The Triassic ( / t r aɪ ˈ æ s ɪ k / try- ASS -ik ; sometimes symbolized 🝈 ) is a geologic period and system which spans 50.5 million years from the end of the Permian Period 251.902 million years ago ( Mya ), to the beginning of the Jurassic Period 201.4 Mya. The Triassic is the first and shortest period of the Mesozoic Era and the seventh period of the Phanerozoic Eon . Both the start and end of the period are marked by major extinction events . The Triassic Period is subdivided into three epochs: Early Triassic , Middle Triassic and Late Triassic .
154-824: Gogolin Formation – Triassic geologic formation , hitherto named the Gogolin Beds, is the lowermost lithostratigraphical unit of the Lower Muschelkalk in the Silesian-Cracow Upland (S Poland , Central Europe), underlain by the Upper Buntsandstein (Lower Triassic) carbonates and overlain by the Górażdże Formation (Middle Triassic) carbonates. Historical name coming from Gogolin , a small town in south Poland, where
308-630: A bolide impact, for which an impact crater containing Manicouagan Reservoir in Quebec , Canada , has been singled out. However, the Manicouagan impact melt has been dated to 214±1 Mya. The date of the Triassic-Jurassic boundary has also been more accurately fixed recently, at 201.4 Mya. Both dates are gaining accuracy by using more accurate forms of radiometric dating, in particular the decay of uranium to lead in zircons formed at time of
462-626: A cosmopolitan distribution . Coelacanths show their highest post- Devonian diversity in the Early Triassic . Ray-finned fishes (actinopterygians) went through a remarkable diversification in the beginning of the Triassic, leading to peak diversity during the Middle Triassic; however, the pattern of this diversification is still not well understood due to a taphonomic megabias . The first stem-group teleosts appeared during
616-511: A biological turnover where modern groups of fish started to supplant earlier groups. Pycnodontiform fish were insignificantly affected. Conodonts , which were prominent index fossils throughout the Paleozoic and Triassic, finally became extinct at the T-J boundary following declining diversity. Like fish, marine reptiles experienced a substantial drop in diversity between the Middle Triassic and
770-450: A bolide impact have been found in the late Rhaetian, though not at the Triassic-Jurassic boundary itself; the discoverers of these trace metal anomalies purport that such a bolide impact could only have been an indirect cause of the TJME. The discovery of seismites two to four metres thick coeval with the carbon isotope fluctuations associated with the TJME has been interpreted as evidence of
924-539: A cause of extinction events were dismissed as catastrophism. Consequently, gradual environmental changes were favoured as the cause of the extinction. In the 1980s, Jack Sepkoski identified the Triassic-Jurassic boundary drop in biodiversity as one of the "Big 5" mass extinction events. After the discovery that the Cretaceous-Palaeogene extinction event was caused by a bolide impact, the TJME has also been suggested to have been caused by such an impact in
1078-555: A chain of mountain ranges stretching from Turkey to Malaysia . Pangaea was fractured by widespread faulting and rift basins during the Triassic—especially late in that period—but had not yet separated. The first nonmarine sediments in the rift that marks the initial break-up of Pangaea, which separated eastern North America from Morocco , are of Late Triassic age; in the United States , these thick sediments comprise
1232-491: A clear trend towards increased aridification towards the end of the Triassic. Although high-latitude areas like Greenland and Australia actually became wetter, most of the world experienced more drastic changes in climate as indicated by geological evidence. This evidence includes an increase in carbonate and evaporite deposits (which are most abundant in dry climates) and a decrease in coal deposits (which primarily form in humid environments such as coal forests ). In addition,
1386-555: A collapse in the reef community, which was likely driven by ocean acidification resulting from CO 2 supplied to the atmosphere by the CAMP eruptions. Most evidence points to a relatively fast recovery from the mass extinction. Benthic ecosystems recovered far more rapidly after the TJME than they did after the PTME. British Early Jurassic benthic marine environments display a relatively rapid recovery that began almost immediately after
1540-474: A few exposures in the west. During the Triassic peneplains are thought to have formed in what is now Norway and southern Sweden. Remnants of this peneplain can be traced as a tilted summit accordance in the Swedish West Coast . In northern Norway Triassic peneplains may have been buried in sediments to be then re-exposed as coastal plains called strandflats . Dating of illite clay from
1694-459: A few sites, the TJME was associated with fully oxygenated waters. Positive δ N excursions have also been interpreted as evidence of anoxia concomitant with increased denitrification in marine sediments in the TJME's aftermath. In northeastern Panthalassa, episodes of anoxia and euxinia were already occurring during the Rhaetian before the TJME, making its marine ecosystems unstable even before
SECTION 10
#17327870147921848-471: A long beak-like snout), and Shringasaurus (a horned herbivore which reached a body length of 3–4 metres (9.8–13.1 ft)). One group of archosauromorphs, the archosauriforms , were distinguished by their active predatory lifestyle, with serrated teeth and upright limb postures. Archosauriforms were diverse in the Triassic, including various terrestrial and semiaquatic predators of all shapes and sizes. The large-headed and robust erythrosuchids were among
2002-441: A positive feedback resulting from warming, which has been suggested as one possible cause of the PTME, the largest mass extinction of all time, may have exacerbated greenhouse conditions, although others suggest that methane hydrate release was temporally mismatched with the TJME and thus not a cause of it. Besides the carbon dioxide-driven long-term global warming, CAMP volcanism had shorter term cooling effects resulting from
2156-513: A possible bolide impact, although no definitive link between these seismites and any impact event has been found. On the other hand, the dissimilarity between the isotopic perturbations characterising the TJME and those characterising the end-Cretaceous mass extinction makes an extraterrestrial impact highly unlikely to have been the cause of the TJME, according to many researchers. Various trace metal ratios, including palladium/iridium, platinum/iridium, and platinum/rhodium, in rocks deposited during
2310-487: A pronounced negative δ U excursion, indicating a major decrease in marine oxygen availability. Isorenieratane concentration increase reveals that populations of green sulphur bacteria , which photosynthesise using hydrogen sulphide instead of water, grew significantly across the Triassic-Jurassic boundary; these findings indicate that euxinia , a form of anoxia defined by not just the absence of dissolved oxygen but high concentrations of hydrogen sulphide , also developed in
2464-617: A pseudosuchian. Pseudosuchians were far more ecologically dominant in the Triassic, including large herbivores (such as aetosaurs ), large carnivores (" rauisuchians "), and the first crocodylomorphs (" sphenosuchians "). Aetosaurs were heavily-armored reptiles that were common during the last 30 million years of the Late Triassic until they died out at the Triassic-Jurassic extinction. Most aetosaurs were herbivorous and fed on low-growing plants, but some may have eaten meat. " rauisuchians " (formally known as paracrocodylomorphs ) were
2618-522: A role in the ecological crisis. Geological formations in Europe and the Middle East seem to indicate a drop in sea levels at the end of the Triassic associated with the TJME. Although falling sea levels have sometimes been considered a culprit for marine extinctions, evidence is inconclusive since many sea level drops in geological history are not correlated with increased extinctions. However, there
2772-494: A sharp, very rapid decline followed by an adaptive radiation, a more gradual turnover in both fossil plants and spores with several intermediate stages is observed over the course of the extinction event. Extinction of plant species can in part be explained by the suspected increased carbon dioxide in the atmosphere as a result of CAMP volcanic activity, which would have created photoinhibition and decreased transpiration levels among species with low photosynthetic plasticity, such as
