A geographic information system ( GIS ) consists of integrated computer hardware and software that store, manage, analyze , edit, output, and visualize geographic data . Much of this often happens within a spatial database ; however, this is not essential to meet the definition of a GIS. In a broader sense, one may consider such a system also to include human users and support staff, procedures and workflows, the body of knowledge of relevant concepts and methods, and institutional organizations.
88-416: The uncounted plural, geographic information systems , also abbreviated GIS, is the most common term for the industry and profession concerned with these systems. It is roughly synonymous with geoinformatics . The academic discipline that studies these systems and their underlying geographic principles, may also be abbreviated as GIS, but the unambiguous GIScience is more common. GIScience is often considered
176-503: A ground sample distance of 1 inch (2.54 cm) in only 12 minutes. The majority of digital data currently comes from photo interpretation of aerial photographs. Soft-copy workstations are used to digitize features directly from stereo pairs of digital photographs. These systems allow data to be captured in two and three dimensions, with elevations measured directly from a stereo pair using principles of photogrammetry . Analog aerial photos must be scanned before being entered into
264-408: A "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry and studies. While digital GIS dates to the mid-1960s, when Roger Tomlinson first coined the phrase "geographic information system", many of the geographic concepts and methods that GIS automates date back decades earlier. One of the first known instances in which spatial analysis
352-594: A GIS database, which can be grouped into three categories: primary data capture , the direct measurement phenomena in the field (e.g., remote sensing , the global positioning system ); secondary data capture , the extraction of information from existing sources that are not in a GIS form, such as paper maps, through digitization ; and data transfer , the copying of existing GIS data from external sources such as government agencies and private companies. All of these methods can consume significant time, finances, and other resources. Survey data can be directly entered into
440-567: A GIS for both kinds of abstractions mapping references: raster images and vector . Points, lines, and polygons represent vector data of mapped location attribute references. A new hybrid method of storing data is that of identifying point clouds, which combine three-dimensional points with RGB information at each point, returning a 3D color image . GIS thematic maps then are becoming more and more realistically visually descriptive of what they set out to show or determine. GIS data acquisition includes several methods for gathering spatial data into
528-549: A GIS from digital data collection systems on survey instruments using a technique called coordinate geometry (COGO). Positions from a global navigation satellite system ( GNSS ) like the Global Positioning System can also be collected and then imported into a GIS. A current trend in data collection gives users the ability to utilize field computers with the ability to edit live data using wireless connections or disconnected editing sessions. The current trend
616-550: A country ravaged by war. In Scotland he worked on housing and programs in " new towns ", until he was contacted by Dean G. Holmes Perkins from the University of Pennsylvania. Dean Perkins wanted McHarg to build a new graduate program in landscape architecture at the University. Soon thereafter, McHarg began teaching at the University of Pennsylvania , where he developed the department of landscape architecture, and developed
704-466: A direct and persuasive proposal for a new integration of human and natural environments. Through the 1960s and 1970s, his course was the most popular on the Penn campus, and he was often invited to speak on campuses throughout the country. In 1969, he published Design with Nature , which was essentially a book of step-by-step instructions on how to break down a region into its appropriate uses. McHarg also
792-476: A full suite of capabilities for entering, managing, analyzing, and visualizing geographic data, and are designed to be used on their own. Starting in the late 1990s with the emergence of the Internet , as computer network technology progressed, GIS infrastructure and data began to move to servers , providing another mechanism for providing GIS capabilities. This was facilitated by standalone software installed on
880-507: A geographic methodology in pinpointing the source of an outbreak in epidemiology. While the basic elements of topography and theme existed previously in cartography , Snow's map was unique due to his use of cartographic methods, not only to depict, but also to analyze clusters of geographically dependent phenomena. The early 20th century saw the development of photozincography , which allowed maps to be split into layers, for example one layer for vegetation and another for water. This
968-448: A map made against a local datum may not be the same as one obtained from a GPS receiver . Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation , although in certain situations a simple translation may be sufficient. In popular GIS software, data projected in latitude/longitude is often represented as a Geographic coordinate system . For example, data in latitude/longitude if
