Global Infectious Diseases and Epidemiology Online Network ( GIDEON ) is a web-based program for decision support and informatics in the fields of Infectious Diseases and Geographic Medicine . Due to the advancement of both disease research and digital media, print media can no longer follow the dynamics of outbreaks and epidemics as they emerge in "real time." As of 2005, more than 300 generic infectious diseases occur haphazardly in time and space and are challenged by over 250 drugs and vaccines. 1,500 species of pathogenic bacteria , viruses , parasites and fungi have been described. GIDEON works to combat this by creating a diagnosis through geographical indicators, a map of the status of the disease in history, a detailed list of potential vaccines and treatments, and finally listing all the potential species of the disease or outbreak such as bacterial classifications.
65-432: GIDEON consists of four modules. The first Diagnosis module generates a Bayesian ranked differential diagnosis based on signs, symptoms, laboratory tests, country of origin and incubation period – and can be used for diagnosis support and simulation of all infectious diseases in all countries. Since the program is web-based, this module can also be adapted to disease and bioterror surveillance. The second module follows
130-480: A least squares model with k {\displaystyle k} distinct parameters, one must have N ≥ k {\displaystyle N\geq k} distinct data points. If N > k {\displaystyle N>k} , then there does not generally exist a set of parameters that will perfectly fit the data. The quantity N − k {\displaystyle N-k} appears often in regression analysis, and
195-410: A broader collection of non-linear models (e.g., nonparametric regression ). Regression analysis is primarily used for two conceptually distinct purposes. First, regression analysis is widely used for prediction and forecasting , where its use has substantial overlap with the field of machine learning . Second, in some situations regression analysis can be used to infer causal relationships between
260-416: A causal interpretation. The latter is especially important when researchers hope to estimate causal relationships using observational data . The earliest form of regression was the method of least squares , which was published by Legendre in 1805, and by Gauss in 1809. Legendre and Gauss both applied the method to the problem of determining, from astronomical observations, the orbits of bodies about
325-412: A certain range, often arise in econometrics . The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model . Nonlinear models for binary dependent variables include the probit and logit model . The multivariate probit model
390-957: A medical diagnosis on it Medical diagnosis Molecular diagnostics Methods [ edit ] CDR computerized assessment system Computer-aided diagnosis Differential diagnosis Retrospective diagnosis Tools [ edit ] DELTA (taxonomy) DXplain List of diagnostic classification and rating scales used in psychiatry Organizational development [ edit ] Organizational diagnostics Systems engineering [ edit ] Five whys Eight disciplines problem solving Fault detection and isolation Problem solving References [ edit ] ^ "A Guide to Fault Detection and Diagnosis" . gregstanleyandassociates.com. External links [ edit ] [REDACTED] The dictionary definition of diagnosis at Wiktionary [REDACTED] Index of articles associated with
455-597: A model, the results of a t-test or F-test are sometimes more difficult to interpret if the model's assumptions are violated. For example, if the error term does not have a normal distribution, in small samples the estimated parameters will not follow normal distributions and complicate inference. With relatively large samples, however, a central limit theorem can be invoked such that hypothesis testing may proceed using asymptotic approximations. Limited dependent variables , which are response variables that are categorical variables or are variables constrained to fall only in
520-472: A normal average (a phenomenon also known as regression toward the mean ). For Galton, regression had only this biological meaning, but his work was later extended by Udny Yule and Karl Pearson to a more general statistical context. In the work of Yule and Pearson, the joint distribution of the response and explanatory variables is assumed to be Gaussian . This assumption was weakened by R.A. Fisher in his works of 1922 and 1925. Fisher assumed that
585-410: A particular form for the relation between Y and X is another source of uncertainty. A properly conducted regression analysis will include an assessment of how well the assumed form is matched by the observed data, but it can only do so within the range of values of the independent variables actually available. This means that any extrapolation is particularly reliant on the assumptions being made about
650-465: A reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β {\displaystyle \beta } . For example, least squares (including its most common variant, ordinary least squares ) finds the value of β {\displaystyle \beta } that minimizes
