Misplaced Pages

Gastre Fault

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Villarrica ( / ˌ v iː ə ˈ r iː k ə / VEE -ə- REE -kə ) ( Spanish : Volcán Villarrica , Mapudungun : Ruka Pillañ ) is one of Chile 's most active volcanoes , rising above the lake and town of the same name, 750 km (470 mi) south of Santiago . It is also known as Rucapillán , a Mapuche word meaning " great spirit 's house" or " the demon's house". It is the westernmost of three large stratovolcanoes that trend northwest to southeast obliquely perpendicular to the Andean chain along the Mocha-Villarrica Fault Zone , and along with Quetrupillán and the Chilean portion of Lanín , are protected within Villarrica National Park . Guided ascents are popular during summer months.

#232767

70-603: The Gastre Fault Zone ( GFZ ) is a NW-SE striking dextral Jurassic Gastre Fault System (cf. Rapela & Pankhurst, 1992) in Central Patagonia, Argentina. From a tentative correlation of the fault zone with the similarly NW-SE trend, it was termed ‘Gastre Fault Zone’ or ‘Gastre-Purén Fault Zone’ to the Lanalhue Fault Zone in Chile by early works. However, in later works it is shown that this correlation

140-407: A Multi-Component Gas Analyzer System , which detects pre-eruptive degassing of rising magmas, improving prediction of volcanic activity . Analysis of seismicity prior to the eruption show that there was no seismicity that could be reliably related to the upcoming eruption. However, a series of small earthquakes with hypocenters about 9 km beneath Villarrica volcano that occurred 45 days after

210-1086: A , b and c are arc lengths, in radians, of the sides of a spherical triangle. C is the angle in the vertex opposite the side which has arc length c . Applied to the calculation of solar zenith angle Θ , the following applies to the spherical law of cosines: C = h c = Θ a = 1 2 π − φ b = 1 2 π − δ cos ⁡ ( Θ ) = sin ⁡ ( φ ) sin ⁡ ( δ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) cos ⁡ ( h ) {\displaystyle {\begin{aligned}C&=h\\c&=\Theta \\a&={\tfrac {1}{2}}\pi -\varphi \\b&={\tfrac {1}{2}}\pi -\delta \\\cos(\Theta )&=\sin(\varphi )\sin(\delta )+\cos(\varphi )\cos(\delta )\cos(h)\end{aligned}}} This equation can be also derived from

280-481: A clear day. When 1361 W/m is arriving above the atmosphere (when the Sun is at the zenith in a cloudless sky), direct sun is about 1050 W/m , and global radiation on a horizontal surface at ground level is about 1120 W/m . The latter figure includes radiation scattered or reemitted by the atmosphere and surroundings. The actual figure varies with the Sun's angle and atmospheric circumstances. Ignoring clouds,

350-464: A consensus of observations or theory, Q ¯ day {\displaystyle {\overline {Q}}^{\text{day}}} can be calculated for any latitude φ and θ . Because of the elliptical orbit, and as a consequence of Kepler's second law , θ does not progress uniformly with time. Nevertheless, θ  = 0° is exactly the time of the March equinox, θ  = 90°

420-421: A day is the average of Q over one rotation, or the hour angle progressing from h = π to h = −π : Q ¯ day = − 1 2 π ∫ π − π Q d h {\displaystyle {\overline {Q}}^{\text{day}}=-{\frac {1}{2\pi }}{\int _{\pi }^{-\pi }Q\,dh}} Let h 0 be

490-404: A decrease thereafter. PMOD instead presents a steady decrease since 1978. Significant differences can also be seen during the peak of solar cycles 21 and 22. These arise from the fact that ACRIM uses the original TSI results published by the satellite experiment teams while PMOD significantly modifies some results to conform them to specific TSI proxy models. The implications of increasing TSI during

560-407: A deep solar minimum of 2005–2010) to be +0.58 ± 0.15 W/m , +0.60 ± 0.17 W/m and +0.85 W/m . Estimates from space-based measurements range +3–7   W/m . SORCE/TIM's lower TSI value reduces this discrepancy by 1   W/m . This difference between the new lower TIM value and earlier TSI measurements corresponds to a climate forcing of −0.8   W/m , which is comparable to