SECTION 10
#17327719961681056-410: A new dimension to business intelligence termed " spatial intelligence " which, when openly delivered via intranet, democratizes access to geographic and social network data. Geospatial intelligence , based on GIS spatial analysis, has also become a key element for security. GIS as a whole can be described as conversion to a vectorial representation or to any other digitisation process. Geoprocessing
1144-402: A popular new course, titled Man and Environment in 1957. The course featured leading scholars whom McHarg invited to his class to discuss ethics and values, as well as other ideas ranging from entropy to plate tectonics. In 1960, he hosted his own television show on CBS , The House We Live In , inviting prominent theologians and scientists of the day to discuss the human place in the world, in
1232-526: A project for the Shah of Iran , an environmental park to be called Pardisan , unlike any the world had ever seen. The park was to demonstrate the heritage of the Iranian people, as well as to illustrate the major ecosystems of the world. McHarg was enthusiastic about this project, and greatly invested in the work. The other partners of the firm, however, believed the project to be a significant risk, although Iran
1320-998: A relational database containing text or numbers can relate many different tables using common key index variables, GIS can relate otherwise unrelated information by using location as the key index variable. The key is the location and/or extent in space-time. Any variable that can be located spatially, and increasingly also temporally, can be referenced using a GIS. Locations or extents in Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude , latitude , and elevation , respectively. These GIS coordinates may represent other quantified systems of temporo-spatial reference (for example, film frame number, stream gage station, highway mile-marker, surveyor benchmark, building address, street intersection, entrance gate, water depth sounding, POS or CAD drawing origin/units). Units applied to recorded temporal-spatial data can vary widely (even when using exactly
1408-501: A result of this, Tomlinson has become known as the "father of GIS", particularly for his use of overlays in promoting the spatial analysis of convergent geographic data. CGIS lasted into the 1990s and built a large digital land resource database in Canada. It was developed as a mainframe -based system in support of federal and provincial resource planning and management. Its strength was continent-wide analysis of complex datasets . The CGIS
1496-479: A road network, lines must connect with nodes at an intersection. Errors such as undershoots and overshoots must also be removed. For scanned maps, blemishes on the source map may need to be removed from the resulting raster . For example, a fleck of dirt might connect two lines that should not be connected. The earth can be represented by various models, each of which may provide a different set of coordinates (e.g., latitude, longitude, elevation) for any given point on
1584-447: A scale of 1:50,000. A rating classification factor was also added to permit analysis. CGIS was an improvement over "computer mapping" applications as it provided capabilities for data storage, overlay, measurement, and digitizing /scanning. It supported a national coordinate system that spanned the continent, coded lines as arcs having a true embedded topology and it stored the attribute and locational information in separate files. As
1672-490: A server, similar to other server software such as HTTP servers and relational database management systems , enabling clients to have access to GIS data and processing tools without having to install specialized desktop software. These networks are known as distributed GIS . This strategy has been extended through the Internet and development of cloud-based GIS platforms such as ArcGIS Online and GIS-specialized software as
1760-497: A service (SAAS), and mobile computing . The distinction must be made between a singular geographic information system , which is a single installation of software and data for a particular use, along with associated hardware, staff, and institutions (e.g., the GIS for a particular city government); and GIS software , a general-purpose application program that is intended to be used in many individual geographic information systems in
1848-506: A service (SAAS). The use of the Internet to facilitate distributed GIS is known as Internet GIS . An alternative approach is the integration of some or all of these capabilities into other software or information technology architectures. One example is a spatial extension to Object-relational database software, which defines a geometry datatype so that spatial data can be stored in relational tables, and extensions to SQL for spatial analysis operations such as overlay . Another example
SECTION 20
#17327719961681936-548: A soft-copy system, for high-quality digital cameras this step is skipped. Satellite remote sensing provides another important source of spatial data. Here satellites use different sensor packages to passively measure the reflectance from parts of the electromagnetic spectrum or radio waves that were sent out from an active sensor such as radar. Remote sensing collects raster data that can be further processed using different bands to identify objects and classes of interest, such as land cover. The most common method of data creation
