Misplaced Pages

Dark Energy Survey

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Dark Energy Survey ( DES ) is an astronomical survey designed to constrain the properties of dark energy . It uses images taken in the near- ultraviolet , visible , and near- infrared to measure the expansion of the universe using Type Ia supernovae , baryon acoustic oscillations , the number of galaxy clusters , and weak gravitational lensing . The collaboration is composed of research institutions and universities from the United States, Australia, Brazil, the United Kingdom, Germany, Spain, and Switzerland. The collaboration is divided into several scientific working groups. The director of DES is Josh Frieman .

#862137

92-629: The DES began by developing and building Dark Energy Camera (DECam), an instrument designed specifically for the survey. This camera has a wide field of view and high sensitivity, particularly in the red part of the visible spectrum and in the near infrared. Observations were performed with DECam mounted on the 4-meter Víctor M. Blanco Telescope , located at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Observing sessions ran from 2013 to 2019; as of 2021

184-595: A binary search algorithm (with cost ⁠ O ( log ⁡ n ) {\displaystyle O(\log n)} ⁠ ) outperforms a sequential search (cost ⁠ O ( n ) {\displaystyle O(n)} ⁠ ) when used for table lookups on sorted lists or arrays. The analysis, and study of algorithms is a discipline of computer science . Algorithms are often studied abstractly, without referencing any specific programming language or implementation. Algorithm analysis resembles other mathematical disciplines as it focuses on

276-468: A flowchart offers a way to describe and document an algorithm (and a computer program corresponding to it). It has four primary symbols: arrows showing program flow, rectangles (SEQUENCE, GOTO), diamonds (IF-THEN-ELSE), and dots (OR-tie). Sub-structures can "nest" in rectangles, but only if a single exit occurs from the superstructure. It is often important to know how much time, storage, or other cost an algorithm may require. Methods have been developed for

368-745: A function . Starting from an initial state and initial input (perhaps empty ), the instructions describe a computation that, when executed , proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic ; some algorithms, known as randomized algorithms , incorporate random input. Around 825 AD, Persian scientist and polymath Muḥammad ibn Mūsā al-Khwārizmī wrote kitāb al-ḥisāb al-hindī ("Book of Indian computation") and kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī ("Addition and subtraction in Indian arithmetic"). In

460-435: A heuristic is an approach to solving problems that do not have well-defined correct or optimal results. For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an effective method , an algorithm can be expressed within a finite amount of space and time and in a well-defined formal language for calculating

552-442: A body's numbering, which in turn depends on a sufficiently secure orbit determination. Visible spectrum The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye . Electromagnetic radiation in this range of wavelengths is called visible light (or simply light). The optical spectrum is sometimes considered to be the same as the visible spectrum, but some authors define

644-407: A color in its own right but merely as a shade of blue or violet. Evidence indicates that what Newton meant by "indigo" and "blue" does not correspond to the modern meanings of those color words. Comparing Newton's observation of prismatic colors with a color image of the visible light spectrum shows that "indigo" corresponds to what is today called blue, whereas his "blue" corresponds to cyan . In

736-680: A computer-executable form, but are also used to define or document algorithms. There are many possible representations and Turing machine programs can be expressed as a sequence of machine tables (see finite-state machine , state-transition table , and control table for more), as flowcharts and drakon-charts (see state diagram for more), as a form of rudimentary machine code or assembly code called "sets of quadruples", and more. Algorithm representations can also be classified into three accepted levels of Turing machine description: high-level description, implementation description, and formal description. A high-level description describes qualities of

828-719: A computing machine or a human who could only carry out specific elementary operations on symbols . Most algorithms are intended to be implemented as computer programs . However, algorithms are also implemented by other means, such as in a biological neural network (for example, the human brain performing arithmetic or an insect looking for food), in an electrical circuit , or a mechanical device. Step-by-step procedures for solving mathematical problems have been recorded since antiquity. This includes in Babylonian mathematics (around 2500 BC), Egyptian mathematics (around 1550 BC), Indian mathematics (around 800 BC and later),

920-744: A derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources. The DES team also published a paper summarize all the Photometric Data Set for Cosmology for their first-year data. For the third-year data collected by DES, they updated the Cosmological Constraints to σ 8 ( Ω m / 0.3 ) 0.5 = 0.759 − 0.025 + 0.023 {\displaystyle \sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.759_{-0.025}^{+0.023}} for