2926-458: A short period of time, becoming extinct about 220 million years ago. They were exceptionally abundant in the middle of the Triassic, as the primary large herbivores in many Carnian-age ecosystems. They sheared plants with premaxillary beaks and plates along the upper jaw with multiple rows of teeth. Allokotosaurs were iguana-like reptiles, including Trilophosaurus (a common Late Triassic reptile with three-crowned teeth), Teraterpeton (which had
3080-491: A significant decrease of seawater pH known as ocean acidification , which is discussed as a relevant driver of marine extinction. Evidence for ocean acidification as an extinction mechanism comes from the preferential extinction of marine organisms with thick aragonitic skeletons and little biotic control of biocalcification (e.g., corals, hypercalcifying sponges), which resulted in a coral reef collapse and an early Hettangian "coral gap". The decline of megalodontoid bivalves
3234-449: A strandflat of Bømlo , southern Norway, have shown that landscape there became weathered in Late Triassic times ( c. 210 million years ago) with the landscape likely also being shaped during that time. Eustatic sea level in the Triassic was consistently low compared to the other geological periods. The beginning of the Triassic was around present sea level, rising to about 10–20 metres (33–66 ft) above present-day sea level during
SECTION 20
#17327870147923388-585: A supercontinent has less shoreline compared to a series of smaller continents, Triassic marine deposits are relatively uncommon on a global scale. A major exception is in Western Europe , where the Triassic was first studied. The northeastern margin of Gondwana was a stable passive margin along the Neo-Tethys Ocean, and marine sediments have been preserved in parts of northern India and Arabia . In North America , marine deposits are limited to
3542-471: A widespread effect on the planet; a 214-million-year-old ejecta blanket of shocked quartz has been found in rock layers as far away as England and Japan. There is still a possibility that the Manicouagan impact was responsible for a small extinction midway through the Late Triassic at the Carnian–Norian boundary, although the disputed age of this boundary (and whether an extinction actually occurred in
3696-468: Is a recent study of North American faunas. In the Petrified Forest of northeast Arizona there is a unique sequence of late Carnian-early Norian terrestrial sediments. An analysis in 2002 found no significant change in the paleoenvironment. Phytosaurs , the most common fossils there, experienced a change-over only at the genus level, and the number of species remained the same. Some aetosaurs ,
3850-424: Is also attributed to increased seawater acidity. Extensive fossil remains of malformed calcareous nannoplankton, a common sign of significant drops in pH, have also been extensively reported from the Triassic-Jurassic boundary. Global interruption of carbonate deposition at the Triassic-Jurassic boundary has been cited as additional evidence for catastrophic ocean acidification. Upwardly developing aragonite fans in
4004-513: Is believed to have resulted in increased storminess and lightning activity as a consequence of the more humid climate. The uptick in lightning activity is in turn implicated as a cause of an increase in wildfire activity. The combined presence of charcoal fragments and heightened levels of pyrolytic polycyclic aromatic hydrocarbons in Polish sedimentary facies straddling the Triassic-Jurassic boundary indicates wildfires were extremely commonplace during
4158-579: Is difficult, as the last stage of the Triassic, the Rhaetian, and the first stage of the Jurassic, the Hettangian , each have few records of large land animals; some paleontologists have considered only phytosaurs and procolophonids to have become extinct at the Triassic–Jurassic boundary, with other groups having become extinct earlier. However, it is likely that many other groups survived up until
4312-508: Is likely a paraphyletic group rather than a true clade. Tanystropheids were a family of protorosaurs which elevated their neck size to extremes, with the largest genus Tanystropheus having a neck longer than its body. The protorosaur family Sharovipterygidae used their elongated hindlimbs for gliding. Other archosauromorphs, such as rhynchosaurs and allokotosaurs , were mostly stocky-bodied herbivores with specialized jaw structures. Rhynchosaurs, barrel-gutted herbivores, thrived for only
4466-469: Is no evidence of glaciation at or near either pole; in fact, the polar regions were apparently moist and temperate , providing a climate suitable for forests and vertebrates, including reptiles. Pangaea's large size limited the moderating effect of the global ocean; its continental climate was highly seasonal, with very hot summers and cold winters. The strong contrast between the Pangea supercontinent and
4620-443: Is not universally accepted that even this local diversity drop was caused by sea level fall. A pronounced sea level change in latest Triassic records from Lake Williston in northeastern British Columbia , which was then the northeastern margin of Panthalassa, resulted in an extinction event of infaunal (sediment-dwelling) bivalves, though not epifaunal ones. Some have hypothesized that an impact from an asteroid or comet caused
4774-480: Is still some evidence that marine life was affected by secondary processes related to falling sea levels, such as decreased oxygenation (caused by sluggish circulation), or increased acidification. These processes do not seem to have been worldwide, with the sea level fall observed in European sediments believed to be not global but regional, but they may explain local extinctions in European marine fauna. However, it
Gogolin Formation - Misplaced Pages Continue
4928-460: Is superimposed by 22 sea level drop events widespread in the geologic record, mostly of minor (less than 25-metre (82 ft)) and medium (25–75-metre (82–246 ft)) magnitudes. A lack of evidence for Triassic continental ice sheets suggest that glacial eustasy is unlikely to be the cause of these changes. The Triassic continental interior climate was generally hot and dry, so that typical deposits are red bed sandstones and evaporites . There
5082-463: Is usually divided into Early , Middle , and Late Triassic Epochs , and the corresponding rocks are referred to as Lower, Middle, or Upper Triassic. The faunal stages from the youngest to oldest are: During the Triassic, almost all the Earth's land mass was concentrated into a single supercontinent , Pangaea ( lit. ' entire land ' ). This supercontinent was more-or-less centered on
5236-578: The Carnian (early part of the Late Triassic), some advanced cynodonts gave rise to the first mammals . During the Triassic, archosaurs displaced therapsids as the largest and most ecologically prolific terrestrial amniotes. This "Triassic Takeover" may have contributed to the evolution of mammals by forcing the surviving therapsids and their mammaliaform successors to live as small, mainly nocturnal insectivores . Nocturnal life may have forced
5390-605: The Central Atlantic Magmatic Province (CAMP), the largest known large igneous province by area, and one of the most voluminous, with its flood basalts extending across parts of southwestern Europe, northwestern Africa, northeastern South America, and southeastern North America. The coincidence and synchrony of CAMP activity and the TJME is indicated by uranium-lead dating , argon-argon dating , and palaeomagnetism . The isotopic composition of fossil soils and marine sediments near
5544-566: The Central Atlantic Magmatic Province (CAMP), which released large amounts of carbon dioxide into the Earth's atmosphere, causing profound global warming along with ocean acidification . Older hypotheses have proposed that gradual climate or sea level change may be the culprit, or perhaps one or more asteroid strikes. The earliest research on the TJME was conducted in the mid-20th century, when events in earth history where widely assumed to have been gradual (a paradigm known as uniformitarianism ) and comparatively rapid cataclysms as
5698-479: The Industrial Revolution . The degassing rate of the first pulse of CAMP volcanism is estimated to have been around half of the rate of modern anthropogenic emissions. Palaeontologists studying the TJME and its impacts warn that a major reduction in humanity's carbon dioxide emissions to slow down climate change is of critical importance for preventing a catastrophe similar to the TJME from befalling