630-534: A large elliptical caldera of 6.5 and 4.2 km in diameter. During the Llanquihue glaciation Villarrica produced pyroclastic flow deposits, subglacial andesite lavas and dacite dykes. It collapsed once again 13,700 years ago forming a new smaller caldera, among other pyroclastic flows the Licán Ignimbrite has been related to this event. Beginning with the Licán Ignimbrite, generated just after

700-1331: A more general formula: cos ⁡ ( Θ ) = sin ⁡ ( φ ) sin ⁡ ( δ ) cos ⁡ ( β ) + sin ⁡ ( δ ) cos ⁡ ( φ ) sin ⁡ ( β ) cos ⁡ ( γ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) cos ⁡ ( β ) cos ⁡ ( h ) − cos ⁡ ( δ ) sin ⁡ ( φ ) sin ⁡ ( β ) cos ⁡ ( γ ) cos ⁡ ( h ) − cos ⁡ ( δ ) sin ⁡ ( β ) sin ⁡ ( γ ) sin ⁡ ( h ) {\displaystyle {\begin{aligned}\cos(\Theta )=\sin(\varphi )\sin(\delta )\cos(\beta )&+\sin(\delta )\cos(\varphi )\sin(\beta )\cos(\gamma )+\cos(\varphi )\cos(\delta )\cos(\beta )\cos(h)\\&-\cos(\delta )\sin(\varphi )\sin(\beta )\cos(\gamma )\cos(h)-\cos(\delta )\sin(\beta )\sin(\gamma )\sin(h)\end{aligned}}} where β

770-426: A spectral graph as function of wavelength), or per- Hz (for a spectral function with an x-axis of frequency). When one plots such spectral distributions as a graph, the integral of the function (area under the curve) will be the (non-spectral) irradiance. e.g.: Say one had a solar cell on the surface of the earth facing straight up, and had DNI in units of W/m^2 per nm, graphed as a function of wavelength (in nm). Then,

SECTION 10

#1732764896233

840-401: A surface is largest when the surface directly faces (is normal to) the sun. As the angle between the surface and the Sun moves from normal, the insolation is reduced in proportion to the angle's cosine ; see effect of Sun angle on climate . In the figure, the angle shown is between the ground and the sunbeam rather than between the vertical direction and the sunbeam; hence the sine rather than

910-879: A time series for a Q ¯ d a y {\displaystyle {\overline {Q}}^{\mathrm {day} }} for a particular time of year, and particular latitude, is a useful application in the theory of Milankovitch cycles. For example, at the summer solstice, the declination δ is equal to the obliquity  ε . The distance from the Sun is R o R E = 1 + e cos ⁡ ( θ − ϖ ) = 1 + e cos ⁡ ( π 2 − ϖ ) = 1 + e sin ⁡ ( ϖ ) {\displaystyle {\frac {R_{o}}{R_{E}}}=1+e\cos(\theta -\varpi )=1+e\cos \left({\frac {\pi }{2}}-\varpi \right)=1+e\sin(\varpi )} For this summer solstice calculation,

980-623: A yellow alert at both Servicio Nacional de Geología y Minería and Onemi . Minor explosions and low emissions of ashes were visible. Ten days later, another eruption occurred. The National Service of Geology and Mining (Sernageomin) declared a yellow alert after volcanic and seismic activity increased again, while the National Emergency Office of the Interior Ministry (ONEMI) kept the yellow alert. At approximately 03:01 AM on March 3, 2015, it erupted, raising

1050-1003: Is sin ⁡ ( δ ) = sin ⁡ ( ε ) sin ⁡ ( θ ) {\displaystyle \sin(\delta )=\sin(\varepsilon )\sin(\theta )} . ) The conventional longitude of perihelion ϖ is defined relative to the March equinox, so for the elliptical orbit: R E = R o ( 1 − e 2 ) 1 + e cos ⁡ ( θ − ϖ ) {\displaystyle R_{E}={\frac {R_{o}(1-e^{2})}{1+e\cos(\theta -\varpi )}}} or R o R E = 1 + e cos ⁡ ( θ − ϖ ) 1 − e 2 {\displaystyle {\frac {R_{o}}{R_{E}}}={\frac {1+e\cos(\theta -\varpi )}{1-e^{2}}}} With knowledge of ϖ , ε and e from astrodynamical calculations and S o from