1012-650: A missing L-opsin ( protanopia ) shortens the visible spectrum by about 30 nm at the long-wave limit. Forms of color blindness affecting the M-opsin and S-opsin do not significantly affect the luminous efficiency function nor the limits of the visible spectrum. Regardless of actual physical and biological variance, the definition of the limits is not standard and will change depending on the industry. For example, some industries may be concerned with practical limits, so would conservatively report 420–680 nm, while others may be concerned with psychometrics and achieving

SECTION 10

#1732772156863

1104-525: A programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language". Tausworthe augments the three Böhm-Jacopini canonical structures : SEQUENCE, IF-THEN-ELSE, and WHILE-DO, with two more: DO-WHILE and CASE. An additional benefit of a structured program is that it lends itself to proofs of correctness using mathematical induction . By themselves, algorithms are not usually patentable. In

1196-509: A region of the southern hemisphere sky, in 2022 together with galaxy clustering data to give new cosmological constrains. and in 2023 with data from the Planck telescope and South Pole telescope to give once new improved constraints. Another big part of weak lensing result is to calibrate the redshift of the source galaxies. In December 2020 and June 2021, DES team published two papers showing their results about using weak lensing to calibrate

1288-477: A sequence of operations", which would include all computer programs (including programs that do not perform numeric calculations), and any prescribed bureaucratic procedure or cook-book recipe . In general, a program is an algorithm only if it stops eventually —even though infinite loops may sometimes prove desirable. Boolos, Jeffrey & 1974, 1999 define an algorithm to be an explicit set of instructions for determining an output, that can be followed by

1380-485: A slightly more truncated red vision. Most other vertebrates (birds, lizards, fish, etc.) have retained their tetrachromacy , including UVS opsins that extend further into the ultraviolet than humans' VS opsin. The sensitivity of avian UVS opsins vary greatly, from 355–425 nm, and LWS opsins from 560–570 nm. This translates to some birds with a visible spectrum on par with humans, and other birds with greatly expanded sensitivity to UV light. The LWS opsin of birds

1472-480: A wider aperture produces not a spectrum but rather reddish-yellow and blue-cyan edges with white between them. The spectrum appears only when these edges are close enough to overlap. In the early 19th century, the concept of the visible spectrum became more definite, as light outside the visible range was discovered and characterized by William Herschel ( infrared ) and Johann Wilhelm Ritter ( ultraviolet ), Thomas Young , Thomas Johann Seebeck , and others. Young

1564-472: Is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation . Algorithms are used as specifications for performing calculations and data processing . More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making ) and deduce valid inferences (referred to as automated reasoning ). In contrast,

1656-416: Is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as divide-and-conquer or dynamic programming within operation research . Techniques for designing and implementing algorithm designs are also called algorithm design patterns, with examples including the template method pattern and the decorator pattern. One of

1748-581: Is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following: One of the simplest algorithms finds the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be described in plain English as: High-level description: (Quasi-)formal description: Written in prose but much closer to

1840-402: Is a separate function for each of two visual systems, one for photopic vision , used in daylight, which is mediated by cone cells , and one for scotopic vision , used in dim light, which is mediated by rod cells . Each of these functions have different visible ranges. However, discussion on the visible range generally assumes photopic vision. The visible range of most animals evolved to match

1932-404: Is absorbed by the ocular media (lens and cornea), it may fluoresce and be released at a lower energy (longer wavelength) that can then be absorbed by the opsins. For example, when the lens absorbs 350 nm light, the fluorescence emission spectrum is centered on 440 nm. In addition to the photopic and scotopic systems, humans have other systems for detecting light that do not contribute to

SECTION 20

#1732772156863

2024-527: Is also an optical barrel that supports 5 corrector lenses, the largest of which is 98 cm in diameter. These components are attached to the CCD focal plane which is cooled to 173 K (−148 °F; −100 °C) with liquid nitrogen in order to reduce thermal noise in the CCDs. The focal plane is also kept in an extremely low vacuum of 0.00013 pascals (1.3 × 10 atm) to prevent the formation of condensation on

2116-495: Is at about 590 nm. Mantis shrimp exhibit up to 14 opsins, enabling a visible range of less than 300 nm to above 700 nm. Some snakes can "see" radiant heat at wavelengths between 5 and 30  μm to a degree of accuracy such that a blind rattlesnake can target vulnerable body parts of the prey at which it strikes, and other snakes with the organ may detect warm bodies from a meter away. It may also be used in thermoregulation and predator detection. Spectroscopy

2208-406: Is continuous, with no clear boundaries between one color and the next. In the 13th century, Roger Bacon theorized that rainbows were produced by a similar process to the passage of light through glass or crystal. In the 17th century, Isaac Newton discovered that prisms could disassemble and reassemble white light, and described the phenomenon in his book Opticks . He was the first to use