2024-414: A specific aspect of the surface. Some of the most common include: Most of these are generated using algorithms that are discrete simplifications of vector calculus . Slope, aspect, and surface curvature in terrain analysis are all derived from neighborhood operations using elevation values of a cell's adjacent neighbours. Each of these is strongly affected by the level of detail in the terrain data, such as
2112-468: A style similar to the one he honed teaching "Man and Environment." In 1963 Ian McHarg and David A. Wallace , his academic colleague from the University of Pennsylvania, founded the firm of Wallace and McHarg Associates, later Wallace McHarg Roberts & Todd (WMRT) which is known for its central role in the development of the American environmental planning and urbanism movements. The seminal work of
2200-434: A subdiscipline of geography within the branch of technical geography . Geographic information systems are utilized in multiple technologies, processes, techniques and methods. They are attached to various operations and numerous applications, that relate to: engineering, planning, management, transport/logistics, insurance, telecommunications, and business. For this reason, GIS and location intelligence applications are at
2288-455: A variety of application domains. Starting in the late 1970s, many software packages have been created specifically for GIS applications. Esri's ArcGIS , which includes ArcGIS Pro and the legacy software ArcMap , currently dominates the GIS market. Other examples of GIS include Autodesk and MapInfo Professional and open-source programs such as QGIS , GRASS GIS , MapGuide , and Hadoop-GIS . These and other desktop GIS applications include
2376-416: A variety of fields and ideas. Frederick R. Steiner tells us that "environmental impact assessment, new community development, coastal zone management, brownfields restoration, zoo design, river corridor planning, and ideas about sustainability and regenerative design all display the influence of Design with Nature ". Design with Nature had its roots in much earlier landscape architecture philosophies. It
2464-404: A variety of forms, such as a collection of separate data files or a single spatially-enabled relational database . Collecting and managing these data usually constitutes the bulk of the time and financial resources of a project, far more than other aspects such as analysis and mapping. GIS uses spatio-temporal ( space-time ) location as the key index variable for all other information. Just as
2552-438: Is digitization , where a hard copy map or survey plan is transferred into a digital medium through the use of a CAD program, and geo-referencing capabilities. With the wide availability of ortho-rectified imagery (from satellites, aircraft, Helikites and UAVs), heads-up digitizing is becoming the main avenue through which geographic data is extracted. Heads-up digitizing involves the tracing of geographic data directly on top of
2640-510: Is a GIS operation used to manipulate spatial data. A typical geoprocessing operation takes an input dataset , performs an operation on that dataset, and returns the result of the operation as an output dataset. Common geoprocessing operations include geographic feature overlay, feature selection and analysis, topology processing, raster processing, and data conversion. Geoprocessing allows for definition, management, and analysis of information used to form decisions. Many geographic tasks involve
2728-653: Is a rapidly changing field, and GIS packages are increasingly including analytical tools as standard built-in facilities, as optional toolsets, as add-ins or 'analysts'. In many instances these are provided by the original software suppliers (commercial vendors or collaborative non commercial development teams), while in other cases facilities have been developed and are provided by third parties. Furthermore, many products offer software development kits (SDKs), programming languages and language support, scripting facilities and/or special interfaces for developing one's own analytical tools or variants. The increased availability has created
Geographic information system - Misplaced Pages Continue
2816-461: Is captured, the user should consider if the data should be captured with either a relative accuracy or absolute accuracy, since this could not only influence how information will be interpreted but also the cost of data capture. After entering data into a GIS, the data usually requires editing, to remove errors, or further processing. For vector data it must be made "topologically correct" before it can be used for some advanced analysis. For example, in
2904-463: Is collected and stored in various ways, the two data sources may not be entirely compatible. So a GIS must be able to convert geographic data from one structure to another. In so doing, the implicit assumptions behind different ontologies and classifications require analysis. Object ontologies have gained increasing prominence as a consequence of object-oriented programming and sustained work by Barry Smith and co-workers. Spatial ETL tools provide