1120-457: Is π r , in which r is the radius of the Earth. Because the Earth is approximately spherical , it has total area 4 π r 2 {\displaystyle 4\pi r^{2}} , meaning that the solar radiation arriving at the top of the atmosphere, averaged over the entire surface of the Earth, is simply divided by four to get 340   W/m . In other words, averaged over

1190-411: Is a function of distance from the Sun, the solar cycle , and cross-cycle changes. Irradiance on the Earth's surface additionally depends on the tilt of the measuring surface, the height of the Sun above the horizon, and atmospheric conditions. Solar irradiance affects plant metabolism and animal behavior. The study and measurement of solar irradiance have several important applications, including

1260-447: Is a number of a day of the year. Total solar irradiance (TSI) changes slowly on decadal and longer timescales. The variation during solar cycle 21 was about 0.1% (peak-to-peak). In contrast to older reconstructions, most recent TSI reconstructions point to an increase of only about 0.05% to 0.1% between the 17th century Maunder Minimum and the present. However, current understanding based on various lines of evidence suggests that

1330-403: Is a primary cause of the higher irradiance values measured by earlier satellites in which the precision aperture is located behind a larger, view-limiting aperture. The TIM uses a view-limiting aperture that is smaller than the precision aperture that precludes this spurious signal. The new estimate is from better measurement rather than a change in solar output. A regression model-based split of

1400-438: Is absorbed and the remainder reflected. Usually, the absorbed radiation is converted to thermal energy , increasing the object's temperature. Humanmade or natural systems, however, can convert part of the absorbed radiation into another form such as electricity or chemical bonds , as in the case of photovoltaic cells or plants . The proportion of reflected radiation is the object's reflectivity or albedo . Insolation onto

1470-916: Is an angle from the horizontal and γ is an azimuth angle . The separation of Earth from the Sun can be denoted R E and the mean distance can be denoted R 0 , approximately 1 astronomical unit (AU). The solar constant is denoted S 0 . The solar flux density (insolation) onto a plane tangent to the sphere of the Earth, but above the bulk of the atmosphere (elevation 100 km or greater) is: Q = { S o R o 2 R E 2 cos ⁡ ( Θ ) cos ⁡ ( Θ ) > 0 0 cos ⁡ ( Θ ) ≤ 0 {\displaystyle Q={\begin{cases}S_{o}{\frac {R_{o}^{2}}{R_{E}^{2}}}\cos(\Theta )&\cos(\Theta )>0\\0&\cos(\Theta )\leq 0\end{cases}}} The average of Q over

SECTION 20

#1732764896233

1540-680: Is exactly the time of the June solstice, θ  = 180° is exactly the time of the September equinox and θ  = 270° is exactly the time of the December solstice. A simplified equation for irradiance on a given day is: Q ≈ S 0 ( 1 + 0.034 cos ⁡ ( 2 π n 365.25 ) ) {\displaystyle Q\approx S_{0}\left(1+0.034\cos \left(2\pi {\frac {n}{365.25}}\right)\right)} where n

1610-586: Is incorrect. Since the lake ‘Lago Lanalhue’, is located on the fault trace and shows a NW-SE-elongated shape, ‘Lanalhue Fault Zone (LFZ)’ stands as appropriate name for the here discussed fault zone. The Mocha-Villarrica Fault Zone is the NW-SE trending fault responsible for the alignment of Villarrica , Quetrupillán and Lanín volcanoes. This seismology article is a stub . You can help Misplaced Pages by expanding it . Villarrica (volcano) Villarrica, with its lava of basaltic - andesitic composition,

