Misplaced Pages

Gabbro

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Gabbro ( / ˈ ɡ æ b r oʊ / GAB -roh ) is a phaneritic (coarse-grained and magnesium- and iron-rich), mafic intrusive igneous rock formed from the slow cooling magma into a holocrystalline mass deep beneath the Earth 's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt . Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges . Gabbro is also found as plutons associated with continental volcanism . Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite .

#418581

52-736: The term "gabbro" was used in the 1760s to name a set of rock types that were found in the ophiolites of the Apennine Mountains in Italy. It was named after Gabbro , a hamlet near Rosignano Marittimo in Tuscany . Then, in 1809, the German geologist Christian Leopold von Buch used the term more restrictively in his description of these Italian ophiolitic rocks. He assigned the name "gabbro" to rocks that geologists nowadays would more strictly call "metagabbro" ( metamorphosed gabbro). Gabbro

104-400: A central role in plate tectonic theory and the interpretation of ancient mountain belts. The stratigraphic -like sequence observed in ophiolites corresponds to the lithosphere -forming processes at mid-oceanic ridges . From top to bottom, the layers in the sequence are: A Geological Society of America Penrose Conference on ophiolites in 1972 defined the term "ophiolite" to include all of

156-459: A dioritoid typically has less than 35% mafic minerals, which typically includes hornblende. Gabbroids form a family of rock types similar to gabbro, such as monzogabbro , quartz gabbro , or nepheline-bearing gabbro . Gabbro itself is more narrowly defined, as a gabbroid in which quartz makes up less than 5% of the QAPF content, feldspathoids are not present, and plagioclase makes up more than 90% of

208-451: A few magma chambers beneath ridges, and these are quite thin. A few deep drill holes into oceanic crust have intercepted gabbro, but it is not layered like ophiolite gabbro. The circulation of hydrothermal fluids through young oceanic crust causes serpentinization , alteration of the peridotites and alteration of minerals in the gabbros and basalts to lower temperature assemblages. For example, plagioclase , pyroxenes , and olivine in

260-523: A gabbronorite. Gabbroids (also known as gabbroic-rocks) are a family of coarse-grained igneous rocks similar to gabbro: Gabbroids contain minor amounts, typically a few percent, of iron-titanium oxides such as magnetite , ilmenite , and ulvospinel . Apatite , zircon , and biotite may also be present as accessory minerals. Gabbro is generally coarse-grained, with crystals in the size range of 1 mm or larger. Finer-grained equivalents of gabbro are called diabase (also known as dolerite ), although

312-574: A green color. The origin of these rocks, present in many mountainous massifs , remained uncertain until the advent of plate tectonic theory. Their great significance relates to their occurrence within mountain belts such as the Alps and the Himalayas , where they document the existence of former ocean basins that have now been consumed by subduction . This insight was one of the founding pillars of plate tectonics , and ophiolites have always played

364-457: A layered velocity structure that implies a layered rock series similar to that listed above. But in detail there are problems, with many ophiolites exhibiting thinner accumulations of igneous rock than are inferred for oceanic crust. Another problem relating to oceanic crust and ophiolites is that the thick gabbro layer of ophiolites calls for large magma chambers beneath mid-ocean ridges. However, seismic sounding of mid-ocean ridges has revealed only

416-946: A passive continental margin. They include the Coast Range ophiolite of California, the Josephine ophiolite of the Klamath Mountains (California, Oregon), and ophiolites in the southern Andes of South America. Despite their differences in mode of emplacement, both types of ophiolite are exclusively supra-subduction zone (SSZ) in origin. Based on mode of occurrences, the Neoproterozoic ophiolites appear to show characteristics of both mid-oceanic ridge basalt (MORB)-type and SSZ-type ophiolites and are classified from oldest to youngest into: (1) MORB intact ophiolites (MIO); (2) dismembered ophiolites (DO); and (3) arc-associated ophiolites (AAO) (El Bahariya, 2018). Collectively,

468-696: A problem arises concerning compositional differences of silica (SiO 2 ) and titania (TiO 2 ). Ophiolite basalt contents place them in the domain of subduction zones (~55% silica, <1% TiO 2 ), whereas mid-ocean ridge basalts typically have ~50% silica and 1.5–2.5% TiO 2 . These chemical differences extend to a range of trace elements as well (that is, chemical elements occurring in amounts of 1000  ppm or less). In particular, trace elements associated with subduction zone (island arc) volcanics tend to be high in ophiolites, whereas trace elements that are high in ocean ridge basalts but low in subduction zone volcanics are also low in ophiolites. Additionally,

