight, interoperable system uniquely provides range finding and targeting information to other digital battlefield systems allowing the system to provide targeting information for non-guided munitions, or when laser designation

820-521: The C model with a conical warhead which was designed to hit the water short of the ship and then travel a short distance underwater to hit the ship below the waterline. The guidance system for the Hs 293 series was the same as the Fritz-X unpowered munition; it used a Funkgerät FuG 203 Kehl radio control transmitter with a single two-axis joystick in the deploying bomber, and an FuG 230 Straßburg receiver in

861-459: The airframe components to detach from the torpedo which would then enter the water and continue towards its target. Guidance signals were to be transmitted through a thin copper wire, and guide flares were to be carried to help control. Siemens-Schuckertwerke was already occupied with remote controlled boats (the FL-boats or Fernlenkboote ), and had some experience in this area. Flight testing

SECTION 20

#1732801887811

902-519: The anti-ship role, direct attack from an aircraft even at long range became more dangerous due to the deployment of anti-aircraft missiles on ships. Weapons such as the Bat had ranges too short to keep the attacking aircraft out of range, especially in a force provided with air cover. This was addressed with the introduction of small jet engines that greatly extended the range, producing the anti-shipping missile class that remains widely used today. Similarly,

943-419: The bomb dropped toward the target it fell further behind the launch aircraft, eventually becoming difficult to see. This problem was solved by having the launch aircraft slow down and enter a climb to avoid overtaking the bomb as it fell. In addition it proved difficult to properly guide the bomb to impact as the angle of descent changed, and if the bomb was not aimed accurately so as to end up roughly right over

984-532: The bomb was taken out of service. Glide bomb World War II -era glide bombs like the German Fritz X and Henschel Hs 293 pioneered the use of remote control systems, allowing the controlling aircraft to direct the bomb to a pinpoint target as a pioneering form of precision-guided munition . Modern systems are generally self-guided or semi-automated, using GPS or laser designators to hit their target. The term " glide bombing " does not refer to

1025-553: The bombs for aircraft they were shooting down, claiming over 90 kills. Due to the inaccuracy the bombs demonstrated, the Eighth Air Force did not use the glide bombs again; however other units would go on to use over a thousand GB-1s before the end of the war. During the war, variants of the GB-1 using a contrast seeker for anti-shipping use (GB-5, GB-12), heat seeking (GB-6), semi-active radar homing (GB-7), radio command guidance (GB-8), television guidance (GB-10),

1066-483: The first operational glide bombs were developed by the Germans as an anti-shipping weapon. Ships are typically very difficult to attack: a direct hit or an extremely near miss is needed to do any serious damage, and hitting a target as small as a ship was difficult in this period. At first dive bombers were used with some success in this role, but their successes were countered by ever-increasing anti-aircraft defenses on

1107-464: The guidance package mounted to standard 500 kg bombs was tested in September 1940. It was found that the bomb was unable to penetrate a ship's armor, so changes were made to fit an armor-piercing warhead before the system finally entered service in 1943. The basic A-1 model was the only one to be produced in any number, but developments included the B model with a custom armor-piercing warhead, and

1148-540: The laser spot are often utilized to make sure the target is being correctly designated. These may include FLIR (forward looking infrared) thermal imagers which normally operate in the MWIR or LWIR spectrum but have a 1064 nm window in which they can see-spot the laser. The U.S. Air Force selected the Lockheed Martin 's Sniper Advanced Targeting Pod (ATP) in 2004. It equipped multiple USAF platforms such as

1189-603: The munition. Following the capitulation of Italy in 1943, Germany damaged the Italian battleship Italia and sank the Roma with Fritz-X bombs. Attacks were also made on the USS ; Savannah , causing much damage and loss of life. HMS Warspite was hit by three Fritz-X, and although casualties were few, the ship had to be towed to Malta for repairs and was out of action for six months. The cruiser USS  Philadelphia

1230-411: The need to attack well-defended targets such as airbases and military command posts led to the development of newer generations of glide bombs. European air forces use a glide package with a cluster bomb warhead for remotely attacking airbases. Laser and GPS guidance systems are used. [REDACTED] Media related to Glide bombs at Wikimedia Commons Laser designator A laser designator