715-668: A term in x i 2 {\displaystyle x_{i}^{2}} to the preceding regression gives: This is still linear regression; although the expression on the right hand side is quadratic in the independent variable x i {\displaystyle x_{i}} , it is linear in the parameters β 0 {\displaystyle \beta _{0}} , β 1 {\displaystyle \beta _{1}} and β 2 . {\displaystyle \beta _{2}.} In both cases, ε i {\displaystyle \varepsilon _{i}}
SECTION 10
#1732787714109780-430: Is n × 1 {\displaystyle n\times 1} , and β ^ {\displaystyle {\hat {\boldsymbol {\beta }}}} is p × 1 {\displaystyle p\times 1} . The solution is Once a regression model has been constructed, it may be important to confirm the goodness of fit of the model and the statistical significance of
845-439: Is linear regression , in which one finds the line (or a more complex linear combination ) that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line (or hyperplane ) that minimizes the sum of squared differences between the true data and that line (or hyperplane). For specific mathematical reasons (see linear regression ), this allows
910-428: Is a function ( regression function ) of X i {\displaystyle X_{i}} and β {\displaystyle \beta } , with e i {\displaystyle e_{i}} representing an additive error term that may stand in for un-modeled determinants of Y i {\displaystyle Y_{i}} or random statistical noise: Note that
975-479: Is a standard method of estimating a joint relationship between several binary dependent variables and some independent variables. For categorical variables with more than two values there is the multinomial logit . For ordinal variables with more than two values, there are the ordered logit and ordered probit models. Censored regression models may be used when the dependent variable is only sometimes observed, and Heckman correction type models may be used when
1040-481: Is an error term and the subscript i {\displaystyle i} indexes a particular observation. Returning our attention to the straight line case: Given a random sample from the population, we estimate the population parameters and obtain the sample linear regression model: The residual , e i = y i − y ^ i {\displaystyle e_{i}=y_{i}-{\widehat {y}}_{i}} ,
1105-619: Is available, a flexible or convenient form for f {\displaystyle f} is chosen. For example, a simple univariate regression may propose f ( X i , β ) = β 0 + β 1 X i {\displaystyle f(X_{i},\beta )=\beta _{0}+\beta _{1}X_{i}} , suggesting that the researcher believes Y i = β 0 + β 1 X i + e i {\displaystyle Y_{i}=\beta _{0}+\beta _{1}X_{i}+e_{i}} to be
1170-445: Is considered. At a minimum, it can ensure that any extrapolation arising from a fitted model is "realistic" (or in accord with what is known). There are no generally agreed methods for relating the number of observations versus the number of independent variables in the model. One method conjectured by Good and Hardin is N = m n {\displaystyle N=m^{n}} , where N {\displaystyle N}
1235-487: Is designed to identify or characterize all species of bacteria, mycobacteria and yeasts. The database includes 50 to 100 taxa which may not appear in standard texts and laboratory databases for several months. Additional options allow users to add data (in their own font / language) relevant to their own institution, electronic patient charts, material from the internet, important telephone numbers, drug prices, antimicrobial resistance patterns, etc. This form of custom data
1300-546: Is different from Wikidata All set index articles Regression analysis#Regression diagnostics In statistical modeling , regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors , predictors , covariates , explanatory variables or features ). The most common form of regression analysis
1365-461: Is for the model to fail due to differences between the assumptions and the sample data or the true values. A prediction interval that represents the uncertainty may accompany the point prediction. Such intervals tend to expand rapidly as the values of the independent variable(s) moved outside the range covered by the observed data. For such reasons and others, some tend to say that it might be unwise to undertake extrapolation. The assumption of
SECTION 20
#17327877141091430-416: Is important to note that there must be sufficient data to estimate a regression model. For example, suppose that a researcher has access to N {\displaystyle N} rows of data with one dependent and two independent variables: ( Y i , X 1 i , X 2 i ) {\displaystyle (Y_{i},X_{1i},X_{2i})} . Suppose further that
1495-511: Is particularly useful when running GIDEON on institutional networks. The data in GIDEON are derived from: Diagnosis Identification of the nature and cause of a certain phenomenon For other uses, see Diagnosis (disambiguation) . Diagnosis ( pl. : diagnoses ) is the identification of the nature and cause of a certain phenomenon. Diagnosis is used in many different disciplines , with variations in
1560-431: Is referred to as the degrees of freedom in the model. Moreover, to estimate a least squares model, the independent variables ( X 1 i , X 2 i , . . . , X k i ) {\displaystyle (X_{1i},X_{2i},...,X_{ki})} must be linearly independent : one must not be able to reconstruct any of the independent variables by adding and multiplying