520-552: A semi-precious stone. Indigo Gabbro can contain numerous minerals, including quartz and feldspar. Reports state that the dark matrix of the rock is composed of a mafic igneous rock, but whether this is basalt or gabbro is unclear. Volcanic rocks : Subvolcanic rocks : Plutonic rocks : Picrite basalt Peridotite Basalt Diabase (Dolerite) Gabbro Andesite Microdiorite Diorite Dacite Microgranodiorite Granodiorite Rhyolite Microgranite Granite Ophiolite An ophiolite

572-659: A type of geosyncline called eugeosynclines were characterized by producing an "initial magmatism" that in some cases corresponded to ophiolitic magmatism. As plate tectonic theory prevailed in geology and geosyncline theory became outdated ophiolites were interpreted in the new framework. They were recognized as fragments of oceanic lithosphere , and dykes were viewed as the result of extensional tectonics at mid-ocean ridges . The plutonic rocks found in ophiolites were understood as remnants of former magma chambers. In 1973, Akiho Miyashiro revolutionized common conceptions of ophiolites and proposed an island arc origin for

SECTION 10

#1732771882419

624-462: Is pyroxene-plagioclase adcumulate . Gabbro is much less common than more silica-rich intrusive rocks in the continental crust of the Earth. Gabbro and gabbroids occur in some batholiths but these rocks are relatively minor components of these very large intrusions because their iron and calcium content usually makes gabbro and gabbroid magmas too dense to have the necessary buoyancy. However, gabbro

676-481: Is a coarse-grained ( phaneritic ) igneous rock that is relatively low in silica and rich in iron, magnesium, and calcium. Such rock is described as mafic . Gabbro is composed of pyroxene (mostly clinopyroxene) and calcium-rich plagioclase , with minor amounts of hornblende , olivine , orthopyroxene and accessory minerals . With significant (>10%) olivine or orthopyroxene it is classified as olivine gabbro or gabbronorite respectively. Where present, hornblende

728-478: Is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks. The Greek word ὄφις, ophis ( snake ) is found in the name of ophiolites, because of the superficial texture of some of them. Serpentinite especially evokes a snakeskin. (The suffix -lite is from the Greek lithos , meaning "stone".) Some ophiolites have

780-564: Is an essential part of the oceanic crust, and can be found in many ophiolite complexes as layered gabbro underling sheeted dike complexes and overlying ultramafic rock derived from the Earth's mantle . These layered gabbros may have formed from relatively small but long-lived magma chambers underlying mid-ocean ridges . Layered gabbros are also characteristic of lopoliths , which are large, saucer-shaped intrusions that are primarily Precambrian in age. Prominent examples of lopoliths include

832-494: Is based on the relative percentages of plagioclase, pyroxene, hornblende, and olivine. The end members are: Gabbros intermediate between these compositions are given names such as gabbronorite (for a gabbro intermediate between normal gabbro and norite, with almost equal amounts of clinopyroxene and orthopyroxene) or olivine gabbro (for a gabbro containing significant olivine, but almost no clinopyroxene or hornblende). A rock similar to normal gabbro but containing more orthopyroxene

884-494: Is called an orthopyroxene gabbro, while a rock similar to norite but containing more clinopyroxene is called a clinopyroxene norite. Gabbros are also sometimes classified as alkali or tholleiitic gabbros, by analogy with alkali or tholeiitic basalts, of which they are considered the intrusive equivalents. Alkali gabbro usually contains olivine, nepheline, or analcime , up to 10% of the mineral content, while tholeiitic gabbro contains both clinopyroxene and orthopyroxene, making it

936-595: Is characterized by relatively high alkali (Na 2 O and K 2 O) content relative to other basalts and by the presence of olivine and titanium-rich augite in its groundmass and phenocrysts , and nepheline in its CIPW norm . Alkali basalt is chemically classified as a rock in region B (basalt) of the total alkali versus silica (TAS) diagram that contains nepheline in its CIPW norm. Basalts that do not contain normative nepheline are characterized as sub-alkali basalts , which include tholeiitic basalts and calc-alkaline basalts . The groundmass of alkali basalt

988-710: Is mainly composed of olivine, titanium-rich augite and plagioclase feldspar and may have alkali feldspar or feldspathoid interstitially, but is poor in silica minerals, such as hypersthene and quartz . Phenocrysts are ubiquitous in alkali basalt and, similarly to the groundmass, are usually made up of olivine and titanium-rich augite but can also have plagioclase and iron oxides with lower frequency. Alkali basalt can be found in areas associated with volcanic activity, such as oceanic islands ( Hawaii , Madeira , Saint Helena , Ascension , etc.), continental rifts and volcanic fields. Continental alkali basalt can be found in every continent, with prominent examples being