2992-436: Is far more precise than the machines of conventional map analysis. All geographical data are inherently inaccurate, and these inaccuracies will propagate through GIS operations in ways that are difficult to predict. Data restructuring can be performed by a GIS to convert data into different formats. For example, a GIS may be used to convert a satellite image map to a vector structure by generating lines around all cells with
3080-419: Is more commonly used, heads-down digitizing is still useful for digitizing maps of poor quality. Existing data printed on paper or PET film maps can be digitized or scanned to produce digital data. A digitizer produces vector data as an operator traces points, lines, and polygon boundaries from a map. Scanning a map results in raster data that could be further processed to produce vector data. When data
3168-445: Is no single standard for data quality, because the necessary degree of quality depends on the scale and purpose of the tasks for which it is to be used. Several elements of data quality are important to GIS data: The quality of a dataset is very dependent upon its sources, and the methods used to create it. Land surveyors have been able to provide a high level of positional accuracy utilizing high-end GPS equipment, but GPS locations on
3256-594: Is often used interchangeably with Geomatics , although the two have distinct focuses; Geomatics emphasizes acquiring spatial knowledge and leveraging information systems, not their development. At least one publication has claimed the discipline is pure computer science outside the realm of geography. In a general sense, geoinformatics can be understood as "a variety of efforts to promote collaboration between computer scientists and geoscientists to solve complex scientific questions". More technically, geoinformatics has been described as "the science and technology dealing with
3344-521: Is the proliferation of geospatial libraries and application programming interfaces (e.g., GDAL , Leaflet , D3.js ) that extend programming languages to enable the incorporation of GIS data and processing into custom software, including web mapping sites and location-based services in smartphones . The core of any GIS is a database that contains representations of geographic phenomena, modeling their geometry (location and shape) and their properties or attributes . A GIS database may be stored in
3432-497: Is to utilize applications available on smartphones and PDAs in the form of mobile GIS. This has been enhanced by the availability of low-cost mapping-grade GPS units with decimeter accuracy in real time. This eliminates the need to post process, import, and update the data in the office after fieldwork has been collected. This includes the ability to incorporate positions collected using a laser rangefinder . New technologies also allow users to create maps as well as analysis directly in
3520-1389: Is used to support global and local environmental, energy and security programs. The Geographic Information Science and Technology group of Oak Ridge National Laboratory is supported by various government departments and agencies including the United States Department of Energy . It is currently the only group in the United States Department of Energy National Laboratory System to focus on advanced theory and application research in this field. A lot of interdisciplinary research exists that involves geoinformatics fields including computer science, information technology, software engineering, biogeography, geography, conservation, architecture, spatial analysis and reinforcement learning. Many fields benefit from geoinformatics, including urban planning and land use management, in-car navigation systems, virtual globes, land surveying, public health, local and national gazetteer management, environmental modeling and analysis, military, transport network planning and management, agriculture, meteorology and climate change , oceanography and coupled ocean and atmosphere modelling, business location planning, architecture and archeological reconstruction, telecommunications, criminology and crime simulation, aviation, biodiversity conservation and maritime transport. The importance of
3608-639: The CAD platform, Environmental Systems Research Institute ( ESRI ), CARIS (Computer Aided Resource Information System), and ERDAS (Earth Resource Data Analysis System) emerged as commercial vendors of GIS software, successfully incorporating many of the CGIS ;features, combining the first-generation approach to separation of spatial and attribute information with a second-generation approach to organizing attribute data into database structures. In 1986, Mapping Display and Analysis System (MIDAS),
Geographic information system - Misplaced Pages Continue
3696-426: The Internet , requiring data format and transfer standards. More recently, a growing number of free, open-source GIS packages run on a range of operating systems and can be customized to perform specific tasks. The major trend of the 21st Century has been the integration of GIS capabilities with other Information technology and Internet infrastructure, such as relational databases , cloud computing , software as