1625-708: Is that the dependent variable, y i {\displaystyle y_{i}} is a linear combination of the parameters (but need not be linear in the independent variables ). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β 0 {\displaystyle \beta _{0}} and β 1 {\displaystyle \beta _{1}} : In multiple linear regression, there are several independent variables or functions of independent variables. Adding
1690-405: Is the difference between the value of the dependent variable predicted by the model, y ^ i {\displaystyle {\widehat {y}}_{i}} , and the true value of the dependent variable, y i {\displaystyle y_{i}} . One method of estimation is ordinary least squares . This method obtains parameter estimates that minimize
1755-431: Is the sample size, n {\displaystyle n} is the number of independent variables and m {\displaystyle m} is the number of observations needed to reach the desired precision if the model had only one independent variable. For example, a researcher is building a linear regression model using a dataset that contains 1000 patients ( N {\displaystyle N} ). If
1820-598: Is typically done with statistical and spreadsheet software packages on computers as well as on handheld scientific and graphing calculators . In practice, researchers first select a model they would like to estimate and then use their chosen method (e.g., ordinary least squares ) to estimate the parameters of that model. Regression models involve the following components: In various fields of application , different terminologies are used in place of dependent and independent variables . Most regression models propose that Y i {\displaystyle Y_{i}}
1885-446: Is used. In this case, p = 1 {\displaystyle p=1} so the denominator is n − 2 {\displaystyle n-2} . The standard errors of the parameter estimates are given by Under the further assumption that the population error term is normally distributed, the researcher can use these estimated standard errors to create confidence intervals and conduct hypothesis tests about
1950-461: The j {\displaystyle j} element of β ^ {\displaystyle {\hat {\boldsymbol {\beta }}}} is β ^ j {\displaystyle {\hat {\beta }}_{j}} . Thus X {\displaystyle \mathbf {X} } is n × p {\displaystyle n\times p} , Y {\displaystyle Y}
2015-401: The Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation . Prediction outside this range of the data is known as extrapolation . Performing extrapolation relies strongly on the regression assumptions. The further the extrapolation goes outside the data, the more room there
Global Infectious Disease Epidemiology Network - Misplaced Pages Continue
2080-628: The conditional distribution of the response variable is Gaussian, but the joint distribution need not be. In this respect, Fisher's assumption is closer to Gauss's formulation of 1821. In the 1950s and 1960s, economists used electromechanical desk calculators to calculate regressions. Before 1970, it sometimes took up to 24 hours to receive the result from one regression. Regression methods continue to be an area of active research. In recent decades, new methods have been developed for robust regression , regression involving correlated responses such as time series and growth curves , regression in which
2145-479: The epidemiology of individual diseases, including their global background and status in each of 205 countries and regions. All past and current outbreaks of all diseases, in all countries, are described in detail. The user may also access a list of diseases compatible with any combination of agent, vector, vehicle, reservoir and country (for example, one could list all the mosquito-borne flaviviruses of Brazil which have an avian reservoir). Over 30,000 graphs display all
2210-419: The population parameters . In the more general multiple regression model, there are p {\displaystyle p} independent variables: where x i j {\displaystyle x_{ij}} is the i {\displaystyle i} -th observation on the j {\displaystyle j} -th independent variable. If the first independent variable takes
2275-523: The Sun (mostly comets, but also later the then newly discovered minor planets). Gauss published a further development of the theory of least squares in 1821, including a version of the Gauss–Markov theorem . The term "regression" was coined by Francis Galton in the 19th century to describe a biological phenomenon. The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards
2340-544: The assumption that the population error term has a constant variance, the estimate of that variance is given by: This is called the mean square error (MSE) of the regression. The denominator is the sample size reduced by the number of model parameters estimated from the same data, ( n − p ) {\displaystyle (n-p)} for p {\displaystyle p} regressors or ( n − p − 1 ) {\displaystyle (n-p-1)} if an intercept
2405-416: The case of simple regression, the formulas for the least squares estimates are where x ¯ {\displaystyle {\bar {x}}} is the mean (average) of the x {\displaystyle x} values and y ¯ {\displaystyle {\bar {y}}} is the mean of the y {\displaystyle y} values. Under
2470-409: The choice of how to model e i {\displaystyle e_{i}} within geographic units can have important consequences. The subfield of econometrics is largely focused on developing techniques that allow researchers to make reasonable real-world conclusions in real-world settings, where classical assumptions do not hold exactly. In linear regression, the model specification