5852-614: The Jurassic , when the temnospondyls had become very rare. Most of the Reptiliomorpha , stem-amniotes that gave rise to the amniotes, disappeared in the Triassic, but two water-dwelling groups survived: Embolomeri that only survived into the early part of the period, and the Chroniosuchia , which survived until the end of the Triassic. The Permian–Triassic extinction devastated terrestrial life. Biodiversity rebounded as
6006-568: The Lake Lugano region of northern Italy and southern Switzerland , was in Middle Triassic times a lagoon behind reefs with an anoxic bottom layer, so there were no scavengers and little turbulence to disturb fossilization, a situation that can be compared to the better-known Jurassic Solnhofen Limestone lagerstätte . The remains of fish and various marine reptiles (including the common pachypleurosaur Neusticosaurus , and
6160-484: The Middle Triassic . Though this may have been due to falling sea levels or the Carnian Pluvial Event , it may instead be a result of sampling bias considering that Middle Triassic fish have been more extensively studied than Late Triassic fish. Despite the apparent drop in diversity, neopterygiians (which include most modern bony fish) suffered less than more "primitive" actinopterygiians, indicating
6314-658: The Newark Supergroup . Rift basins are also common in South America, Europe, and Africa. Terrestrial environments are particularly well-represented in the South Africa, Russia, central Europe, and the southwest United States. Terrestrial Triassic biostratigraphy is mostly based on terrestrial and freshwater tetrapods, as well as conchostracans ("clam shrimps"), a type of fast-breeding crustacean which lived in lakes and hypersaline environments. Because
Gogolin Formation - Misplaced Pages Continue
6468-474: The Olenekian and Anisian of Gondwana . Both kannemeyeriiform dicynodonts and gomphodont cynodonts remained important herbivores during much of the period. Therocephalians included both large predators ( Moschorhinus ) and herbivorous forms ( bauriids ) until their extinction midway through the period. Ecteniniid cynodonts played a role as large-sized, cursorial predators in the Late Triassic. During
6622-828: The Sichuan Basin , relatively cool mixed forests in the late Rhaetian were replaced by hot, arid fernlands during the Triassic–Jurassic transition, which in turn later gave way to a cheirolepid-dominated flora in the Hettangian and Sinemurian. The abundance of ferns in China that were resistant to high levels of aridity increased significantly across the Triassic–Jurassic boundary, though ferns better adapted for moist, humid environments declined, indicating that plants experienced major environmental stress, albeit not an outright mass extinction. In some regions, however, major floral extinctions did occur, with some researchers challenging
6776-416: The pterosaurs . Therapsids , the dominant vertebrates of the preceding Permian period, saw a brief surge in diversification in the Triassic, with dicynodonts and cynodonts quickly becoming dominant, but they declined throughout the period with the majority becoming extinct by the end. However, the first stem-group mammals ( mammaliamorphs ), themselves a specialized subgroup of cynodonts, appeared during
6930-735: The surviving species repopulated empty terrain, but these were short-lived. Diverse communities with complex food-web structures took 30 million years to reestablish. Archosauromorph reptiles, which had already appeared and diversified to an extent in the Permian Period, exploded in diversity as an adaptive radiation in response to the Permian-Triassic mass extinction. By the Early Triassic, several major archosauromorph groups had appeared. Long-necked, lizard-like early archosauromorphs were known as protorosaurs , which
7084-468: The thecodonts ) disappeared, as did most of the large labyrinthodont amphibians, groups of small reptiles, and most synapsids. Some of the early, primitive dinosaurs also became extinct, but more adaptive ones survived to evolve into the Jurassic. Surviving plants that went on to dominate the Mesozoic world included modern conifers and cycadeoids. The cause of the Late Triassic extinction is uncertain. It
7238-437: The traversodont cynodonts—were much reduced in the northern half of Pangaea ( Laurasia ). These extinctions within the Triassic and at its end allowed the dinosaurs to expand into many niches that had become unoccupied. Dinosaurs became increasingly dominant, abundant and diverse, and remained that way for the next 150 million years. The true "Age of Dinosaurs" is during the following Jurassic and Cretaceous periods, rather than
7392-493: The 1980s and 1990s. The theory that the TJME was caused by massive volcanism in the Central Atlantic Magmatic Province (CAMP) first emerged in the 1990s after similar research examining the Permian-Triassic extinction event found it to have been caused by volcanic activity. Despite some early objections, this paradigm remains the scientific consensus in the present day. The Triassic-Jurassic extinction completed
7546-413: The 21st century. In addition, the flood basalts intruded through sediments that were rich in organic matter and combusted it, which led to the degassing of volatiles that further enhanced volcanic warming of the climate. Thermogenic carbon release through such contact metamorphism of carbon-rich deposits has been found to be a sensible hypothesis providing a coherent explanation for the magnitude of
7700-579: The 9 km (6 mi) wide Red Wing Creek structure in North Dakota . Spray et al. (1998) noted an interesting phenomenon, that being how the Manicouagan, Rochechouart, and Saint Martin craters all seem to be at the same latitude, and that the Obolon' and Red Wing craters form parallel arcs with the Rochechouart and Saint Martin craters, respectively. Spray and his colleagues hypothesized that
7854-760: The Anisian to Ladinian of the Tethysian domain, and from the Carnian and Rhaetian of a larger area that includes also the Boreal domain (e.g., Svalbard Islands), the North American continent, the South China block and Argentina . The best-studied of such episodes of humid climate, and probably the most intense and widespread, was the Carnian Pluvial Event . The Early Triassic was the hottest portion of
SECTION 50
#17327870147928008-405: The Carnian and include early sauropodomorphs and theropods. Most Triassic dinosaurs were small predators and only a few were common, such as Coelophysis , which was 1 to 2 metres (3.3 to 6.6 ft) long. Triassic sauropodomorphs primarily inhabited cooler regions of the world. The large predator Smok was most likely also an archosaur, but it is uncertain if it was a primitive dinosaur or
8162-563: The Early Triassic, forming small patches of reefs of modest extent compared to the great reef systems of Devonian or modern times. At the end of the Carnian, a reef crisis occurred in South China. Serpulids appeared in the Middle Triassic. Microconchids were abundant. The shelled cephalopods called ammonites recovered, diversifying from a single line that survived the Permian extinction. Bivalves began to rapidly diversify during
8316-402: The Early Triassic, while others (e.g. capitosaurs ) remained successful throughout the whole period, or only came to prominence in the Late Triassic (e.g. Plagiosaurus , metoposaurs ). The first Lissamphibians (modern amphibians) appear in the Triassic, with the progenitors of the first frogs already present by the Early Triassic. However, the group as a whole did not become common until
8470-562: The Early and Middle Triassic. Sea level rise accelerated in the Ladinian, culminating with a sea level up to 50 metres (164 ft) above present-day levels during the Carnian. Sea level began to decline in the Norian, reaching a low of 50 metres (164 ft) below present sea level during the mid-Rhaetian. Low global sea levels persisted into the earliest Jurassic. The long-term sea level trend
8624-613: The Eiberg Basin of the Northern Calcareous Alps , there was a very rapid palynomorph turnover. The palynological and palaeobotanical succession in Queensland shows a Classopolis bloom after the TJME. Polyploidy may have been an important factor that mitigated a conifer species' risk of going extinct. The leading and best evidenced explanation for the TJME is massive volcanic eruptions, specifically from
8778-406: The Eiberg Basin. The persistence of anoxia into the Hettangian age may have helped delay the recovery of marine life in the extinction's aftermath, and recurrent hydrogen sulphide poisoning likely had the same retarding effect on biotic rediversification. Research on the role of ozone shield deterioration during the Permian-Triassic mass extinction has suggested that it may have been a factor in