2300-439: Is desirable for an astronomical instrument. DECam's CCDs also have a 250-micron crystal depth; this is significantly larger than most consumer CCDs. The additional crystal depth increases the path length travelled by entering photons. This, in turn, increases the probability of interaction and allows the CCDs to have an increased sensitivity to lower energy photons, extending the wavelength range to 1050 nm. Scientifically this

2392-506: Is important because it allows one to look for objects at a higher redshift, increasing statistical power in the studies mentioned above. When placed in the telescope's focal plane each pixel has a width of 0.27″ on the sky, resulting in a total field of view of 3 square degrees. DES imaged 5,000 square degrees of the southern sky in a footprint that overlaps with the South Pole Telescope and Stripe 82 (in large part avoiding

2484-716: Is sometimes reported to have a peak wavelength above 600 nm, but this is an effective peak wavelength that incorporates the filter of avian oil droplets . The peak wavelength of the LWS opsin alone is the better predictor of the long-wave limit. A possible benefit of avian UV vision involves sex-dependent markings on their plumage that are visible only in the ultraviolet range. Teleosts (bony fish) are generally tetrachromatic. The sensitivity of fish UVS opsins vary from 347-383 nm, and LWS opsins from 500-570 nm. However, some fish that use alternative chromophores can extend their LWS opsin sensitivity to 625 nm. The popular belief that

2576-419: Is the study of objects based on the spectrum of color they emit, absorb or reflect. Visible-light spectroscopy is an important tool in astronomy (as is spectroscopy at other wavelengths), where scientists use it to analyze the properties of distant objects. Chemical elements and small molecules can be detected in astronomical objects by observing emission lines and absorption lines . For example, helium

2668-453: Is useful for uncovering unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization. Empirical tests cannot replace formal analysis, though, and are non-trivial to perform fairly. To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to FFT algorithms (used heavily in

2760-1107: The Entscheidungsproblem (decision problem) posed by David Hilbert . Later formalizations were framed as attempts to define " effective calculability " or "effective method". Those formalizations included the Gödel – Herbrand – Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church 's lambda calculus of 1936, Emil Post 's Formulation 1 of 1936, and Alan Turing 's Turing machines of 1936–37 and 1939. Algorithms can be expressed in many kinds of notation, including natural languages , pseudocode , flowcharts , drakon-charts , programming languages or control tables (processed by interpreters ). Natural language expressions of algorithms tend to be verbose and ambiguous and are rarely used for complex or technical algorithms. Pseudocode, flowcharts, drakon-charts, and control tables are structured expressions of algorithms that avoid common ambiguities of natural language. Programming languages are primarily for expressing algorithms in

2852-629: The Jacquard loom , a precursor to Hollerith cards (punch cards), and "telephone switching technologies" led to the development of the first computers. By the mid-19th century, the telegraph , the precursor of the telephone, was in use throughout the world. By the late 19th century, the ticker tape ( c.  1870s ) was in use, as were Hollerith cards (c. 1890). Then came the teleprinter ( c.  1910 ) with its punched-paper use of Baudot code on tape. Telephone-switching networks of electromechanical relays were invented in 1835. These led to

Dark Energy Survey - Misplaced Pages Continue

2944-456: The colors that the human visual system can distinguish. Unsaturated colors such as pink , or purple variations like magenta , for example, are absent because they can only be made from a mix of multiple wavelengths. Colors containing only one wavelength are also called pure colors or spectral colors . Visible wavelengths pass largely unattenuated through the Earth's atmosphere via

3036-407: The optical window , which is the range of light that can pass through the atmosphere. The ozone layer absorbs almost all UV light (below 315 nm). However, this only affects cosmic light (e.g. sunlight ), not terrestrial light (e.g. Bioluminescence ). Before reaching the retina , light must first transmit through the cornea and lens . UVB light (< 315 nm) is filtered mostly by

3128-508: The " optical window " region of the electromagnetic spectrum. An example of this phenomenon is when clean air scatters blue light more than red light, and so the midday sky appears blue (apart from the area around the Sun which appears white because the light is not scattered as much). The optical window is also referred to as the "visible window" because it overlaps the human visible response spectrum. The near infrared (NIR) window lies just out of

3220-458: The 18th century, Johann Wolfgang von Goethe wrote about optical spectra in his Theory of Colours . Goethe used the word spectrum ( Spektrum ) to designate a ghostly optical afterimage , as did Schopenhauer in On Vision and Colors . Goethe argued that the continuous spectrum was a compound phenomenon. Where Newton narrowed the beam of light to isolate the phenomenon, Goethe observed that