1680-456: Is known as Milankovitch cycles . Distribution is based on a fundamental identity from spherical trigonometry , the spherical law of cosines : cos ⁡ ( c ) = cos ⁡ ( a ) cos ⁡ ( b ) + sin ⁡ ( a ) sin ⁡ ( b ) cos ⁡ ( C ) {\displaystyle \cos(c)=\cos(a)\cos(b)+\sin(a)\sin(b)\cos(C)} where

1750-2450: Is nearly constant over the course of a day, and can be taken outside the integral ∫ π − π Q d h = ∫ h o − h o Q d h = S o R o 2 R E 2 ∫ h o − h o cos ⁡ ( Θ ) d h = S o R o 2 R E 2 [ h sin ⁡ ( φ ) sin ⁡ ( δ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) sin ⁡ ( h ) ] h = h o h = − h o = − 2 S o R o 2 R E 2 [ h o sin ⁡ ( φ ) sin ⁡ ( δ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) sin ⁡ ( h o ) ] {\displaystyle {\begin{aligned}\int _{\pi }^{-\pi }Q\,dh&=\int _{h_{o}}^{-h_{o}}Q\,dh\\[5pt]&=S_{o}{\frac {R_{o}^{2}}{R_{E}^{2}}}\int _{h_{o}}^{-h_{o}}\cos(\Theta )\,dh\\[5pt]&=S_{o}{\frac {R_{o}^{2}}{R_{E}^{2}}}{\Bigg [}h\sin(\varphi )\sin(\delta )+\cos(\varphi )\cos(\delta )\sin(h){\Bigg ]}_{h=h_{o}}^{h=-h_{o}}\\[5pt]&=-2S_{o}{\frac {R_{o}^{2}}{R_{E}^{2}}}\left[h_{o}\sin(\varphi )\sin(\delta )+\cos(\varphi )\cos(\delta )\sin(h_{o})\right]\end{aligned}}} Therefore: Q ¯ day = S o π R o 2 R E 2 [ h o sin ⁡ ( φ ) sin ⁡ ( δ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) sin ⁡ ( h o ) ] {\displaystyle {\overline {Q}}^{\text{day}}={\frac {S_{o}}{\pi }}{\frac {R_{o}^{2}}{R_{E}^{2}}}\left[h_{o}\sin(\varphi )\sin(\delta )+\cos(\varphi )\cos(\delta )\sin(h_{o})\right]} Let θ be

1820-492: Is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment ( joule per square metre, J/m ) during that time period. This integrated solar irradiance is called solar irradiation , solar exposure , solar insolation , or insolation . Irradiance may be measured in space or at the Earth's surface after atmospheric absorption and scattering . Irradiance in space

1890-438: Is one of a small number worldwide known to have an active (but in this case intermittent) lava lake within its crater . The volcano usually generates strombolian eruptions with ejection of incandescent pyroclasts and lava flows. Rainfall plus melted snow and glacier ice can cause massive lahars (mud and debris flows), such as during the eruptions of 1964 and 1971. Villarrica is one of 9 volcanoes currently monitored by

1960-483: Is thought that this decline could be a consequence of burial of gold placers beneath lahars associated with mid-16th century eruptions of Villarrica. This burial would have prompted settlers to move the city westward to its modern site, a place less prone to volcanic hazards . There are uncertainties in the eruptive record in the first half of the 17th century due to the Mapuche and Huilliche uprising which led to

2030-675: The Deep Earth Carbon Degassing Project . The project is collecting data on the carbon dioxide and sulphur dioxide emission rates from subaerial volcanoes . Villarica stands just east of the Chilean Central Valley as the westernmost of an alignment of three large stratovolcanoes . The alignment is attributed to the existence of an old fracture in the crust, the North West-South East trending Mocha-Villarrica Fault Zone ,

2100-536: The ablation of snow and ice by absorption of solar radiation . Some ash coverings are thicker than 5 cm and insulate the glacier, decreasing ablation instead of enhancing it. Between 1961 and 2003, Villarrica lost 25% of its glaciated surface and the glaciers shrank at an average rate of -0.4 km each year. Villarrica is popular for climbing with guided hikes to the crater from the town of Pucón, but these may be suspended due to cloud or volcanic activity. Helicopter over-flights have been available since 2007. In