1040-471: Is typically found as a rim around augite crystals or as large grains enclosing smaller grains of other minerals ( poikilitic grains). Geologists use rigorous quantitative definitions to classify coarse-grained igneous rocks, based on the mineral content of the rock. For igneous rocks composed mostly of silicate minerals, and in which at least 10% of the mineral content consists of quartz , feldspar , or feldspathoid minerals, classification begins with

1092-590: Is uplifted onto continental margins despite the relatively low density of the latter. All emplacement procedures share the same steps nonetheless: subduction initiation, thrusting of the ophiolite over a continental margin or an overriding plate at a subduction zone, and contact with air. A hypothesis based on research conducted on the Bay of Islands complex in Newfoundland as well as the East Vardar complex in

SECTION 20

#1732771882419

1144-772: The Bushveld Complex of South Africa, the Muskox intrusion of the Northwest Territories of Canada, the Rum layered intrusion of Scotland, the Stillwater complex of Montana, and the layered gabbros near Stavanger , Norway. Gabbros are also present in stocks associated with alkaline volcanism of continental rifting . Gabbro often contains valuable amounts of chromium , nickel , cobalt , gold , silver , platinum , and copper sulfides . For example,

1196-476: The Merensky Reef is the world's most important source of platinum. Gabbro is known in the construction industry by the trade name of black granite . However, gabbro is hard and difficult to work, which limits its use. The term "indigo gabbro" is used as a common name for a mineralogically complex rock type often found in mottled tones of black and lilac-grey. It is mined in central Madagascar for use as

1248-449: The QAPF diagram . The relative abundances of quartz (Q), alkali feldspar (A), plagioclase (P), and feldspathoid (F), are used to plot the position of the rock on the diagram. The rock will be classified as either a gabbroid or a dioritoid if quartz makes up less than 20% of the QAPF content, feldspathoid makes up less than 10% of the QAPF content, and plagioclase makes up more than 65% of

1300-697: The closure of the Tethys Ocean . Ophiolites in Archean and Paleoproterozoic domains are rare. Most ophiolites can be divided into one of two groups: Tethyan and Cordilleran. Tethyan ophiolites are characteristic of those that occur in the eastern Mediterranean sea area, e.g. Troodos in Cyprus, and in the Middle East, such as Semail in Oman, which consist of relatively complete rock series corresponding to

1352-441: The crystallization order of feldspar and pyroxene (clino- and orthopyroxene) in the gabbros is reversed, and ophiolites also appear to have a multi-phase magmatic complexity on par with subduction zones. Indeed, there is increasing evidence that most ophiolites are generated when subduction begins and thus represent fragments of fore-arc lithosphere. This led to introduction of the term "supra-subduction zone" (SSZ) ophiolite in

1404-607: The geosyncline concept. He held that Alpine ophiolites were "submarine effusions issuing along thrust faults into the active flank of an asymmetrically shortening geosyncline". The apparent lack of ophiolites in the Peruvian Andes , Steinmann theorized, was either due to the Andes being preceded by a shallow geosyncline or representing just the margin of a geosyncline. Thus, Cordilleran-type and Alpine-type mountains were to be different in this regard. In Hans Stille 's models

1456-433: The metal-ore deposits present in and near ophiolites and from oxygen and hydrogen isotopes suggests that the passage of seawater through hot basalt in the vicinity of ridges dissolved and carried elements that precipitated as sulfides when the heated seawater came into contact with cold seawater. The same phenomenon occurs near oceanic ridges in a formation known as hydrothermal vents . The final line of evidence supporting

1508-539: The "Steinmann Trinity": the mixture of serpentine , diabase - spilite and chert . The recognition of the Steinmann Trinity served years later to build up the theory around seafloor spreading and plate tectonics . A key observation by Steinmann was that ophiolites were associated to sedimentary rocks reflecting former deep sea environments. Steinmann himself interpreted ophiolites (the Trinity) using

1560-516: The 1980s to acknowledge that some ophiolites are more closely related to island arcs than ocean ridges. Consequently, some of the classic ophiolite occurrences thought of as being related to seafloor spreading (Troodos in Cyprus , Semail in Oman ) were found to be "SSZ" ophiolites, formed by rapid extension of fore-arc crust during subduction initiation. A fore-arc setting for most ophiolites also solves