3312-586: The DES collaboration has published results from the first three years of the survey. DECam , short for the Dark Energy Camera , is a large camera built to replace the previous prime focus camera on the Victor M. Blanco Telescope. The camera consists of three major components: mechanics, optics, and CCDs . The mechanics of the camera consists of a filter changer with an 8-filter capacity and shutter. There

3404-410: The DES team published their third-year observations for photometric data set for cosmology comprising nearly 5000 deg2 of grizY imaging in the south Galactic cap, including nearly 390 million objects, with depth reaching S/N ~ 10 for extended objects up to i A B {\displaystyle i_{AB}} ~ 23.0, and top-of-the-atmosphere photometric uniformity < 3mmag. Weak lensing

3496-496: The Hubble constant measurement from Planck Satellite Collaboration in 2018. In June 2019, there a follow-up paper was published by DES team discussing the systematic uncertainties, and validation of using the supernovae to measure the cosmology results mentioned before. The team also published their photometric pipeline and light curve data in another paper published in the same month. Several minor planets were discovered by DeCam in

3588-792: The Ifa Oracle (around 500 BC), Greek mathematics (around 240 BC), and Arabic mathematics (around 800 AD). The earliest evidence of algorithms is found in ancient Mesopotamian mathematics. A Sumerian clay tablet found in Shuruppak near Baghdad and dated to c.  2500 BC describes the earliest division algorithm . During the Hammurabi dynasty c.  1800  – c.  1600 BC , Babylonian clay tablets described algorithms for computing formulas. Algorithms were also used in Babylonian astronomy . Babylonian clay tablets describe and employ algorithmic procedures to compute

3680-472: The L-opsin, there are also reports that pulsed NIR lasers can evoke green, which suggests two-photon absorption may be enabling extended NIR sensitivity. Similarly, young subjects may perceive ultraviolet wavelengths down to about 310–313 nm, but detection of light below 380 nm may be due to fluorescence of the ocular media, rather than direct absorption of UV light by the opsins. As UVA light

3772-519: The Milky Way). The survey took 758 observing nights spread over six annual sessions between August and February to complete, covering the survey footprint ten times in five photometric bands ( g , r, i, z , and Y ). The survey reached a depth of 24th magnitude in the i band over the entire survey area. Longer exposure times and faster observing cadence were made in five smaller patches totaling 30 square degrees to search for supernovae. First light

Dark Energy Survey - Misplaced Pages Continue

3864-596: The United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), so algorithms are not patentable (as in Gottschalk v. Benson ). However practical applications of algorithms are sometimes patentable. For example, in Diamond v. Diehr , the application of a simple feedback algorithm to aid in the curing of synthetic rubber

3956-454: The algorithm itself, ignoring how it is implemented on the Turing machine. An implementation description describes the general manner in which the machine moves its head and stores data in order to carry out the algorithm, but does not give exact states. In the most detail, a formal description gives the exact state table and list of transitions of the Turing machine. The graphical aid called

4048-588: The algorithm's properties, not implementation. Pseudocode is typical for analysis as it is a simple and general representation. Most algorithms are implemented on particular hardware/software platforms and their algorithmic efficiency is tested using real code. The efficiency of a particular algorithm may be insignificant for many "one-off" problems but it may be critical for algorithms designed for fast interactive, commercial or long life scientific usage. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign. Empirical testing

4140-403: The analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm that adds up the elements of a list of n numbers would have a time requirement of ⁠ O ( n ) {\displaystyle O(n)} ⁠ , using big O notation . The algorithm only needs to remember two values: the sum of all the elements so far, and its current position in

4232-638: The broadest spectrum would liberally report 380–750, or even 380–800 nm. The luminous efficiency function in the NIR does not have a hard cutoff, but rather an exponential decay, such that the function's value (or vision sensitivity) at 1,050 nm is about 10 times weaker than at 700 nm; much higher intensity is therefore required to perceive 1,050 nm light than 700 nm light. Under ideal laboratory conditions, subjects may perceive infrared light up to at least 1,064 nm. While 1,050 nm NIR light can evoke red, suggesting direct absorption by

4324-614: The common goldfish is the only animal that can see both infrared and ultraviolet light is incorrect, because goldfish cannot see infrared light. The visual systems of invertebrates deviate greatly from vertebrates, so direct comparisons are difficult. However, UV sensitivity has been reported in most insect species. Bees and many other insects can detect ultraviolet light, which helps them find nectar in flowers. Plant species that depend on insect pollination may owe reproductive success to their appearance in ultraviolet light rather than how colorful they appear to humans. Bees' long-wave limit