2170-472: The signal-to-noise ratio , respectively. The net effect of these corrections decreased the average ACRIM3 TSI value without affecting the trending in the ACRIM Composite TSI. Differences between ACRIM and PMOD TSI composites are evident, but the most significant is the solar minimum-to-minimum trends during solar cycles 21 - 23 . ACRIM found an increase of +0.037%/decade from 1980 to 2000 and

Gastre Fault - Misplaced Pages Continue

2240-631: The ACRIM III data that is nearly in phase with the Sun-Earth distance and 90-day spikes in the VIRGO data coincident with SoHO spacecraft maneuvers that were most apparent during the 2008 solar minimum. TIM's high absolute accuracy creates new opportunities for measuring climate variables. TSI Radiometer Facility (TRF) is a cryogenic radiometer that operates in a vacuum with controlled light sources. L-1 Standards and Technology (LASP) designed and built

2310-1040: The Earth Radiometer Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS), VIRGO on the Solar Heliospheric Observatory (SoHO) and the ACRIM instruments on the Solar Maximum Mission (SMM), Upper Atmosphere Research Satellite (UARS) and ACRIMSAT . Pre-launch ground calibrations relied on component rather than system-level measurements since irradiance standards at the time lacked sufficient absolute accuracies. Measurement stability involves exposing different radiometer cavities to different accumulations of solar radiation to quantify exposure-dependent degradation effects. These effects are then compensated for in

2380-463: The Earth moving between its perihelion and aphelion , or changes in the latitudinal distribution of radiation. These orbital changes or Milankovitch cycles have caused radiance variations of as much as 25% (locally; global average changes are much smaller) over long periods. The most recent significant event was an axial tilt of 24° during boreal summer near the Holocene climatic optimum . Obtaining

2450-473: The TRF in both optical power and irradiance. The resulting high accuracy reduces the consequences of any future gap in the solar irradiance record. The most probable value of TSI representative of solar minimum is 1 360 .9 ± 0.5 W/m , lower than the earlier accepted value of 1 365 .4 ± 1.3 W/m , established in the 1990s. The new value came from SORCE/TIM and radiometric laboratory tests. Scattered light

2520-646: The TSI record is not sufficiently stable to discern solar changes on decadal time scales. Only the ACRIM composite shows irradiance increasing by ~1   W/m  between 1986 and 1996; this change is also absent in the model. Recommendations to resolve the instrument discrepancies include validating optical measurement accuracy by comparing ground-based instruments to laboratory references, such as those at National Institute of Science and Technology (NIST); NIST validation of aperture area calibrations uses spares from each instrument; and applying diffraction corrections from

2590-449: The alert to red up to 10 kilometers around. The eruption exceeded the height of the volcano, causing a loud explosion that woke the neighbors, and forcing the evacuation of 3,385 people in nearby communities. The Southern Andean Volcano Observatory (OVDAS) indicated that a new imminent eruption would continue until 12:29 of March 19, 2015. As of July 2015, the eruption was continuing. Volcanic gas emissions from this volcano are measured by

2660-442: The cavity, electronic degradation of the heater, surface degradation of the precision aperture and varying surface emissions and temperatures that alter thermal backgrounds. These calibrations require compensation to preserve consistent measurements. For various reasons, the sources do not always agree. The Solar Radiation and Climate Experiment/Total Irradiance Measurement ( SORCE /TIM) TSI values are lower than prior measurements by

2730-407: The cavity. This design admits into the front part of the instrument two to three times the amount of light intended to be measured; if not completely absorbed or scattered, this additional light produces erroneously high signals. In contrast, TIM's design places the precision aperture at the front so that only desired light enters. Variations from other sources likely include an annual systematics in

2800-451: The conventional polar angle describing a planetary orbit . Let θ  = 0 at the March equinox . The declination δ as a function of orbital position is δ = ε sin ⁡ ( θ ) {\displaystyle \delta =\varepsilon \sin(\theta )} where ε is the obliquity . (Note: The correct formula, valid for any axial tilt,