3784-485: The Japan Prize in city planning, which is presented to scientists or researchers who have made a substantial contribution to the advancement of those fields. McHarg also received an honorary doctorate from Heriot-Watt University in 1992. In 1980 McHarg left the firm he founded and the firm changed its name to Wallace Roberts & Todd (WRT). In 1996, McHarg published his autobiography A Quest for Life . He
3872-467: The University of Pennsylvania in the United States. His 1969 book Design with Nature pioneered the concept of ecological planning. It continues to be one of the most widely celebrated books on landscape architecture and land-use planning. In this book, he set forth the basic concepts that were to develop later in geographic information systems . His father was a manager and later a salesman in
3960-400: The terrain , the shape of the surface of the earth, such as hydrology , earthworks , and biogeography . Thus, terrain data is often a core dataset in a GIS, usually in the form of a raster Digital elevation model (DEM) or a Triangulated irregular network (TIN). A variety of tools are available in most GIS software for analyzing terrain, often by creating derivative datasets that represent
4048-597: The 50th publication anniversary of his text Design with Nature , the McHarg Center's public launch took place in June 2019 as a part of an event, exhibition, and book project known as "Design with Nature Now". Its mission is to build on The Weitzman School's position as a global leader in urban ecological design by bringing environmental and social scientists together with planners, designers, policy-makers, and communities to develop practical, innovative ways of improving
4136-548: The Earth's surface. The simplest model is to assume the earth is a perfect sphere. As more measurements of the earth have accumulated, the models of the earth have become more sophisticated and more accurate. In fact, there are models called datums that apply to different areas of the earth to provide increased accuracy, like North American Datum of 1983 for U.S. measurements, and the World Geodetic System for worldwide measurements. The latitude and longitude on
4224-555: The Judeo-Christian traditions, the Bible says that man is to have dominion over the earth. McHarg says that for man to survive, this idea must be taken as an allegory only, and not as literally true. Lest this statement be construed as anti-religion, he cites Paul Tillich (Protestantism), Gustav Weigel (Catholicism), and Abram Heschel (Judaism) as noted religious scholars who are also in agreement with him on this point. Ian McHarg
4312-932: The Pioneer Award from the American Institute of Certified Planners, and 15 medals, including the 1990 National Medal of Arts , the American Society of Landscape Architects Medal , and the Thomas Jefferson Foundation Medal in Architecture from the University of Virginia . In 1992, he received the Neutra Medal for Professional Excellence from the California State Polytechnic University, Pomona . In 2000, he received
4400-515: The aerial imagery instead of by the traditional method of tracing the geographic form on a separate digitizing tablet (heads-down digitizing). Heads-down digitizing, or manual digitizing, uses a special magnetic pen, or stylus, that feeds information into a computer to create an identical, digital map. Some tablets use a mouse-like tool, called a puck, instead of a stylus. The puck has a small window with cross-hairs which allows for greater precision and pinpointing map features. Though heads-up digitizing
4488-437: The average smartphone are much less accurate. Common datasets such as digital terrain and aerial imagery are available in a wide variety of levels of quality, especially spatial precision. Paper maps, which have been digitized for many years as a data source, can also be of widely varying quality. A quantitative analysis of maps brings accuracy issues into focus. The electronic and other equipment used to make measurements for GIS
SECTION 50
#17327719961684576-455: The data processing functionality of traditional extract, transform, load (ETL) software, but with a primary focus on the ability to manage spatial data. They provide GIS users with the ability to translate data between different standards and proprietary formats, whilst geometrically transforming the data en route. These tools can come in the form of add-ins to existing wider-purpose software such as spreadsheets . GIS spatial analysis
4664-429: The datum is the ' North American Datum of 1983' is denoted by 'GCS North American 1983'. While no digital model can be a perfect representation of the real world, it is important that GIS data be of a high quality. In keeping with the principle of homomorphism , the data must be close enough to reality so that the results of GIS procedures correctly correspond to the results of real world processes. This means that there
4752-450: The domains of Computer Science and technical geography . It focuses on the programming of applications, spatial data structures , and the analysis of objects and space-time phenomena related to the surface and underneath of Earth and other celestial bodies. The field develops software and web services to model and analyse spatial data , serving the needs of geosciences and related scientific and engineering disciplines. The term