4416-418: The cornea, and UVA light (315–400 nm) is filtered mostly by the lens. The lens also yellows with age, attenuating transmission most strongly at the blue part of the spectrum. This can cause xanthopsia as well as a slight truncation of the short-wave (blue) limit of the visible spectrum. Subjects with aphakia are missing a lens, so UVA light can reach the retina and excite the visual opsins; this expands

4508-609: The course of The Dark Energy Survey , including high-inclination trans-Neptunian objects (TNOs). The MPC has assigned the IAU code W84 for DeCam's observations of small Solar System bodies. As of October 2019, the MPC inconsistently credits the discovery of nine numbered minor planets, all of them trans-Neptunian objects , to either "DeCam" or "Dark Energy Survey". The list does not contain any unnumbered minor planets potentially discovered by DeCam, as discovery credits are only given upon

4600-431: The day and use the telescope and camera at night. There will be some DES members working at the telescope console to monitor operations while others are monitoring camera operations and data process. For the wide-area footprint observations, DES takes roughly every two minutes for each new image: The exposures are typically 90 seconds long, with another 30 seconds for readout of the camera data and slewing to point

4692-420: The different colors of light moving at different speeds in transparent matter, red light moving more quickly than violet in glass. The result is that red light is bent ( refracted ) less sharply than violet as it passes through the prism, creating a spectrum of colors. Newton originally divided the spectrum into six named colors: red , orange , yellow , green , blue , and violet . He later added indigo as

SECTION 50

#1732772156863

4784-477: The distribution of tracers of the matter density field and used to measure the expansion history of the Universe. BAO can also be measured using purely photometric data, though at less significance. DES team observation samples consists of 7 million galaxies distributed over a footprint of 4100 deg with 0.6 < z photo < 1.1 and a typical redshift uncertainty of 0.03(1+z). From their statistics, they combine

4876-671: The drag epoch. In May 2019, Dark Energy Survey team published their first cosmology results using Type Ia supernovae . The supernova data was from DES-SN3YR. The Dark Energy Survey team found Ωm = 0.331 ± 0.038 with a flat ΛCDM model and Ωm = 0.321 ± 0.018, w = −0.978 ± 0.059 with a flat wCDM model. Analyzing the same data from DES-SN3YR, they also found a new current Hubble constant , H 0 = 67.1 ± 1.3 k m s − 1 M p c − 1 {\displaystyle H_{0}=67.1\pm 1.3\,\mathrm {km\,s^{-1}\,Mpc^{-1}} } . This result has an excellent agreement with

4968-521: The earliest codebreaking algorithm. Bolter credits the invention of the weight-driven clock as "the key invention [of Europe in the Middle Ages ]," specifically the verge escapement mechanism producing the tick and tock of a mechanical clock. "The accurate automatic machine" led immediately to "mechanical automata " in the 13th century and "computational machines"—the difference and analytical engines of Charles Babbage and Ada Lovelace in

5060-523: The early 12th century, Latin translations of said al-Khwarizmi texts involving the Hindu–Arabic numeral system and arithmetic appeared, for example Liber Alghoarismi de practica arismetrice , attributed to John of Seville , and Liber Algorismi de numero Indorum , attributed to Adelard of Bath . Hereby, alghoarismi or algorismi is the Latinization of Al-Khwarizmi's name; the text starts with

5152-430: The event localization region could plausibly be associated with the event. DES team monitored the source for over two weeks and provide the light curve data as a machine-readable file. From the observation data set, DES concluded that the optical counterpart they have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates

5244-427: The field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging. In general, speed improvements depend on special properties of the problem, which are very common in practical applications. Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power. Algorithm design

5336-408: The human vision, as well as the medium wavelength infrared (MWIR) window, and the long-wavelength or far-infrared (LWIR or FIR) window, although other animals may perceive them. Colors that can be produced by visible light of a narrow band of wavelengths ( monochromatic light ) are called pure spectral colors . The various color ranges indicated in the illustration are an approximation: The spectrum

5428-450: The input list. If the space required to store the input numbers is not counted, it has a space requirement of ⁠ O ( 1 ) {\displaystyle O(1)} ⁠ , otherwise ⁠ O ( n ) {\displaystyle O(n)} ⁠ is required. Different algorithms may complete the same task with a different set of instructions in less or more time, space, or ' effort ' than others. For example,

5520-490: The invention of the digital adding device by George Stibitz in 1937. While working in Bell Laboratories, he observed the "burdensome" use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device". In 1928, a partial formalization of the modern concept of algorithms began with attempts to solve