2870-426: The daily average insolation for the Earth is approximately 6 kWh/m = 21.6 MJ/m . The output of, for example, a photovoltaic panel, partly depends on the angle of the sun relative to the panel. One Sun is a unit of power flux , not a standard value for actual insolation. Sometimes this unit is referred to as a Sol, not to be confused with a sol , meaning one solar day . Part of the radiation reaching an object

Gastre Fault - Misplaced Pages Continue

2940-463: The disaster claiming they had provoked it by cursing the town of Coñaripe. Such views reflect the belief that nature was "allied with the Indians". On 29 October 1971, at 3:00 am, there were several explosions in the crater and a column of white and then black smoke appeared. One month later, at quarter to midnight on 29 November, Villarrica began a new eruptive cycle. Pyroclasts were ejected and

3010-499: The electrical heating needed to maintain an absorptive blackened cavity in thermal equilibrium with the incident sunlight which passes through a precision aperture of calibrated area. The aperture is modulated via a shutter . Accuracy uncertainties of < 0.01% are required to detect long term solar irradiance variations, because expected changes are in the range 0.05–0.15   W/m per century. In orbit, radiometric calibrations drift for reasons including solar degradation of

3080-409: The energy imbalance. In 2014 a new ACRIM composite was developed using the updated ACRIM3 record. It added corrections for scattering and diffraction revealed during recent testing at TRF and two algorithm updates. The algorithm updates more accurately account for instrument thermal behavior and parsing of shutter cycle data. These corrected a component of the quasi-annual spurious signal and increased

3150-515: The eruption are thought to have been caused by the cooling of the eruption's feeder dykes . Solar radiation Solar irradiance is the power per unit area ( surface power density ) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m ) in SI units . Solar irradiance

3220-420: The eruption had definitely turned effusive by May 21. The last consequences of this cycle of eruptions were lahars that flowed down the volcano on May 24. In the two last weeks of February 1964, Villarrica produced small, violent lava effusions and tremors. On 2 March, at 2:45 am, it began a strombolian eruption , and residents of Coñaripe , a wood-logging town, fled to the surrounding hills. At some point,

3290-453: The final data. Observation overlaps permits corrections for both absolute offsets and validation of instrumental drifts. Uncertainties of individual observations exceed irradiance variability (~0.1%). Thus, instrument stability and measurement continuity are relied upon to compute real variations. Long-term radiometer drifts can potentially be mistaken for irradiance variations which can be misinterpreted as affecting climate. Examples include

3360-533: The global warming of the last two decades of the 20th century are that solar forcing may be a marginally larger factor in climate change than represented in the CMIP5 general circulation climate models . Average annual solar radiation arriving at the top of the Earth's atmosphere is roughly 1361   W/m . The Sun's rays are attenuated as they pass through the atmosphere , leaving maximum normal surface irradiance at approximately 1000   W/m at sea level on

3430-844: The hour angle when Q becomes positive. This could occur at sunrise when Θ = 1 2 π {\displaystyle \Theta ={\tfrac {1}{2}}\pi } , or for h 0 as a solution of sin ⁡ ( φ ) sin ⁡ ( δ ) + cos ⁡ ( φ ) cos ⁡ ( δ ) cos ⁡ ( h o ) = 0 {\displaystyle \sin(\varphi )\sin(\delta )+\cos(\varphi )\cos(\delta )\cos(h_{o})=0} or cos ⁡ ( h o ) = − tan ⁡ ( φ ) tan ⁡ ( δ ) {\displaystyle \cos(h_{o})=-\tan(\varphi )\tan(\delta )} If tan( φ ) tan( δ ) > 1 , then

3500-490: The inhabitants of Coñaripe decided to return to their houses in search of shelter from the heavy rainfall. At midnight a new lava flow advanced downhill melting snow and ice triggering five lahars. Melting snow and ice from the Pichillancahue-Turbio Glacier combined with heavy rainfall to produce several lahars . This situation caught Coñaripe residents unprepared when one of the lahars overwhelmed