8932-616: The Gogolin Formation was described for the first time, and where the main stratotypes have been exposed (see section Stratotypes ). The Late Olenekian or Early Aegean (Anisian) to Pelsonian ( Anisian ),. The formation is built of various carbonates which were deposited on a carbonate ramp. This Formation has recently been divided into four members, six beds, and two horizons: Stratotypes are located at Gogolin and its vicinity, Błotnica Strzelecka and Ligota Dolna (southern Poland). Triassic The Triassic began in
9086-403: The Jurassic. The Triassic was named in 1834 by Friedrich August von Alberti , after a succession of three distinct rock layers (Greek triás meaning 'triad') that are widespread in southern Germany : the lower Buntsandstein (colourful sandstone ) , the middle Muschelkalk (shell-bearing limestone ) and the upper Keuper (coloured clay ). On the geologic time scale , the Triassic
9240-613: The Jurassic. There were many types of marine reptiles. These included the Sauropterygia , which featured pachypleurosaurus and nothosaurs (both common during the Middle Triassic, especially in the Tethys region), placodonts , the earliest known herbivorous marine reptile Atopodentatus , and the first plesiosaurs . The first of the lizardlike Thalattosauria ( askeptosaurs ) and the highly successful ichthyopterygians , which appeared in Early Triassic seas, soon diversified. By
9394-516: The Jurassic. However, their extinction rate at the Triassic–Jurassic boundary was not elevated. The highest extinction rates experienced by Mesozoic marine reptiles actually occurred at the end of the Ladinian stage, which corresponds to the end of the Middle Triassic. The only marine reptile families which became extinct at or slightly before the Triassic–Jurassic boundary were the placochelyids (the last family of placodonts ), making plesiosaurs
SECTION 60
#17327870147929548-600: The Latest Olenekian Cooling (LOC), from 248 to 247 Ma, temperatures cooled by about 6 °C. The Middle Triassic was cooler than the Early Triassic, with temperatures falling over most of the Anisian, with the exception of a warming spike in the latter portion of the stage. From 242 to 233 Ma, the Ladinian-Carnian Cooling (LCC) ensued. At the beginning of the Carnian, global temperatures continued to be relatively cool. The eruption of
9702-475: The Manicouagan and Rochechouart craters were formed in eras of different magnetic polarity, and radiometric dating of the individual craters has shown that the impacts occurred millions of years apart. Shocked quartz has been found in Rhaetian deposits from the Northern Apennines of Italy, providing possible evidence of an end-Triassic extraterrestrial impact. Certain trace metals indicative of
9856-454: The Manicouagan reservoir. The eroded Rochechouart impact structure in France has most recently been dated to 201 ± 2 million years ago, but at 25 km (16 mi) across (possibly up to 50 km (30 mi) across originally), it appears to be too small to have affected the ecosystem, although it has been speculated to have played a role in an alleged much smaller extinction event at
10010-420: The Middle Triassic, becoming highly abundant in the oceans. Aquatic insects rapidly diversified during the Middle Triassic, with this time interval representing a crucial diversification for Holometabola , the clade containing the majority of modern insect species. In the wake of the Permian-Triassic mass extinction event , the fish fauna was remarkably uniform, with many families and genera exhibiting
10164-618: The Middle Triassic, some ichthyopterygians were achieving very large body masses. Among other reptiles, the earliest turtles , like Proganochelys and Proterochersis , appeared during the Norian Age (Stage) of the Late Triassic Period. The Lepidosauromorpha , specifically the Sphenodontia , are first found in the fossil record of the earlier Carnian Age, though the earliest lepidosauromorphs likely occurred in
10318-469: The Norian and suffered further losses in the TJME. Conulariids seemingly completely died out at the end of the Triassic. Around 96% of coral genera died out, with integrated corals being especially devastated. Corals practically disappeared from the Tethys Ocean at the end of the Triassic except for its northernmost reaches, resulting in an early Hettangian "coral gap". There is good evidence for
10472-687: The Norian-Rhaetian boundary. The 40 km (25 mi) wide Saint Martin crater in Manitoba has been proposed as a candidate for a possible TJME-causing impact, but its has since been dated to be Carnian. Other putative or confirmed Triassic craters include the 80 km (50 mi) wide Puchezh-Katunki crater in Eastern Russia (though it may be Jurassic in age), the 15 km (9 mi) wide Obolon' crater in Ukraine , and
10626-450: The Permian extinction, Archaeplastida (red and green algae) had been the major marine phytoplanktons since about 659–645 million years ago, when they replaced marine planktonic cyanobacteria , which first appeared about 800 million years ago, as the dominant phytoplankton in the oceans. In the Triassic, secondary endosymbiotic algae became the most important plankton. In marine environments , new modern types of corals appeared in
10780-475: The Permian. The Procolophonidae , the last surviving parareptiles , were an important group of small lizard-like herbivores. The drepanosaurs were a clade of unusual, chameleon-like arboreal reptiles with birdlike heads and specialised claws. Three therapsid groups survived into the Triassic: dicynodonts , therocephalians , and cynodonts . The cynodont Cynognathus was a characteristic top predator in
10934-409: The TJME as well. A spike in the abundance of unseparated tetrads of Kraeuselisporites reissingerii has been interpreted as evidence of increased ultraviolet radiation flux resulting from ozone layer damage caused by volcanic aerosols. The extinctions at the end of the Triassic were initially attributed to gradually changing environments. Within his 1958 study recognizing biological turnover between
11088-611: The TJME coincides with mercury anomalies and is thus believed by researchers to have been caused by mercury poisoning . δ Hg and Δ Hg evidence suggests that volcanism caused the mercury loading directly at the Triassic-Jurassic boundary, but that there were later bouts of elevated mercury in the environment during the Early Jurassic caused by eccentricity-forced enhancement of hydrological cycling and erosion that resulted in remobilisation of volcanically injected mercury that had been deposited in wetlands. The intense, rapid warming
11242-541: The TJME have numerical values very different from what would be expected in an extraterrestrial impact scenario, providing further evidence against this hypothesis. The Triassic-Jurassic boundary furthermore lacks a fern spore spike akin to that observed at the terminus of the Cretaceous, inconsistent with an asteroid impact. The extremely rapid, centuries-long timescale of carbon emissions and global warming caused by pulses of CAMP volcanism has drawn comparisons between
11396-549: The TJME, mobile bivalve taxa outnumbered stationary bivalve taxa. Gastropod diversity was barely affected at the Triassic-Jurassic boundary, although gastropods gradually suffered numerous losses over the late Norian and Rhaetian, during the leadup to the TJME. Brachiopods declined in diversity at the end of the Triassic before rediversifying in the Sinemurian and Pliensbachian . Bryozoans , particularly taxa that lived in offshore settings, had already been in decline since
11550-408: The Triassic (teleosts are by far the most diverse group of fish today). Predatory actinopterygians such as saurichthyids and birgeriids , some of which grew over 1.2 m (3.9 ft) in length, appeared in the Early Triassic and became widespread and successful during the period as a whole. Lakes and rivers were populated by lungfish (Dipnoi), such as Ceratodus , which are mainly known from
11704-463: The Triassic and Jurassic, Edwin H. Colbert 's proposal was that this extinction was a result of geological processes decreasing the diversity of land biomes. He considered the Triassic period to be an era of the world experiencing a variety of environments, from towering highlands to arid deserts to tropical marshes. In contrast, the Jurassic period was much more uniform both in climate and elevation due to excursions by shallow seas. Later studies noted
11858-497: The Triassic and survived the extinction event. The earliest known neopterygian fish, including early holosteans and teleosts , appeared near the beginning of the Triassic, and quickly diversified to become among the dominant groups of fish in both freshwater and marine habitats. The vast supercontinent of Pangaea dominated the globe during the Triassic, but in the latest Triassic ( Rhaetian ) and Early Jurassic it began to gradually rift into two separate landmasses: Laurasia to