5612-475: The lens, mice have a UVS opsin that can detect down to 340 nm. While allowing UV light to reach the retina can lead to retinal damage, the short lifespan of mice compared with other mammals may minimize this disadvantage relative to the advantage of UV vision. Dogs have two cone opsins at 429 nm and 555 nm, so see almost the entire visible spectrum of humans, despite being dichromatic. Horses have two cone opsins at 428 nm and 539 nm, yielding

SECTION 60

#1732772156863

5704-416: The likelihoods derived from angular correlations and spherical harmonics to constrain the ratio of comoving angular diameter distance D m ( Z e f f = 0.835 ) / r d = 18.92 ± 0.51 {\displaystyle D_{m}(Z_{e}ff=0.835)/r_{d}=18.92\pm 0.51} at the effective redshift of our sample to the sound horizon scale at

5796-429: The mid-19th century. Lovelace designed the first algorithm intended for processing on a computer, Babbage's analytical engine, which is the first device considered a real Turing-complete computer instead of just a calculator . Although a full implementation of Babbage's second device was not realized for decades after her lifetime, Lovelace has been called "history's first programmer". Bell and Newell (1971) write that

5888-627: The most important aspects of algorithm design is resource (run-time, memory usage) efficiency; the big O notation is used to describe e.g., an algorithm's run-time growth as the size of its input increases. Per the Church–Turing thesis , any algorithm can be computed by any Turing complete model. Turing completeness only requires four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. However, Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IF-THEN GOTOs can result in " spaghetti code ",

5980-866: The most significant measurements of cosmic shear in a galaxy survey, Dark Energy Survey Group showed that σ 8 ( Ω m / 0.3 ) 0.5 = 0.782 − 0.027 + 0.027 {\displaystyle \sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.782_{-0.027}^{+0.027}} at 68% confidence limits and σ 8 ( Ω m / 0.3 ) 0.5 = 0.777 − 0.038 + 0.036 {\displaystyle \sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.777_{-0.038}^{+0.036}} for ΛCDM with ω = − 0.95 − 0.36 + 0.33 {\displaystyle \omega =-0.95_{-0.36}^{+0.33}} . Other cosmological analyses from first year data showed

6072-458: The peak wavelengths of opsins with those of typical humans (S-opsin at 420 nm and L-opsin at 560 nm). Most mammals have retained only two opsin classes (LWS and VS), due likely to the nocturnal bottleneck . However, old world primates (including humans) have since evolved two versions in the LWS class to regain trichromacy. Unlike most mammals, rodents' UVS opsins have remained at shorter wavelengths. Along with their lack of UV filters in

6164-564: The phrase Dixit Algorismi , or "Thus spoke Al-Khwarizmi". Around 1230, the English word algorism is attested and then by Chaucer in 1391, English adopted the French term. In the 15th century, under the influence of the Greek word ἀριθμός ( arithmos , "number"; cf. "arithmetic"), the Latin word was altered to algorithmus . One informal definition is "a set of rules that precisely defines

6256-457: The position of the moon. ObsTac automatically points the telescope in the best direction, and selects the exposure, using the best light filter. It also decides whether to take a wide-area or time-domain survey image, depending on whether or not the exposure will also be used for supernova searches. Dark Energy Group published several papers presenting their results for cosmology . Most of these cosmology results coming from its first-year data and

6348-549: The power of DECam to identify the optical counterparts of gravitational-wave sources. In March 2015, two teams released their discoveries of several new potential dwarf galaxy candidates found in Year 1 DES data. In August 2015, the Dark Energy Survey team announced the discovery of eight additional candidates in Year 2 DES data. Later on, Dark Energy Survey team found more dwarf galaxies. With more Dwarf Galaxy results,

6440-459: The primary visual system . For example, melanopsin has an absorption range of 420–540 nm and regulates circadian rhythm and other reflexive processes. Since the melanopsin system does not form images, it is not strictly considered vision and does not contribute to the visible range. The visible spectrum is defined as that visible to humans, but the variance between species is large. Not only can cone opsins be spectrally shifted to alter

6532-407: The redshift of the source galaxies in order to mapping the matter density field with gravitational lensing. After LIGO detected the first gravitational wave signal from GW170817, DES made follow-up observations of GW170817 using DECam. With DECam independent discovery of the optical source, DES team establish its association with GW170817 by showing that none of the 1500 other sources found within

6624-399: The retina and trigger visual phototransduction (excite a visual opsin ). Insensitivity to UV light is generally limited by transmission through the lens . Insensitivity to IR light is limited by the spectral sensitivity functions of the visual opsins. The range is defined psychometrically by the luminous efficiency function , which accounts for all of these factors. In humans, there