3570-574: The issue of the irradiance increase between cycle minima in 1986 and 1996, evident only in the ACRIM composite (and not the model) and the low irradiance levels in the PMOD composite during the 2008 minimum. Despite the fact that ACRIM I, ACRIM II, ACRIM III, VIRGO and TIM all track degradation with redundant cavities, notable and unexplained differences remain in irradiance and the modeled influences of sunspots and faculae . Disagreement among overlapping observations indicates unresolved drifts that suggest

SECTION 50

#1732764896233

3640-399: The last deglaciation, activity continued in similar fashion. The Pucón Ignimbrite was ejected during a minor collapse of the uppermost stratocone 3,700 years ago. The upper part of Villarrica is permanently covered by snow and has some 40 km of glaciers , the largest of which is the Pichillancahue-Turbio Glacier situated on its southeastern flank. Ash from the eruptions can increase

3710-508: The lower values for the secular trend are more probable. In particular, a secular trend greater than 2 Wm is considered highly unlikely. Ultraviolet irradiance (EUV) varies by approximately 1.5 percent from solar maxima to minima, for 200 to 300 nm wavelengths. However, a proxy study estimated that UV has increased by 3.0% since the Maunder Minimum. Some variations in insolation are not due to solar changes but rather due to

3780-451: The other volcanoes in the chain, Quetrupillán and Lanín , are far less active. The alignment is unusual as it crosses the N-S running Liquiñe-Ofqui Fault , along which several active volcanoes are aligned. Villarrica covers an area of 400 km and has an estimated volume of 250 km . It contains volcanic caves and about 26 scoria cones . The constant degassing at the lava lake turns

3850-583: The otherwise quite effusive lava more viscous, heightening its explosive potential. Two large ignimbrite layers are visible; the Licán Ignimbrite and the more recent Pucón Ignimbrite. Villarrica emerged during the Middle Pleistocene and grew forming a large stratocone of similar dimensions to the current edifice. 100,000 years ago during the Valdivia Interglacial the ancestral Villarrica collapsed following an eruption and formed

3920-437: The prediction of energy generation from solar power plants , the heating and cooling loads of buildings, climate modeling and weather forecasting, passive daytime radiative cooling applications, and space travel. There are several measured types of solar irradiance. Spectral versions of the above irradiances (e.g. spectral TSI , spectral DNI , etc.) are any of the above with units divided either by meter or nanometer (for

3990-630: The reference radiometer and the instrument under test in a common vacuum system that contains a stationary, spatially uniform illuminating beam. A precision aperture with an area calibrated to 0.0031% (1 σ ) determines the beam's measured portion. The test instrument's precision aperture is positioned in the same location, without optically altering the beam, for direct comparison to the reference. Variable beam power provides linearity diagnostics, and variable beam diameter diagnoses scattering from different instrument components. The Glory/TIM and PICARD/PREMOS flight instrument absolute scales are now traceable to

4060-497: The relative proportion of sunspot and facular influences from SORCE/TIM data accounts for 92% of observed variance and tracks the observed trends to within TIM's stability band. This agreement provides further evidence that TSI variations are primarily due to solar surface magnetic activity. Instrument inaccuracies add a significant uncertainty in determining Earth's energy balance . The energy imbalance has been variously measured (during

4130-660: The role of the elliptical orbit is entirely contained within the important product e sin ⁡ ( ϖ ) {\displaystyle e\sin(\varpi )} , the precession index, whose variation dominates the variations in insolation at 65°   N when eccentricity is large. For the next 100,000 years, with variations in eccentricity being relatively small, variations in obliquity dominate. The space-based TSI record comprises measurements from more than ten radiometers and spans three solar cycles. All modern TSI satellite instruments employ active cavity electrical substitution radiometry . This technique measures

4200-427: The site of present-day Pucón . Villarrica volcano had frequent strombolian eruptions in the second half of the 16th century. Peaks of activity occurred in 1558 and 1562. The 1562 eruption in particular deposited thin ash layers as far as 200 km away from the volcano. During its early years the city of Villarrica was an important gold and silver mining centre. However mining activity declined over time. It