2535-413: The class of linear unbiased estimators. Practitioners have developed a variety of methods to maintain some or all of these desirable properties in real-world settings, because these classical assumptions are unlikely to hold exactly. For example, modeling errors-in-variables can lead to reasonable estimates independent variables are measured with errors. Heteroscedasticity-consistent standard errors allow
2600-1110: The data equally well: any combination can be chosen that satisfies Y ^ i = β ^ 0 + β ^ 1 X 1 i + β ^ 2 X 2 i {\displaystyle {\hat {Y}}_{i}={\hat {\beta }}_{0}+{\hat {\beta }}_{1}X_{1i}+{\hat {\beta }}_{2}X_{2i}} , all of which lead to ∑ i e ^ i 2 = ∑ i ( Y ^ i − ( β ^ 0 + β ^ 1 X 1 i + β ^ 2 X 2 i ) ) 2 = 0 {\displaystyle \sum _{i}{\hat {e}}_{i}^{2}=\sum _{i}({\hat {Y}}_{i}-({\hat {\beta }}_{0}+{\hat {\beta }}_{1}X_{1i}+{\hat {\beta }}_{2}X_{2i}))^{2}=0} and are therefore valid solutions that minimize
2665-486: The data, and are updated in "real time". These graphs can be used for preparation of PowerPoint displays, pamphlets, lecture notes, etc. Several thousand high-quality images are also available, including clinical lesions , roentgenograms , Photomicrographs and disease life cycles . The third module is an interactive encyclopedia which incorporates the pharmacology , usage, testing standards and global trade names of all antiinfective drugs and vaccines. The fourth module
Global Infectious Disease Epidemiology Network - Misplaced Pages Continue
2730-405: The data. To carry out regression analysis, the form of the function f {\displaystyle f} must be specified. Sometimes the form of this function is based on knowledge about the relationship between Y i {\displaystyle Y_{i}} and X i {\displaystyle X_{i}} that does not rely on the data. If no such knowledge
2795-408: The data. Whether the researcher is intrinsically interested in the estimate β ^ {\displaystyle {\hat {\beta }}} or the predicted value Y i ^ {\displaystyle {\hat {Y_{i}}}} will depend on context and their goals. As described in ordinary least squares , least squares is widely used because
2860-416: The estimate from the true (unknown) parameter value that generated the data. Using this estimate, the researcher can then use the fitted value Y i ^ = f ( X i , β ^ ) {\displaystyle {\hat {Y_{i}}}=f(X_{i},{\hat {\beta }})} for prediction or to assess the accuracy of the model in explaining
2925-582: The estimated function f ( X i , β ^ ) {\displaystyle f(X_{i},{\hat {\beta }})} approximates the conditional expectation E ( Y i | X i ) {\displaystyle E(Y_{i}|X_{i})} . However, alternative variants (e.g., least absolute deviations or quantile regression ) are useful when researchers want to model other functions f ( X i , β ) {\displaystyle f(X_{i},\beta )} . It
2990-481: The estimated parameters. Commonly used checks of goodness of fit include the R-squared , analyses of the pattern of residuals and hypothesis testing. Statistical significance can be checked by an F-test of the overall fit, followed by t-tests of individual parameters. Interpretations of these diagnostic tests rest heavily on the model's assumptions. Although examination of the residuals can be used to invalidate
3055-429: The independent and dependent variables. Importantly, regressions by themselves only reveal relationships between a dependent variable and a collection of independent variables in a fixed dataset. To use regressions for prediction or to infer causal relationships, respectively, a researcher must carefully justify why existing relationships have predictive power for a new context or why a relationship between two variables has
3120-461: The independent variables X i {\displaystyle X_{i}} are assumed to be free of error. This important assumption is often overlooked, although errors-in-variables models can be used when the independent variables are assumed to contain errors. The researchers' goal is to estimate the function f ( X i , β ) {\displaystyle f(X_{i},\beta )} that most closely fits
3185-440: The normal equations are written as where the i j {\displaystyle ij} element of X {\displaystyle \mathbf {X} } is x i j {\displaystyle x_{ij}} , the i {\displaystyle i} element of the column vector Y {\displaystyle Y} is y i {\displaystyle y_{i}} , and
3250-518: The occurrence of an event, then count models like the Poisson regression or the negative binomial model may be used. When the model function is not linear in the parameters, the sum of squares must be minimized by an iterative procedure. This introduces many complications which are summarized in Differences between linear and non-linear least squares . Regression models predict a value of
3315-437: The output of regression as a meaningful statistical quantity that measures real-world relationships, researchers often rely on a number of classical assumptions . These assumptions often include: A handful of conditions are sufficient for the least-squares estimator to possess desirable properties: in particular, the Gauss–Markov assumptions imply that the parameter estimates will be unbiased , consistent , and efficient in
SECTION 50