1612-478: The Apuseni Mountains of Romania suggest that an irregular continental margin colliding with an island arc complex causes ophiolite generation in a back-arc basin and obduction due to compression. The continental margin, promontories and reentrants along its length, is attached to the subducting oceanic crust, which dips away from it underneath the island arc complex. As subduction takes place,

Gabbro - Misplaced Pages Continue

1664-490: The Coast Range ophiolite of California and Baja California, by a change in subduction location and polarity. Oceanic crust attached to a continental margin subducts beneath an island arc. Pre-ophiolitic ocean crust is generated by a back-arc basin. The collision of the continent and island arc initiates a new subduction zone at the back-arc basin, dipping in the opposite direction as the first. The created ophiolite becomes

1716-495: The buoyant continent and island arc complex converge, initially colliding with the promontories. However, oceanic crust is still at the surface between the promontories, not having been subducted beneath the island arc yet. The subducting oceanic crust is thought to split from the continental margin to aid subduction. In the event that the rate of trench retreat is greater than that of the island arc complex's progression, trench rollback will take place, and by consequence, extension of

1768-477: The classic ophiolite assemblage and which have been emplaced onto a passive continental margin more or less intact (Tethys is the name given to the ancient sea that once separated Europe and Africa). Cordilleran ophiolites are characteristic of those that occur in the mountain belts of western North America (the " Cordillera " or backbone of the continent). These ophiolites sit on subduction zone accretionary complexes (subduction complexes) and have no association with

1820-432: The current knowledge of the oceanic crust's composition. For this reason, researchers carried out a seismic study on an ophiolite complex ( Bay of Islands, Newfoundland ) in order to establish a comparison. The study concluded that oceanic and ophiolitic velocity structures were identical, pointing to the origin of ophiolite complexes as oceanic crust. The observations that follow support this conclusion. Rocks originating on

1872-511: The famous Troodos Ophiolite in Cyprus , arguing that numerous lavas and dykes in the ophiolite had calc-alkaline chemistries . Examples of ophiolites that have been influential in the study of these rocks bodies are: Alkali basalt Alkali basalt or alkali olivine basalt is a dark-colored, porphyritic volcanic rock usually found in oceanic and continental areas associated with volcanic activity, such as oceanic islands , continental rifts and volcanic fields . Alkali basalt

1924-785: The feldspar content. Gabbro is distinct from anorthosite , which contains less than 10% mafic minerals. Coarse-grained gabbroids are produced by slow crystallization of magma having the same composition as the lava that solidifies rapidly to form fine-grained ( aphanitic ) basalt . There are a number of subtypes of gabbro recognized by geologists. Gabbros can be broadly divided into leucogabbros, with less than 35% mafic mineral content; mesogabbros, with 35% to 65% mafic mineral content; and melagabbros with more than 65% mafic mineral content. A rock with over 90% mafic mineral content will be classified instead as an ultramafic rock . A gabbroic rock with less than 10% mafic mineral content will be classified as an anorthosite. A more detailed classification

1976-497: The first, he used ophiolite for serpentinite rocks found in large-scale breccias called mélanges . In the second publication, he expanded the definition to encompass a variety of igneous rocks as well such as gabbro , diabase , ultramafic and volcanic rocks. Ophiolites thus became a name for a well-known association of rocks occurring in the Alps and Apennines of Italy. Following work in these two mountains systems, Gustav Steinmann defined what later became known as

2028-591: The investigated ophiolites of the Central Eastern Desert (CED) fall into both MORB/back-arc basin basalt (BABB) ophiolites and SSZ ophiolites. They are spatially and temporally unrelated, and thus, it seems likely that the two types are not petrogenetically related. Ophiolites occur in different geological settings, and they represent change of the tectonic setting of the ophiolites from MORB to SSZ with time. The term ophiolite originated from publications of Alexandre Brongniart in 1813 and 1821. In

2080-589: The layers listed above, including the sediment layer formed independently of the rest of the ophiolite. This definition has been challenged recently because new studies of oceanic crust by the Integrated Ocean Drilling Program and other research cruises have shown that in situ ocean crust can be quite variable in thickness and composition, and that in places sheeted dikes sit directly on peridotite tectonite , with no intervening gabbros . Ophiolites have been identified in most of

2132-443: The ophiolite is emplaced onto the continental margin. Based on Sr and Nd isotope analyses, ophiolites have a similar composition to mid-ocean-ridge basalts, but typically have slightly elevated large ion lithophile elements and a Nb depletion. These chemical signatures support the ophiolites having formed in a back-arc basin of a subduction zone. Ophiolite generation and subduction may also be explained, as suggested from evidence from