4270-607: The snow surrounding the crater melted. After a brief halt in activity lava poured from a new vent on the north-east side, melting considerable amounts of water and causing lahars . These lahars affected Pichaye, El Turbio, Collentañe, Minetué, Molco, Voipir and Curarrehue , all of them in the Trancura River basin. Toxic sulphurous gases made the air unbreathable in Villarrica and Pucón where at least 15 deaths were reported. On February 7, 2015, Villarrica triggered

SECTION 60

#1732764896233

4340-392: The sun does not set and the sun is already risen at h = π , so h o = π . If tan( φ ) tan( δ ) < −1 , the sun does not rise and Q ¯ day = 0 {\displaystyle {\overline {Q}}^{\text{day}}=0} . R o 2 R E 2 {\displaystyle {\frac {R_{o}^{2}}{R_{E}^{2}}}}

4410-536: The surrender or abandonment of Spanish settlements during the destruction of the Seven Cities . The volcano resumed eruptive activity on March 8, 1963. On March 12 a flank vent some 250 metres below the summit begun to pour lava that ended up making a 1000 m long and 150-meter broad lava flow. The lava flow had stopped by March 19. Concurrently with this the summit crater continued its strombolian eruption. Explosive eruptions begun once again on May 2, 1963, and

4480-625: The system, completed in 2008. It was calibrated for optical power against the NIST Primary Optical Watt Radiometer, a cryogenic radiometer that maintains the NIST radiant power scale to an uncertainty of 0.02% (1 σ ). As of 2011 TRF was the only facility that approached the desired <0.01% uncertainty for pre-launch validation of solar radiometers measuring irradiance (rather than merely optical power) at solar power levels and under vacuum conditions. TRF encloses both

4550-409: The top of the Earth's atmosphere is about 1361   W/m . This represents the power per unit area of solar irradiance across the spherical surface surrounding the Sun with a radius equal to the distance to the Earth (1   AU ). This means that the approximately circular disc of the Earth, as viewed from the Sun, receives a roughly stable 1361   W/m at all times. The area of this circular disc

4620-430: The town killing 27 residents. The hamlet of Chaillupén was also destroyed by the lahar meaning 30 houses were destroyed, however, there were no deaths. Other lahars that flowed north destroyed various bridges between Villarrica and Pucón before entering Villarrica Lake . The sudden inflow of lahars into Villarrica Lake caused the water level to rise, flooding some low-lying pastures. Some Mapuches blamed settlers for

4690-443: The unit of the integral (W/m^2) is the product of those two units. The SI unit of irradiance is watts per square metre (W/m = Wm ). The unit of insolation often used in the solar power industry is kilowatt hours per square metre (kWh/m ). The Langley is an alternative unit of insolation. One Langley is one thermochemical calorie per square centimetre or 41,840   J/m . The average annual solar radiation arriving at

4760-471: The view-limiting aperture. For ACRIM, NIST determined that diffraction from the view-limiting aperture contributes a 0.13% signal not accounted for in the three ACRIM instruments. This correction lowers the reported ACRIM values, bringing ACRIM closer to TIM. In ACRIM and all other instruments but TIM, the aperture is deep inside the instrument, with a larger view-limiting aperture at the front. Depending on edge imperfections this can directly scatter light into

4830-471: The winter (July–September) a ski resort operates on the northern slopes. The youngest person to reach the summit recognized by the Chilean government was Christopher Heussner of Texas at the age of 9 in 1999. Villarrica is one of Chile's most active volcanoes; eruptions have been recorded since the conquest of Chile and the founding of the city of Villarrica in 1552. This city was originally founded near

4900-469: The year and the day, the Earth's atmosphere receives 340   W/m from the Sun. This figure is important in radiative forcing . The distribution of solar radiation at the top of the atmosphere is determined by Earth's sphericity and orbital parameters. This applies to any unidirectional beam incident to a rotating sphere. Insolation is essential for numerical weather prediction and understanding seasons and climatic change . Application to ice ages

#232767