6716-583: The sensors. The entire camera with lenses, filters, and CCDs weighs approximately 4 tons. When mounted at the prime focus it was supported with a hexapod system allowing for real time focal adjustment. The camera is outfitted with u, g, r, i, z, and Y filters spanning roughly from 340–1070 nm, similar to those used in the Sloan Digital Sky Survey (SDSS) . This allows DES to obtain photometric redshift measurements to z≈1. DECam also contains five lenses acting as corrector optics to extend

6808-592: The seventh color since he believed that seven was a perfect number as derived from the ancient Greek sophists , of there being a connection between the colors, the musical notes, the known objects in the Solar System , and the days of the week. The human eye is relatively insensitive to indigo's frequencies, and some people who have otherwise-good vision cannot distinguish indigo from blue and violet. For this reason, some later commentators, including Isaac Asimov , have suggested that indigo should not be regarded as

6900-507: The team was able to take a deep look about more properties of the detected Dwarf Galaxy such as the chemical abundance, the structure of stellar population, and Stellar Kinematics and Metallicities. In Feb 2019, the team also discovered a sixth star cluster in the Fornax Dwarf Spheroidal Galaxy and a tidally Disrupted Ultra-Faint Dwarf Galaxy. The signature of baryon acoustic oscillations (BAO) can be observed in

6992-427: The telescope at its next target. Despite the restrictions on each exposure, the team also need to consider different sky conditions for the observations, such as moonlight and cloud cover. In order to get better images, DES team use a computer algorithm called the "Observing Tactician" (ObsTac) to help with sequencing observations. It optimizes among different factors, such as the date and time, weather conditions, and

7084-532: The telescope's field of view to a diameter of 2.2°, one of the widest fields of view available for ground-based optical and infrared imaging. One significant difference between previous charge-coupled devices (CCD) at the Victor M. Blanco Telescope and DECam is the improved quantum efficiency in the red and near-infrared wavelengths. The scientific sensor array on DECam is an array of 62 2048×4096 pixel back-illuminated CCDs totaling 520 megapixels; an additional 12 2048×2048 pixel CCDs (50 Mpx) are used for guiding

7176-530: The telescope, monitoring focus, and alignment. The full DECam focal plane contains 570 megapixels. The CCDs for DECam use high resistivity silicon manufactured by Dalsa and LBNL with 15×15 micron pixels. By comparison, the OmniVision Technologies back-illuminated CCD that was used in the iPhone 4 has a 1.75×1.75 micron pixel with 5 megapixels. The larger pixels allow DECam to collect more light per pixel, improving low light sensitivity which

7268-593: The term more broadly, to include the ultraviolet and infrared parts of the electromagnetic spectrum as well, known collectively as optical radiation . A typical human eye will respond to wavelengths from about 380 to about 750 nanometers . In terms of frequency, this corresponds to a band in the vicinity of 400–790  terahertz . These boundaries are not sharply defined and may vary per individual. Under optimal conditions, these limits of human perception can extend to 310 nm (ultraviolet) and 1100 nm (near infrared). The spectrum does not contain all

7360-1462: The third-year data. Their results for cosmology were concluded with a Multi-Probe Methodology, which mainly combine the data from Galaxy-Galaxy Lensing, different shape of weak lensing , cosmic shear, galaxy clustering and photometric data set. For the first-year data collected by DES, Dark Energy Survey Group showed the Cosmological Constraints results from Galaxy Clustering and Weak Lensing results and cosmic shear measurement. With Galaxy Clustering and Weak Lensing results, S 8 = σ 8 ( Ω m / 0.3 ) 0.5 = 0.773 − 0.020 + 0.026 {\displaystyle S_{8}=\sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.773_{-0.020}^{+0.026}} and Ω m = 0.267 − 0.017 + 0.030 {\displaystyle \Omega _{m}=0.267_{-0.017}^{+0.030}} for ΛCDM , S 8 = 0.782 − 0.024 + 0.036 {\displaystyle S_{8}=0.782_{-0.024}^{+0.036}} , Ω m = 0.284 − 0.030 + 0.033 {\displaystyle \Omega _{m}=0.284_{-0.030}^{+0.033}} and ω = − 0.82 − 0.20 + 0.21 {\displaystyle \omega =-0.82_{-0.20}^{+0.21}} at 68% confidence limits for ωCMD. Combine

7452-675: The time and place of significant astronomical events. Algorithms for arithmetic are also found in ancient Egyptian mathematics , dating back to the Rhind Mathematical Papyrus c.  1550 BC . Algorithms were later used in ancient Hellenistic mathematics . Two examples are the Sieve of Eratosthenes , which was described in the Introduction to Arithmetic by Nicomachus , and the Euclidean algorithm , which