Gabbro - Misplaced Pages Continue

2184-462: The origin of ophiolites as seafloor is the region of formation of the sediments over the pillow lavas: they were deposited in water over 2 km deep, far removed from land-sourced sediments. Despite the above observations, there are inconsistencies in the theory of ophiolites as oceanic crust, which suggests that newly generated ocean crust follows the full Wilson cycle before emplacement as an ophiolite. This requires ophiolites to be much older than

2236-425: The orogenies on which they lie, and therefore old and cold. However, radiometric and stratigraphic dating has found ophiolites to have undergone emplacement when young and hot: most are less than 50 million years old. Ophiolites therefore cannot have followed the full Wilson cycle and are considered atypical ocean crust. There is yet no consensus on the mechanics of emplacement, the process by which oceanic crust

2288-671: The otherwise-perplexing problem of how oceanic lithosphere can be emplaced on top of continental crust. It appears that continental accretion sediments, if carried by the downgoing plate into a subduction zone, will jam it up and cause subduction to cease, resulting in the rebound of the accretionary prism with fore-arc lithosphere (ophiolite) on top of it. Ophiolites with compositions comparable with hotspot -type eruptive settings or normal mid-oceanic ridge basalt are rare, and those examples are generally strongly dismembered in subduction zone accretionary complexes. Ophiolites are common in orogenic belts of Mesozoic age, like those formed by

2340-455: The overriding plate will occur to allow the island arc complex to match the trench retreat's speed. The extension, a back-arc basin, generates oceanic crust: ophiolites. Finally, when the oceanic lithosphere is entirely subducted, the island arc complex's extensional regime becomes compressional. The hot, positively buoyant ocean crust from the extension will not subduct, instead obducting onto the island arc as an ophiolite. As compression persists,

2392-460: The seafloor show chemical composition comparable to unaltered ophiolite layers, from primary composition elements such as silicon and titanium to trace elements. Seafloor and ophiolitic rocks share a low occurrence of silica-rich minerals; those present have a high sodium and low potassium content. The temperature gradients of the metamorphosis of ophiolitic pillow lavas and dykes are similar to those found beneath ocean ridges today. Evidence from

2444-551: The sheeted dikes and lavas will alter to albite , chlorite , and serpentine , respectively. Often, ore bodies such as iron -rich sulfide deposits are found above highly altered epidosites ( epidote - quartz rocks) that are evidence of relict black smokers , which continue to operate within the seafloor spreading centers of ocean ridges today. Thus, there is reason to believe that ophiolites are indeed oceanic mantle and crust; however, certain problems arise when looking closer. Beyond issues of layer thicknesses mentioned above,

2496-445: The term microgabbro is often used when extra descriptiveness is desired. Gabbro may be extremely coarse-grained to pegmatitic . Some pyroxene-plagioclase cumulates are essentially coarse-grained gabbro, and may exhibit acicular crystal habits. Gabbro is usually equigranular in texture, although it may also show ophitic texture (with laths of plagioclase enclosed in pyroxene). Nearly all gabbros are found in plutonic bodies, and

2548-555: The term (as the International Union of Geological Sciences recommends) is normally restricted just to plutonic rocks, although gabbro may be found as a coarse-grained interior facies of certain thick lavas. Gabbro can be formed as a massive, uniform intrusion via in-situ crystallisation of pyroxene and plagioclase , or as part of a layered intrusion as a cumulate formed by settling of pyroxene and plagioclase. An alternative name for gabbros formed by crystal settling

2600-532: The tip of the new subduction's forearc and is uplifted (over the accretionary wedge ) by detachment and compression. Verification of the two above hypotheses requires further research, as do the other hypotheses available in current literature on the subject. Scientists have drilled only about 1.5 km into the 6- to 7-kilometer-thick oceanic crust, so scientific understanding of oceanic crust comes largely from comparing ophiolite structure to seismic soundings of in situ oceanic crust. Oceanic crust generally has

2652-448: The total feldspar content. Gabbroids are distinguished from dioritoids by an anorthite (calcium plagioclase) fraction of their total plagioclase of greater than 50%. The composition of the plagioclase cannot easily be determined in the field , and then a preliminary distinction is made between dioritoid and gabbroid based on the content of mafic minerals. A gabbroid typically has over 35% mafic minerals, mostly pyroxenes or olivine, while

SECTION 50

#1732771882419

2704-410: The world's orogenic belts . However, two components of ophiolite formation are under debate: the origin of the sequence and the mechanism for ophiolite emplacement. Emplacement is the process of the sequence's uplift over lower density continental crust. Several studies support the conclusion that ophiolites formed as oceanic lithosphere . Seismic velocity structure studies have provided most of

#418581