12012-458: The Triassic and would survive the extinction event, allowing them to radiate during the Jurassic. Amphibians were primarily represented by the temnospondyls , giant aquatic predators that had survived the end-Permian extinction and saw a new burst of diversification in the Triassic, before going extinct by the end; however, early crown-group lissamphibians (including stem-group frogs , salamanders and caecilians ) also became more common during
12166-408: The Triassic experienced a "multiple impact event", a large fragmented asteroid or comet which broke up and impacted the earth in several places at the same time. Such an impact has been observed in the present day, when Comet Shoemaker-Levy 9 broke up and hit Jupiter in 1992. However, the "multiple impact event" hypothesis for Triassic impact craters has not been well-supported; Kent (1998) noted that
12320-609: The Triassic, enlarging the Neo-Tethys Ocean which formed in their wake. At the same time, they forced the Paleo-Tethys Ocean to shrink as it was being subducted under Asia. By the end of the Triassic, the Paleo-Tethys Ocean occupied a small area and the Cimmerian terranes began to collide with southern Asia. This collision, known as the Cimmerian Orogeny , continued into the Jurassic and Cretaceous to produce
12474-425: The Triassic, or instead more gradual. During the Triassic, amphibians were mainly represented by large, crocodile-like members of the order Temnospondyli . Although the earliest lissamphibians (modern amphibians like frogs and salamanders ) did appear during the Triassic, they would become more common in the Jurassic while the temnospondyls diminished in diversity past the Triassic–Jurassic boundary. Although
12628-652: The Triassic-Jurassic extinction and were nearly wiped out. Ceratitidans , the most prominent group of ammonites in the Triassic, became extinct at the end of the Rhaetian after having their diversity reduced significantly in the Norian , while other ammonite groups such as the Ammonitina , Lytoceratina , and Phylloceratina diversified from the Early Jurassic onward. Bivalves suffered heavy losses, although
12782-550: The Triassic-Jurassic mass extinction and anthropogenic global warming , currently causing the Holocene extinction . The current rate of carbon dioxide emissions is around 50 gigatonnes per year, hundreds of times faster than during the latest Triassic, although the lack of extremely detailed stratigraphic resolution and pulsed nature of CAMP volcanism means that individual pulses of greenhouse gas emissions likely occurred on comparable timescales to human release of warming gases since
12936-673: The Triassic. Triassic%E2%80%93Jurassic extinction event The Triassic–Jurassic ( Tr-J ) extinction event ( TJME ), often called the end-Triassic extinction , marks the boundary between the Triassic and Jurassic periods, 201.4 million years ago . It is one of five major extinction events , profoundly affecting life on land and in the oceans. In the seas, about 23–34% of marine genera disappeared. On land, all archosauromorph reptiles other than crocodylomorphs (the lineage leading to modern crocodilians), dinosaurs , and pterosaurs (flying reptiles) became extinct; some of
13090-488: The Triassic–Jurassic boundary. The boundary between the Adamanian and Revueltian land vertebrate faunal zones, which involved extinctions and faunal changes in tetrapods and plants, was possibly also caused by the Manicouagan impact, although discrepancies between magnetochronological and isotopic dating lead to some uncertainty. Other Triassic craters are closer to the Triassic–Jurassic boundary but also much smaller than
13244-593: The Triassic–Jurassic extinction, similar to the extraterrestrial object which was the main factor in the Cretaceous–Paleogene extinction about 66 million years ago, as evidenced by the Chicxulub crater in Mexico. However, so far no impact crater of sufficient size has been dated to precisely coincide with the Triassic–Jurassic boundary. Nevertheless, the Late Triassic did experience several impacts, including
13398-839: The Wrangellia Large Igneous Province around 234 Ma caused abrupt global warming, terminating the cooling trend of the LCC. This warming was responsible for the Carnian Pluvial Event and resulted in an episode of widespread global humidity. The CPE ushered in the Mid-Carnian Warm Interval (MCWI), which lasted from 234 to 227 Ma. At the Carnian-Norian boundary occurred a positive δ C excursion believed to signify an increase in organic carbon burial. From 227 to 217 Ma, there
13552-543: The abruptness of this transition and the relative abundances of given spore types both before and after the boundary are highly variable from one region to another, pointing to a global ecological restructuring rather than a mass extinction of plants. Overall, plants suffered minor diversity losses on a global scale as a result of the extinction, but species turnover rates were high and substantial changes occurred in terms of relative abundance and growth distribution among taxa. Evidence from Central Europe suggests that rather than
13706-462: The amount of carbon dioxide emitted was only around 250 ppm, not enough to generate a mass extinction. In addition, at some sites, changes in carbon isotope ratios have been attributed to diagenesis and not any primary environmental changes. The flood basalts of the CAMP released gigantic quantities of carbon dioxide , a potent greenhouse gas causing intense global warming. Before the TJME, carbon dioxide levels were around 1,000 ppm as measured by
13860-455: The bizarre long-necked archosauromorph Tanystropheus ), along with some terrestrial forms like Ticinosuchus and Macrocnemus , have been recovered from this locality. All these fossils date from the Anisian and Ladinian ages (about 242 Ma ago). The Triassic Period ended with a mass extinction, which was particularly severe in the oceans; the conodonts disappeared, as did all
14014-433: The boundary according to British fissure deposits from the Rhaetian. Aetosaurs, kuehneosaurids , drepanosaurs, thecodontosaurids , "saltoposuchids" (like Terrestrisuchus ), trilophosaurids, and various non- crocodylomorph pseudosuchians are all examples of Rhaetian reptiles which may have become extinct at the Triassic–Jurassic boundary. In the TJME's aftermath, dinosaurs experienced a major radiation, filling some of
14168-402: The boundary between the Late Triassic and Early Jurassic has been tied to a large negative δ C excursion, with values as low as -2.8%. Carbon isotopes of hydrocarbons ( n -alkanes ) derived from leaf wax and lignin , and total organic carbon from two sections of lake sediments interbedded with the CAMP in eastern North America have shown carbon isotope excursions similar to those found in
14322-647: The broad leaved Ginkgoales which declined to near extinction across the Tr–J boundary. Ferns and other species with dissected leaves displayed greater adaptability to atmosphere conditions of the extinction event, and in some instances were able to proliferate across the boundary and into the Jurassic. In the Jiyuan Basin of North China, Classopolis content increased drastically in concordance with warming, drying, wildfire activity, enrichments in isotopically light carbon, and an overall reduction in floral diversity. In
14476-458: The carbon cycle was so disrupted that it did not stabilise until the Sinemurian . Mercury anomalies from deposits in various parts of the world have further bolstered the volcanic cause hypothesis, as have anomalies from various platinum-group elements. Nickel enrichments are also observed at the Triassic-Jurassic boundary coevally with light carbon enrichments, providing yet more evidence of massive volcanism. Some scientists initially rejected
14630-508: The carbon isotopic excursions are shown in the same places, making the case for a volcanic cause of a mass extinction. The observed negative carbon isotope excursion is lower in some sites that correspond to what was then eastern Panthalassa because of the extreme aridity of western Pangaea limiting weathering and erosion there. The negative δ C excursion associated with CAMP volcanism lasted for approximately 20,000 to 40,000 years, or about one or two of Earth's axial precession cycles, although
14784-427: The chief terrestrial vertebrates during this time. A specialized group of archosaurs, called dinosaurs , first appeared in the Late Triassic but did not become dominant until the succeeding Jurassic Period. Archosaurs that became dominant in this period were primarily pseudosuchians , relatives and ancestors of modern crocodilians , while some archosaurs specialized in flight, the first time among vertebrates, becoming