1271-671: The system was easy to use, at least against slow-moving targets. The Hs 293 was first used operationally in the Bay of Biscay against RN and RCN destroyers, sloops and frigates. Its combat debut was made on August 25, 1943, when the sloop HMS Bideford was slightly damaged by a missile which failed to fully detonate, but killed one crewman. Another sloop, HMS Landguard , survived a near miss with slight damage. The Germans attacked again two days later, sinking HMS Egret on August 27, 1943; they also seriously damaged HMCS Athabaskan . Over one-thousand Allied soldiers died on 25 November 1943 when

GB-1 - Misplaced Pages Continue

1312-462: The target, there was little that could be done at later stages to fix the problem. Nevertheless, the Fritz X proved useful with crews trained on its use. In test drops from 8,000 m (26,000 ft), experienced bomb aimers could place half the bombs within a 15 m (49 ft 3 in) radius and 90% within 30 m (98 ft 5 in). Design work started as early as 1939, and a version of

1353-531: The target. These signals bounce off the target into the sky, where they are detected by the seeker on the laser-guided munition, which steers itself towards the centre of the reflected signal. Unless the people being targeted possess laser detection equipment or can hear aircraft overhead, it is extremely difficult for them to determine whether they are being marked. Laser designators work best in clear atmospheric conditions. Cloud cover, rain or smoke can make reliable designation of targets difficult or impossible unless

1394-459: The target; most "spun in and exploded 15 miles from the target... many of the batteries failed to hold [their] charge"). More advanced models in the GB series included the television guided GB-4 , GB-5 , GB-12 , and GB-13 , which used contrast-seekers for anti-ship use, and the command-guided GB-8 , ' Azon ', ' Razon ', as well as the infrared-guided 'Felix' . US Navy glide bombs included

1435-470: The use of glide bombs, but a style of shallow-angle dive bombing . In October 1914, Wilhelm von Siemens suggested what became known as the Siemens torpedo glider , a wire-guided flying missile which would essentially have comprised a naval torpedo with an attached airframe. It was not intended to be flown into a target, but rather at a suitable altitude and position, a signal would be transmitted, causing

1476-471: The visual or radio links to the guided weapons. Smoke was used to hide ships at anchor. Allied aircraft also attacked the home bases of the special German units equipped with these weapons, primarily ( Gruppen II and III of Kampfgeschwader 100 and Gruppe II of Kampfgeschwader 40 ). American, British and Canadian scientists also developed sophisticated radio jammers to disrupt the guidance signal. Ultimately nine different jamming systems were deployed in

1517-461: Was 20 miles (32 km). Selected for production over the competing GB-2 and GB-3 due to its simpler control system and its proving more practical for bomber carriage, production of the GB-1 began in May 1943; arriving in the combat zone in September, operational use was delayed due to the limited bombload the glider imposed – a B-17 Flying Fortress bomber could carry only two GB-1s on a mission, one on

1558-683: Was also used in August 1944 to attack bridges over the Sée and Sélune at the southern end of the Cherbourg peninsula in an attempt to break US general Patton 's advance, but this mission was unsuccessful. A similar mission against bridges on the river Oder , designed to slow the Soviet advance into Germany, was made in April 1945 but failed. The Germans also experimented with television guidance systems on

1599-539: Was performed under the supervision of an engineer called Dorner from January 1915 onwards, using airships as carriers and different types of biplane and monoplane glider airframes to which a torpedo was fitted. The last test flight was performed on February 8, 1918. It was planned to use the Siemens-Schuckert R.VIII bomber as a carrier craft, but the Armistice stopped the project. During World War II,

1640-553: Was the Aeronca GB-1 , essentially an autopilot attached to a small glider airframe carrying a bomb. It was intended to allow the 8th Air Force bombers to drop their payloads far from their targets and thus avoid having to overfly the most concentrated areas of anti-aircraft artillery fire. It was first used on 28 May 1944 against the Eifeltor marshalling yard in Cologne , but only 42 of 113 bombs released reached anywhere near

1681-554: Was very slightly damaged by several near misses from Fritz-X bombs. The light cruiser HMS Uganda was also hit and put out of action for thirteen months as a result. A more widely employed weapon was the Henschel Hs 293 , which included wings and a rocket motor to allow the bomb to glide some distance away from the launch aircraft. This weapon was designed for use against thinly armored but highly defended targets such as convoy merchantmen or their escorting warships. When launched,

GB-1 - Misplaced Pages Continue

#810189