#17327877141093380-440: The predictor (independent variable) or response variables are curves, images, graphs, or other complex data objects, regression methods accommodating various types of missing data, nonparametric regression , Bayesian methods for regression, regression in which the predictor variables are measured with error, regression with more predictor variables than observations, and causal inference with regression. Modern regression analysis
3445-427: The remaining independent variables. As discussed in ordinary least squares , this condition ensures that X T X {\displaystyle X^{T}X} is an invertible matrix and therefore that a unique solution β ^ {\displaystyle {\hat {\beta }}} exists. By itself, a regression is simply a calculation using the data. In order to interpret
3510-872: The researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because Although the parameters of a regression model are usually estimated using the method of least squares, other methods which have been used include: All major statistical software packages perform least squares regression analysis and inference. Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized. Different software packages implement different methods, and
3575-400: The researcher to estimate the conditional expectation (or population average value ) of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters (e.g., quantile regression or Necessary Condition Analysis ) or estimate the conditional expectation across
3640-800: The researcher wants to estimate a bivariate linear model via least squares : Y i = β 0 + β 1 X 1 i + β 2 X 2 i + e i {\displaystyle Y_{i}=\beta _{0}+\beta _{1}X_{1i}+\beta _{2}X_{2i}+e_{i}} . If the researcher only has access to N = 2 {\displaystyle N=2} data points, then they could find infinitely many combinations ( β ^ 0 , β ^ 1 , β ^ 2 ) {\displaystyle ({\hat {\beta }}_{0},{\hat {\beta }}_{1},{\hat {\beta }}_{2})} that explain
3705-493: The same name This set index article includes a list of related items that share the same name (or similar names). If an internal link incorrectly led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Diagnosis&oldid=1230959542 " Categories : Set index articles Medical terminology Hidden categories: Articles with short description Short description
3770-404: The sample is not randomly selected from the population of interest. An alternative to such procedures is linear regression based on polychoric correlation (or polyserial correlations) between the categorical variables. Such procedures differ in the assumptions made about the distribution of the variables in the population. If the variable is positive with low values and represents the repetition of
3835-407: The structural form of the regression relationship. If this knowledge includes the fact that the dependent variable cannot go outside a certain range of values, this can be made use of in selecting the model – even if the observed dataset has no values particularly near such bounds. The implications of this step of choosing an appropriate functional form for the regression can be great when extrapolation
3900-420: The sum of squared residuals , SSR : Minimization of this function results in a set of normal equations , a set of simultaneous linear equations in the parameters, which are solved to yield the parameter estimators, β ^ 0 , β ^ 1 {\displaystyle {\widehat {\beta }}_{0},{\widehat {\beta }}_{1}} . In
3965-438: The sum of squared residuals . To understand why there are infinitely many options, note that the system of N = 2 {\displaystyle N=2} equations is to be solved for 3 unknowns, which makes the system underdetermined . Alternatively, one can visualize infinitely many 3-dimensional planes that go through N = 2 {\displaystyle N=2} fixed points. More generally, to estimate
SECTION 60
#17327877141094030-482: The sum of squared errors ∑ i ( Y i − f ( X i , β ) ) 2 {\displaystyle \sum _{i}(Y_{i}-f(X_{i},\beta ))^{2}} . A given regression method will ultimately provide an estimate of β {\displaystyle \beta } , usually denoted β ^ {\displaystyle {\hat {\beta }}} to distinguish
4095-825: The use of logic , analytics , and experience, to determine " cause and effect ". In systems engineering and computer science , it is typically used to determine the causes of symptoms, mitigations, and solutions. Computer science and networking [ edit ] Bayesian network Complex event processing Diagnosis (artificial intelligence) Event correlation Fault management Fault tree analysis Grey problem RPR problem diagnosis Remote diagnostics Root cause analysis Troubleshooting Unified Diagnostic Services Mathematics and logic [ edit ] Bayesian probability Block Hackam's dictum Occam's razor Regression diagnostics Sutton's law Medicine [ edit ] [REDACTED] A piece of paper with
4160-471: The value 1 for all i {\displaystyle i} , x i 1 = 1 {\displaystyle x_{i1}=1} , then β 1 {\displaystyle \beta _{1}} is called the regression intercept . The least squares parameter estimates are obtained from p {\displaystyle p} normal equations. The residual can be written as The normal equations are In matrix notation,
4225-444: The variance of e i {\displaystyle e_{i}} to change across values of X i {\displaystyle X_{i}} . Correlated errors that exist within subsets of the data or follow specific patterns can be handled using clustered standard errors, geographic weighted regression , or Newey–West standard errors, among other techniques. When rows of data correspond to locations in space,
#108891