14938-460: The climate may have become much more seasonal, with long droughts interrupted by severe monsoons . The world gradually got warmer over this time as well; from the late Norian to the Rhaetian, mean annual temperatures rose by 7 to 9 °C. The site of Hochalm in Austria preserves evidence of carbon cycle perturbations during the Rhaetian preceding the Triassic-Jurassic boundary, potentially having
15092-462: The decline of temnospondyls did send shockwaves through freshwater ecosystems, it was probably not as abrupt as some authors have suggested. Brachyopoids , for example, survived until the Cretaceous according to new discoveries in the 1990s. Several temnospondyl groups did become extinct near the end of the Triassic despite earlier abundance, but it is uncertain how close their extinctions were to
15246-506: The dental plates, abundant in the fossils record. Hybodonts , a group of shark-like cartilaginous fish , were dominant in both freshwater and marine environments throughout the Triassic. Last survivors of the mainly Palaeozoic Eugeneodontida are known from the Early Triassic. Temnospondyl amphibians were among those groups that survived the Permian–Triassic extinction. Once abundant in both terrestrial and aquatic environments,
15400-428: The dominant carnivores in the early Triassic. Phytosaurs were a particularly common group which prospered during the Late Triassic. These long-snouted and semiaquatic predators resemble living crocodiles and probably had a similar lifestyle, hunting for fish and small reptiles around the water's edge. However, this resemblance is only superficial and is a prime-case of convergent evolution. True archosaurs appeared in
15554-712: The earliest Jurassic, immediately after the Triassic-Jurassic transition. Elevated wildfire activity is also known from the Junggar Basin . In the Jiyuan Basin, two distinct pulses of drastically elevated wildfire activity are known: the first mainly affected canopies and occurred amidst relatively humid conditions while the second predominantly affected ground cover and was associated with aridity. Frequent wildfires, combined with increased seismic activity from CAMP emplacement, led to apocalyptic soil degradation . In addition to these climatic effects, oceanic uptake of volcanogenic carbon and sulphur dioxide would have led to
15708-405: The early Triassic, splitting into two branches: Avemetatarsalia (the ancestors to birds) and Pseudosuchia (the ancestors to crocodilians). Avemetatarsalians were a minor component of their ecosystems, but eventually produced the earliest pterosaurs and dinosaurs in the Late Triassic. Early long-tailed pterosaurs appeared in the Norian and quickly spread worldwide. Triassic dinosaurs evolved in
15862-571: The emission of sulphur dioxide aerosols. A 2022 study shows that high latitudes had colder climates with evidence of mild glaciation. The authors propose that cold periods ("ice ages") induced by volcanic ejecta clouding the atmosphere might have favoured endothermic animals, with dinosaurs, pterosaurs, and mammals being more capable at enduring these conditions than large pseudosuchians due to insulation. CAMP volcanism released enormous amounts of toxic mercury . The appearance of high rates of mutaganesis of varying severity in fossil spores during
16016-413: The end of the Triassic, with both dominant herbivorous subgroups (such as aetosaurs ) and carnivorous ones ( rauisuchids ) having died out. Phytosaurs, drepanosaurs , trilophosaurids , tanystropheids , and procolophonids , which were other common reptiles in the Late Triassic, had also become extinct by the start of the Jurassic. However, pinpointing the extinction of these different land reptile groups
16170-569: The end of the Triassic. The last known metoposaurids (" Apachesaurus ") were from the Redonda Formation , which may have been early Rhaetian or late Norian . Gerrothorax , the last known plagiosaurid , has been found in rocks which are probably (but not certainly) Rhaetian, while a capitosaur humerus was found in Rhaetian-age deposits in 2018. Therefore, plagiosaurids and capitosaurs were likely victims of an extinction at
16324-494: The end of the mass extinction despite numerous relapses into anoxic conditions during the earliest Jurassic. In the Neuquén Basin , recovery began in the late early Hettangian and lasted until a new biodiversity equilibrium in the late Hettangian. Also despite recurrent anoxic episodes, large bivalves began to reappear shortly after the extinction event. Siliceous sponges dominated the immediate aftermath interval thanks to
16478-434: The enormous influx of silica into the oceans from the weathering of the CAMP's aerially extensive basalts. Some clades recovered more slowly than others, however, as exemplified by corals and their disappearance in the early Hettangian. Fish did not suffer a mass extinction at the end of the Triassic. The Late Triassic in general did experience a gradual drop in actinopterygiian diversity after an evolutionary explosion in
16632-640: The entire Phanerozoic, seeing as it occurred during and immediately after the discharge of titanic volumes of greenhouse gases from the Siberian Traps. The Early Triassic began with the Permian-Triassic Thermal Maximum (PTTM) and was followed by the brief Dienerian Cooling (DC) from 251 to 249 Ma, which was in turn followed by the Latest Smithian Thermal Maximum (LSTT) around 249 to 248 Ma. During
16786-467: The equator and extended between the poles, though it did drift northwards as the period progressed. Southern Pangea, also known as Gondwana , was made up by closely-appressed cratons corresponding to modern South America , Africa , Madagascar , India , Antarctica , and Australia . North Pangea, also known as Laurussia or Laurasia , corresponds to modern-day North America and the fragmented predecessors of Eurasia . The western edge of Pangea lay at
16940-538: The extinct family Cheirolepidiaceae , which first appeared in the Late Triassic, and would be prominent throughout most of the rest of the Mesozoic. No known coal deposits date from the start of the Triassic Period. This is known as the Early Triassic "coal gap" and can be seen as part of the Permian–Triassic extinction event . Possible explanations for the coal gap include sharp drops in sea level at
17094-530: The extinction was highly selective, with some bivalve clades escaping substantial diversity losses. The Lilliput effect affected megalodontid bivalves, whereas file shell bivalves experienced the Brobdingnag effect, the reverse of the Lilliput effect, as a result of the mass extinction event. There is some evidence of a bivalve cosmopolitanism event during the mass extinction. Additionally, following
17248-608: The extinction. The site of St. Audrie's Bay displays a shift from diverse gymnosperm-dominated forests to Cheirolepidiaceae-dominated monocultures. The Danish Basin saw 34% of its Rhaetian spore-pollen assemblage, including Cingulizonates rhaeticus , Limbosporites lundbladiae , Polypodiisporites polymicroforatus , and Ricciisporites tuberculatus , disappear, with the post-extinction plant community being dominated by pinacean conifers such as Pinuspollenites minimus and tree ferns such as Deltoidospora , with ginkgos, cycads, cypresses, and corystospermous seed ferns also represented. Along
17402-445: The first place) makes it difficult to correlate the impact with extinction. Onoue et al. (2016) alternatively proposed that the Manicouagan impact was responsible for a marine extinction in the middle of the Norian which affected radiolarians, sponges, conodonts, and Triassic ammonoids. Thus, the Manicouagan impact may have been partially responsible for the gradual decline in the latter two groups which culminated in their extinction at
17556-399: The floristic turnover by exploiting newly abundant plants. Odonates suffered highly selective losses, and their morphospace was heavily restructured as a result. The extinction event marks a floral turnover as well, with estimates of the percentage of Rhaetian pre-extinction plants being lost ranging from 17% to 73%. Though spore turnovers are observed across the Triassic-Jurassic boundary,
17710-521: The global ocean triggered intense cross-equatorial monsoons , sometimes referred to as the Pangean megamonsoons . The Triassic may have mostly been a dry period, but evidence exists that it was punctuated by several episodes of increased rainfall in tropical and subtropical latitudes of the Tethys Sea and its surrounding land. Sediments and fossils suggestive of a more humid climate are known from