4840-751: The early 1960s. In 1963, the world's first true operational GIS was developed in Ottawa, Ontario , Canada, by the federal Department of Forestry and Rural Development. Developed by Roger Tomlinson , it was called the Canada Geographic Information System (CGIS) and was used to store, analyze, and manipulate data collected for the Canada Land Inventory , an effort to determine the land capability for rural Canada by mapping information about soils , agriculture, recreation, wildlife, waterfowl , forestry and land use at
4928-486: The early days of GIS: Ian McHarg 's publication Design with Nature and its map overlay method and the introduction of a street network into the U.S. Census Bureau's DIME ( Dual Independent Map Encoding ) system. The first publication detailing the use of computers to facilitate cartography was written by Waldo Tobler in 1959. Further computer hardware development spurred by nuclear weapon research led to more widespread general-purpose computer "mapping" applications by
5016-527: The field, making projects more efficient and mapping more accurate. Remotely sensed data also plays an important role in data collection and consist of sensors attached to a platform. Sensors include cameras, digital scanners and lidar , while platforms usually consist of aircraft and satellites . In England in the mid-1990s, hybrid kite/balloons called helikites first pioneered the use of compact airborne digital cameras as airborne geo-information systems. Aircraft measurement software, accurate to 0.4 mm,
5104-650: The firm includes the plan for Baltimore 's Inner Harbor , the Plan for the Valleys in Baltimore County, MD , and the Plan for Lower Manhattan in New York City from 1963 through 1965. As the first-wave American environmental movement swept across American college campuses in the 1960s and early 1970s, McHarg became an important figure, linking a compelling personal presence and a powerful rhetoric with
5192-596: The first desktop GIS product, was released for the DOS operating system. This was renamed in 1990 to MapInfo for Windows when it was ported to the Microsoft Windows platform. This began the process of moving GIS from the research department into the business environment. By the end of the 20th century, the rapid growth in various systems had been consolidated and standardized on relatively few platforms and users were beginning to explore viewing GIS data over
5280-408: The first examples of general-purpose GIS software that was not developed for a particular installation, and was very influential on future commercial software, such as Esri ARC/INFO , released in 1983. By the late 1970s two public domain GIS systems ( MOSS and GRASS GIS ) were in development, and by the early 1980s, M&S Computing (later Intergraph ) along with Bentley Systems Incorporated for
5368-587: The foundation of location-enabled services, which rely on geographic analysis and visualization. GIS provides the ability to relate previously unrelated information, through the use of location as the "key index variable". Locations and extents that are found in the Earth's spacetime are able to be recorded through the date and time of occurrence, along with x, y, and z coordinates ; representing, longitude ( x ), latitude ( y ), and elevation ( z ). All Earth-based, spatial–temporal, location and extent references should be relatable to one another, and ultimately, to
SECTION 60
#17327719961685456-552: The industrial city of Glasgow , Scotland. McHarg showed an early talent for drawing and was advised to consider a career in landscape architecture. His early experiences with the bifurcated landscapes of Scotland—the smoky industrial urbanism of Glasgow and the sublimity of the surrounding environs—had a profound influence on his later thinking. It was not until after his term in the Parachute Regiment , serving in war-stricken Italy during World War II , however, that he
5544-407: The interwoven worlds of the human and the natural, and sought to more fully and intelligently design human environments in concert with the conditions of setting, climate and environment. Always a polemicist, McHarg set his thinking in radical opposition to what he argued was the arrogant and destructive heritage of urban-industrial modernity, a style he described as "Dominate and Destroy." Following
5632-484: The layers were finished, they were combined into one image using a large process camera. Once color printing came in, the layers idea was also used for creating separate printing plates for each color. While the use of layers much later became one of the typical features of a contemporary GIS, the photographic process just described is not considered a GIS in itself – as the maps were just images with no database to link them to. Two additional developments are notable in
5720-475: The most critical aspect of the site. The natural drainage system the firm designed was successful at limiting the runoff with which McHarg was concerned, and was also much cheaper than a conventional drainage system would have been. In 1998, in his collection To Heal the Earth , McHarg wrote that the Woodlands is one of the best examples of his ideals. Most of the actual work was done by a large team while McHarg
5808-636: The publication of Design with Nature , Wallace McHarg Roberts & Todd (WMRT) worked in major American cities – Minneapolis, Denver, Miami, New Orleans, and Washington (DC) – and created environmentally-based master plans for Amelia Island Plantation and Sanibel Islands in Florida. In 1971 McHarg delivered a speech at the North American Wildlife and Natural Resources Conference in Portland, Oregon, called "Man: Planetary Disease". In