17864-462: The groups which died out were previously abundant, such as aetosaurs , phytosaurs , and rauisuchids . Plants , crocodylomorphs, dinosaurs, pterosaurs and mammals were left largely untouched, allowing the dinosaurs, pterosaurs, and crocodylomorphs to become the dominant land animals for the next 135 million years. The cause of the Tr-J extinction event may have been extensive volcanic eruptions in
18018-499: The hypothesis of there being no significant floral mass extinction on this basis. In the Newark Supergroup of the United States East Coast , about 60% of the diverse monosaccate and bisaccate pollen assemblages disappear at the Tr–J boundary, indicating a major extinction of plant genera. Early Jurassic pollen assemblages are dominated by Corollina , a new genus that took advantage of the empty niches left by
18172-420: The impact. So, the evidence suggests the Manicouagan impact preceded the end of the Triassic by approximately 10±2 Ma. It could not therefore be the immediate cause of the observed mass extinction. The number of Late Triassic extinctions is disputed. Some studies suggest that there are at least two periods of extinction towards the end of the Triassic, separated by 12 to 17 million years. But arguing against this
18326-401: The keystone predators of most Triassic terrestrial ecosystems. Over 25 species have been found, including giant quadrupedal hunters, sleek bipedal omnivores, and lumbering beasts with deep sails on their backs. They probably occupied the large-predator niche later filled by theropods. "Rauisuchians" were ancestral to small, lightly-built crocodylomorphs, the only pseudosuchians which survived into
18480-575: The main crisis began. This early phase of environmental degradation in eastern Panthalassa may have been caused by an early phase of CAMP activity. Anoxic, reducing conditions were likewise present in western Panthalassa off the coast of what is now Japan for about a million years prior to the TJME. During the TJME, the rapid warming and increase in continental weathering led to the stagnation of ocean circulation and deoxygenation of seawater in many ocean regions, causing catastrophic marine environmental effects in conjunction with ocean acidification, which
18634-545: The mammaliaforms to develop fur and a higher metabolic rate . Two Early Triassic lagerstätten (high-quality fossil beds), the Dienerian aged Guiyang biota and the earliest Spathian aged Paris biota stand out due to their exceptional preservation and diversity . They represent the earliest lagerstätten of the Mesozoic era and provide insight into the biotic recovery from the Permian-Triassic mass extinction event. The Monte San Giorgio lagerstätte, now in
18788-573: The margin of an enormous ocean, Panthalassa ( lit. ' entire sea ' ), which roughly corresponds to the modern Pacific Ocean . Practically all deep-ocean crust present during the Triassic has been recycled through the subduction of oceanic plates, so very little is known about the open ocean from this time period. Most information on Panthalassan geology and marine life is derived from island arcs and rare seafloor sediments accreted onto surrounding land masses, such as present-day Japan and western North America. The eastern edge of Pangea
18942-626: The margins of the European Epicontinental Sea and the European shores of the Tethys, coastal and near-coastal mires fell victim to an abrupt sea level rise. These mires were replaced by a pioneering opportunistic flora after an abrupt sea level fall, although its heyday was short lived and it died out shortly after its rise. The opportunists that established themselves along the Tethyan coastline were primarily spore-producers. In
19096-453: The marine reptiles except ichthyosaurs and plesiosaurs . Invertebrates like brachiopods and molluscs (such as gastropods ) were severely affected. In the oceans, 22% of marine families and possibly about half of marine genera went missing. Though the end-Triassic extinction event was not equally devastating in all terrestrial ecosystems, several important clades of crurotarsans (large archosaurian reptiles previously grouped together as
19250-430: The modern biosphere. If human-induced climate change persists as is, predictions can be made as to how various aspects of the biosphere will respond based on records of the TJME. For example, current conditions such the increased carbon dioxide levels, ocean acidification , and ocean deoxygenation create a similar climate to that of the Triassic-Jurassic boundary for marine life, so it is the common assumption that should
19404-478: The mostly marine St. Audrie's Bay section, Somerset, England; the correlation suggests that the TJME began at the same time in marine and terrestrial environments, slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, with both a critical CO 2 greenhouse and a marine biocalcification crisis. Contemporaneous CAMP eruptions, mass extinction, and
19558-457: The negative carbon isotope excursions at the terminus of the Triassic. Global temperatures rose sharply by 3 to 4 °C. In some regions, the temperature rise was as great as 10 °C. Kaolinite-dominated clay mineral spectra reflect the extremely hot and humid greenhouse conditions engendered by the CAMP. Soil erosion occurred as the hydrological cycle was accelerated by the extreme global heat. The catastrophic dissociation of gas hydrates as
19712-430: The next most common tetrapods, and early dinosaurs, passed through unchanged. However, both phytosaurs and aetosaurs were among the groups of archosaur reptiles completely wiped out by the end-Triassic extinction event. It seems likely then that there was some sort of end-Carnian extinction, when several herbivorous archosauromorph groups died out, while the large herbivorous therapsids —the kannemeyeriid dicynodonts and
19866-408: The niches of more ancient groups of amphibians and reptiles which were extinct by the start of the Jurassic. Olsen (1987) estimated that 42% of all terrestrial tetrapods became extinct at the end of the Triassic, based on his studies of faunal changes in the Newark Supergroup of eastern North America. More modern studies have debated whether the turnover in Triassic tetrapods was abrupt at the end of
20020-463: The niches vacated by the victims of the extinction. Crocodylomorphs likewise underwent a very rapid and major adaptive radiation. Surviving non-mammalian synapsid clades similarly played a role in the post-TJME adaptive radiation during the Early Jurassic. Herbivorous insects were minimally affected by the TJME; evidence from the Sichuan Basin shows they were overall able to quickly adapt to
20174-512: The north and Gondwana to the south. The global climate during the Triassic was mostly hot and dry, with deserts spanning much of Pangaea's interior. However, the climate shifted and became more humid as Pangaea began to drift apart. The end of the period was marked by yet another major mass extinction, the Triassic–Jurassic extinction event , that wiped out many groups, including most pseudosuchians, and allowed dinosaurs to assume dominance in
20328-399: The oceans. A meteoric shift towards positive sulphur isotope ratios in reduced sulphur species indicates a complete utilisation of sulphate by sulphate reducing bacteria. Evidence of anoxia has been discovered at the Triassic-Jurassic boundary across the world's oceans; the western Tethys, eastern Tethys, and Panthalassa were all affected by a precipitous drop in seawater oxygen, although at
20482-484: The only surviving sauropterygians , and giant ichthyosaurs such as shastasaurids . Nevertheless, some authors have argued that the end of the Triassic acted as a genetic " bottleneck " for ichthyosaurs, which never regained the level of anatomical diversity and disparity which they possessed during the Triassic. The high diversity of rhomaelosaurids immediately after the TJME points to a gradual extinction of marine reptiles rather than an abrupt one. Terrestrial fauna
20636-402: The order Isoetales (which contains living quillworts ), rose to prominence due to the environmental instability following the Permian-Triassic extinction, with one particularly notable example being the genus Pleuromeia , which grew in columnar like fashion, sometimes reaching a height of 2 metres (6.6 ft). The relevance of lycophytes declined from the Middle Triassic onwards, following
20790-487: The return of more stable environmental conditions. While having first appeared during the Permian, the extinct seed plant group Bennettitales first became a prominent element in global floras during the Late Triassic, a position they would hold for much of the Mesozoic. In the Southern Hemisphere landmasses of Gondwana, the tree Dicroidium , an extinct " seed fern " belong to the order Corystospermales