5896-661: The real world, such as roads, land use, elevation, trees, waterways, and states. The most common types of phenomena that are represented in data can be divided into two conceptualizations: discrete objects (e.g., a house, a road) and continuous fields (e.g., rainfall amount or population density). Other types of geographic phenomena, such as events (e.g., location of World War II battles), processes (e.g., extent of suburbanization ), and masses (e.g., types of soil in an area) are represented less commonly or indirectly, or are modeled in analysis procedures rather than data. Traditionally, there are two broad methods used to store data in
5984-419: The resolution of a DEM, which should be chosen carefully. Distance is a key part of solving many geographic tasks, usually due to the friction of distance . Thus, a wide variety of analysis tools have analyze distance in some form, such as buffers , Voronoi or Thiessen polygons , Cost distance analysis , and network analysis . Geoinformatics Geoinformatics is a scientific field primarily within
6072-414: The same classification, while determining the cell spatial relationships, such as adjacency or inclusion. More advanced data processing can occur with image processing , a technique developed in the late 1960s by NASA and the private sector to provide contrast enhancement, false color rendering and a variety of other techniques including use of two dimensional Fourier transforms . Since digital data
6160-621: The same data, see map projections ), but all Earth-based spatial–temporal location and extent references should, ideally, be relatable to one another and ultimately to a "real" physical location or extent in space–time. Related by accurate spatial information, an incredible variety of real-world and projected past or future data can be analyzed, interpreted and represented. This key characteristic of GIS has begun to open new avenues of scientific inquiry into behaviors and patterns of real-world information that previously had not been systematically correlated . GIS data represents phenomena that exist in
6248-973: The spatial dimension in assessing, monitoring and modelling various issues and problems related to sustainable management of natural resources is recognized all over the world. Geoinformatics becomes very important technology to decision-makers across a wide range of disciplines, industries, commercial sector, environmental agencies, local and national government, research, and academia, national survey and mapping organisations, International organisations, United Nations, emergency services, public health and epidemiology, crime mapping, transportation and infrastructure, information technology industries, GIS consulting firms, environmental management agencies), tourist industry, utility companies, market analysis and e-commerce, mineral exploration, Seismology etc. Many government and non government agencies started to use spatial data for managing their day-to-day activities. Ian McHarg Ian L. McHarg (20 November 1920 – 5 March 2001)
6336-468: The speech he asserted that, due to the views of man and nature that have infiltrated all of western culture, people are not guaranteed survival. Of man, McHarg said, "He treats the world as a storehouse existing for his delectation; he plunders, rapes, poisons, and kills this living system, the biosphere, in ignorance of its workings and its fundamental value." To this end man is a "planetary disease", who has lived with no regard for nature. He discusses how in
6424-399: The structure and character of spatial information, its capture, its classification and qualification, its storage, processing, portrayal and dissemination, including the infrastructure necessary to secure optimal use of this information" or "the art, science or technology dealing with the acquisition, storage, processing production, presentation and dissemination of geoinformation". Along with
6512-644: The theory and practical implications of geodesy . Geography and earth science increasingly rely on digital spatial data acquired from remotely sensed images analyzed by geographical information systems (GIS), photo interpretation of aerial photographs, and Web mining . Geoinformatics combines geospatial analysis and modeling, development of geospatial databases, information systems design, human-computer interaction and both wired and wireless networking technologies. Geoinformatics uses geocomputation and geovisualization for analyzing geoinformation . Areas related to geoinformatics include: Research in this field
6600-420: The thriving of data science and artificial intelligence since the 2010s, the field of geoinformatics has also incorporated the latest methodology and technical progress from the cyberinfrastructure ecosystem. Geoinformatics has at its core the technologies supporting the processes of acquisition, analysis and visualization of spatial data. Both geomatics and geoinformatics include and rely heavily upon
6688-414: Was a Scottish landscape architect and writer on regional planning using natural systems. McHarg was one of the most influential persons in the environmental movement who brought environmental concerns into broad public awareness and ecological planning methods into the mainstream of landscape architecture, city planning and public policy. He was the founder of the department of landscape architecture at
6776-460: Was able to determine the source of a cholera outbreak in London through the use of spatial analysis. Snow achieved this through plotting the residence of each casualty on a map of the area, as well as the nearby water sources. Once these points were marked, he was able to identify the water source within the cluster that was responsible for the outbreak. This was one of the earliest successful uses of
6864-498: Was able to explore the field of urban landscape architecture. After working with the Royal Engineers during World War II, he travelled to America. He was admitted to the school of architecture at Harvard University 's Graduate School of Design where he received professional degrees in both landscape architecture and city planning in 1949. After completing his education he returned to his homeland, intending to help rebuild
6952-532: Was also instrumental in the founding of Earth Week, and participated on task forces on environmental issues for the Kennedy , Johnson , Nixon , and Carter administrations McHarg died on 5 March 2001 at the age of eighty from pulmonary disease. In the summer of 2017, the University of Pennsylvania Stuart Weitzman School of Design launched a new, interdisciplinary research center in McHarg's honor. Anticipating
7040-453: Was interested in garden design and believed that homes should be planned and designed with good private garden space. He promoted an ecological view, in which the designer becomes very familiar with the area through analysis of soil, climate, hydrology, etc. Design With Nature was the first work of its kind "to define the problems of modern development and present a methodology or process prescribing compatible solutions". The book also affected
7128-607: Was never available commercially. In 1964, Howard T. Fisher formed the Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of Design (LCGSA 1965–1991), where a number of important theoretical concepts in spatial data handling were developed, and which by the 1970s had distributed seminal software code and systems, such as SYMAP, GRID, and ODYSSEY, to universities, research centers and corporations worldwide. These programs were
7216-411: Was particularly used for printing contours – drawing these was a labour-intensive task but having them on a separate layer meant they could be worked on without the other layers to confuse the draughtsman . This work was initially drawn on glass plates, but later plastic film was introduced, with the advantages of being lighter, using less storage space and being less brittle, among others. When all
7304-641: Was sharply critical of the French Baroque style of garden design, which McHarg saw as a subjugation of nature, and full of praise for the English picturesque style of garden design. McHarg's focus, however, was only partially on the visual and sensual qualities which had dominated the English picturesque movement. Instead, he saw the earlier tradition as a precursor of his philosophy, which was rooted less in aristocratic estate design or even garden design and more broadly in an ecological sensibility that accepted
7392-414: Was still there, and by many others in the years since he left. The Woodlands continues to be a successful ecological community even today. McHarg's own plans for urban expansion projects also were more 'English' than 'French' in their geometry. He favoured what became known as 'cluster development' with relatively dense housing set in a larger natural environment. In 1975, WMRT began the planning phase of
7480-482: Was the original co-designer of The Woodlands, Texas , an unincorporated community in Montgomery County, Texas . This community was developed from timberland located thirty miles north of Houston, by George P. Mitchell , who hired McHarg to consult on the project and, as a result, the original plans featured many of his unique designs. Due in part to concerns of flooding, McHarg identified the water system as
7568-598: Was used came from the field of epidemiology in the Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine (1832). French cartographer and geographer Charles Picquet created a map outlining the forty-eight districts in Paris , using halftone color gradients, to provide a visual representation for the number of reported deaths due to cholera per every 1,000 inhabitants. In 1854, John Snow , an epidemiologist and physician,
7656-460: Was used to link the photographs and measure the ground. Helikites are inexpensive and gather more accurate data than aircraft. Helikites can be used over roads, railways and towns where unmanned aerial vehicles (UAVs) are banned. Recently aerial data collection has become more accessible with miniature UAVs and drones. For example, the Aeryon Scout was used to map a 50-acre area with
7744-512: Was wealthy from the sale of oil. Their concerns became justified when the Shah was overthrown and the firm was left with a large amount of debt from the project. Located in a north western area of Tehran, Pardisan still remains as a large, relatively un-designed, green space but McHarg's designs were never implemented. McHarg was the recipient of numerous awards, including the Harvard Lifetime Achievement Award,
#167832