20944-568: The second-largest confirmed impact in the Mesozoic. The Manicouagan Reservoir in Quebec is one of the most visible large impact craters on Earth, and at 100 km (62 mi) in diameter it is tied with the Eocene Popigai impact structure in Siberia as the fourth-largest impact crater on Earth. Olsen et al. (1987) were the first scientists to link the Manicouagan crater to the Triassic–Jurassic extinction, citing its age which at
21098-409: The shallow subseafloor may also reflect decreased pH, these structures being speculated to have precipitated concomitantly with acidification. In some studied sections, the TJME biocalcification crisis is masked by emersion of carbonate platforms induced by marine regression. Anoxia was another mechanism of extinction; the end-Triassic extinction was coeval with an uptick in black shale deposition and
21252-403: The stomatal index of Lepidopteris ottonis , but this quantity jumped to 1,300 ppm at the onset of the extinction event. During the TJME, carbon dioxide concentrations increased fourfold. The record of CAMP degassing shows several distinct pulses of carbon dioxide immediately following each major pulse of magmatism, at least two of which amount to a doubling of atmospheric CO 2 . Carbon dioxide
21406-676: The terminus of the Triassic, there was an extreme warming event referred to as the End-Triassic Thermal Event (ETTE), which was responsible for the Triassic-Jurassic mass extinction. Bubbles of carbon dioxide in basaltic rocks dating back to the end of the Triassic indicate that volcanic activity from the Central Atlantic Magmatic Province helped trigger climate change in the ETTE. During the Early Triassic, lycophytes , particularly those of
21560-595: The terrestrial species had mostly died out during the extinction event. The Triassic survivors were aquatic or semi-aquatic, and were represented by Tupilakosaurus , Thabanchuia , Branchiosauridae and Micropholis , all of which died out in Early Triassic, and the successful Stereospondyli , with survivors into the Cretaceous Period. The largest Triassic stereospondyls, such as Mastodonsaurus , were up to 4 to 6 metres (13 to 20 ft) in length. Some lineages (e.g. trematosaurs ) flourished briefly in
21714-577: The time of the Permo-Triassic boundary; acid rain from the Siberian Traps eruptions or from an impact event that overwhelmed acidic swamps; climate shift to a greenhouse climate that was too hot and dry for peat accumulation; evolution of fungi or herbivores that were more destructive of wetlands; the extinction of all plants adapted to peat swamps, with a hiatus of several million years before new plant species evolved that were adapted to peat swamps; or soil anoxia as oxygen levels plummeted. Before
21868-412: The time was roughly considered to be Late Triassic. More precise radiometric dating by Hodych & Dunning (1992) has shown that the Manicouagan impact occurred about 214 million years ago, about 13 million years before the Triassic–Jurassic boundary. Therefore, it could not have been responsible for an extinction precisely at the Triassic–Jurassic boundary. Nevertheless, the Manicouagan impact did have
22022-628: The transition from the Palaeozoic evolutionary fauna to the Modern evolutionary fauna, a change that began in the aftermath of the end-Guadalupian extinction and continued following the Permian-Triassic extinction event (PTME). Between 23% and 34.1% of marine genera went extinct. Plankton diversity dropped suddenly, but it was relatively mildly impacted at the Triassic-Jurassic boundary, although extinction rates among radiolarians rose significantly. Ammonites were affected substantially by
22176-570: The very end of the Triassic, while most other temnospondyls were already extinct. Terrestrial reptile faunas were dominated by archosauromorphs during the Triassic, particularly phytosaurs and members of Pseudosuchia (the reptile lineage which leads to modern crocodilians ). In the Early Jurassic and onwards, dinosaurs and pterosaurs became the most common land reptiles, while small reptiles were mostly represented by lepidosauromorphs (such as lizards and tuatara relatives). Among pseudosuchians, only small crocodylomorphs did not become extinct by
22330-415: The volcanic eruption theory because the Newark Supergroup , a section of rock in eastern North America that records the Triassic–Jurassic boundary, contains no ash-fall horizons and because its oldest basalt flows were estimated to lie around 10 m above the transition zone, which they estimated to have occurred 610 kyr after the TJME. Also among their objections was that the Triassic-Jurassic boundary
22484-506: The wake of the Permian–Triassic extinction event , which left the Earth's biosphere impoverished; it was well into the middle of the Triassic before life recovered its former diversity. Three categories of organisms can be distinguished in the Triassic record: survivors from the extinction event, new groups that flourished briefly, and other new groups that went on to dominate the Mesozoic Era. Reptiles , especially archosaurs , were
22638-615: Was a dominant element in forest habitats across the region during the Middle-Late Triassic. During the Late Triassic, the Ginkgoales (which today are represented by only a single species, Ginkgo biloba ) underwent considerable diversification. Conifers were abundant during the Triassic, and included the Voltziales (which contains various lineages, probably including those ancestral to modern conifers), as well as
22792-673: Was a relatively cool period known as the Early Norian Cool Interval (ENCI), after which occurred the Mid-Norian Warm Interval (MNWI) from 217 to 209 Ma. The MNWI was briefly interrupted around 214 Ma by a cooling possibly related to the Manicouagan impact . Around 212 Ma, a 10 Myr eccentricity maximum caused a paludification of Pangaea and a reduction in the size of arid climatic zones. The Rhaetian Cool Interval (RCI) lasted from 209 to 201 Ma. At
22946-415: Was accompanied by huge volcanic eruptions that occurred as the supercontinent Pangaea began to break apart about 202 to 191 million years ago (40Ar/39Ar dates), forming the Central Atlantic Magmatic Province (CAMP), one of the largest known inland volcanic events since the planet had first cooled and stabilized. Other possible but less likely causes for the extinction events include global cooling or even
23100-514: Was affected by the TJME much more severely than marine fauna. One of the earliest pieces of evidence for a Late Triassic extinction was a major turnover in terrestrial tetrapods such as amphibians, reptiles, and synapsids. Edwin H. Colbert drew parallels between the system of extinction and adaptation between the Triassic–Jurassic and Cretaceous–Paleogene boundaries. He recognized how dinosaurs, lepidosaurs ( lizards and their relatives), and crocodyliforms ( crocodilians and their relatives) filled
23254-412: Was emitted quickly and in enormous quantities compared to other periods of Earth's history, rate of carbon dioxide emissions was one of the most meteoric rises in carbon dioxide levels in Earth's entire history. It is estimated that a single volcanic pulse from the large igneous province would have emitted an amount of carbon dioxide roughly equivalent to projected anthropogenic carbon dioxide emissions for
23408-484: Was encroached upon by a pair of extensive oceanic basins: The Neo-Tethys (or simply Tethys) and Paleo-Tethys Oceans . These extended from China to Iberia, hosting abundant marine life along their shallow tropical peripheries. They were divided from each other by a long string of microcontinents known as the Cimmerian terranes . Cimmerian crust had detached from Gondwana in the early Permian and drifted northwards during
23562-645: Was enhanced and exacerbated by widespread photic zone euxinia through organic matter respiration and carbon dioxide release. Off the shores of the Wrangellia Terrane, the onset of photic zone euxinia was preceded by an interval of limited nitrogen availability and increased nitrogen fixation in surface waters while euxinia developed in bottom waters. In what is now northwestern Europe, shallow seas became salinity stratified, enabling easy development of anoxia. Reduced salinity, in conjunction with increased influx of terrestrial organic matter, enkindled anoxia in
23716-589: Was poorly defined and the CAMP eruptions poorly constrained temporally. However, updated dating protocol and wider sampling has confirmed that the CAMP eruptions started in Morocco only a few thousand years before the extinction, preceding their onset in Nova Scotia and New Jersey , and that they continued in several more pulses for the next 600,000 years. Volcanic global warming has also been criticised as an explanation because some estimates have found that
#791208