7544-413: The visible range and may also lead to cyanopsia . Each opsin has a spectral sensitivity function, which defines how likely it is to absorb a photon of each wavelength. The luminous efficiency function is approximately the superposition of the contributing visual opsins . Variance in the position of the individual opsin spectral sensitivity functions therefore affects the luminous efficiency function and

7636-405: The visible range, but vertebrates with 4 cones (tetrachromatic) or 2 cones (dichromatic) relative to humans' 3 (trichromatic) will also tend to have a wider or narrower visible spectrum than humans, respectively. Vertebrates tend to have 1-4 different opsin classes: Testing the visual systems of animals behaviorally is difficult, so the visible range of animals is usually estimated by comparing

7728-436: The visible range. For example, the long-wave (red) limit changes proportionally to the position of the L-opsin. The positions are defined by the peak wavelength (wavelength of highest sensitivity), so as the L-opsin peak wavelength blue shifts by 10 nm, the long-wave limit of the visible spectrum also shifts 10 nm. Large deviations of the L-opsin peak wavelength lead to a form of color blindness called protanomaly and

7820-449: The word spectrum ( Latin for "appearance" or "apparition") in this sense in print in 1671 in describing his experiments in optics . Newton observed that, when a narrow beam of sunlight strikes the face of a glass prism at an angle, some is reflected and some of the beam passes into and through the glass, emerging as different-colored bands. Newton hypothesized light to be made up of "corpuscles" (particles) of different colors, with

7912-1298: The ΛCDM model with the new cosmic shear measurements. From third-year data of Galaxy Clustering and Weak Lensing results, DES updated the Cosmological Constraints to S 8 = σ 8 ( Ω m / 0.3 ) 0.5 = 0.776 − 0.017 + 0.017 {\displaystyle S_{8}=\sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.776_{-0.017}^{+0.017}} and Ω m = 0.339 − 0.031 + 0.032 {\displaystyle \Omega _{m}=0.339_{-0.031}^{+0.032}} in ΛCDM at 68% confidence limits, S 8 = σ 8 ( Ω m / 0.3 ) 0.5 = 0.775 − 0.024 + 0.026 {\displaystyle S_{8}=\sigma _{8}(\Omega _{m}/0.3)^{0.5}=0.775_{-0.024}^{+0.026}} , Ω m = 0.352 − 0.041 + 0.035 {\displaystyle \Omega _{m}=0.352_{-0.041}^{+0.035}} and ω = − 0.98 − 0.20 + 0.32 {\displaystyle \omega =-0.98_{-0.20}^{+0.32}} in ωCDM at 68% confidence limits. Similarly,

8004-564: Was achieved on 12 September 2012; after a verification and testing period, scientific survey observations started in August 2013. The last observing session was completed on 9 January 2019. After completion of the Dark Energy Survey, the Dark Energy Camera was used for other sky surveys: Each year from August through February, observers will stay in dormitories on the mountain. During a weeklong period of work, observers sleep during

8096-449: Was deemed patentable. The patenting of software is controversial, and there are criticized patents involving algorithms, especially data compression algorithms, such as Unisys 's LZW patent . Additionally, some cryptographic algorithms have export restrictions (see export of cryptography ). Another way of classifying algorithms is by their design methodology or paradigm . Some common paradigms are: For optimization problems there

8188-692: Was first described in Euclid's Elements ( c.  300 BC ). Examples of ancient Indian mathematics included the Shulba Sutras , the Kerala School , and the Brāhmasphuṭasiddhānta . The first cryptographic algorithm for deciphering encrypted code was developed by Al-Kindi , a 9th-century Arab mathematician, in A Manuscript On Deciphering Cryptographic Messages . He gave the first description of cryptanalysis by frequency analysis ,

8280-621: Was first detected by analysis of the spectrum of the Sun . The shift in frequency of spectral lines is used to measure the Doppler shift ( redshift or blueshift ) of distant objects to determine their velocities towards or away from the observer. Astronomical spectroscopy uses high-dispersion diffraction gratings to observe spectra at very high spectral resolutions. Computer algorithm In mathematics and computer science , an algorithm ( / ˈ æ l ɡ ə r ɪ ð əm / )

8372-404: Was measured statistically by measuring the shear-shear correlation function , a two-point function, or its Fourier Transform , the shear power spectrum . In April 2015, the Dark Energy Survey released mass maps using cosmic shear measurements of about 2 million galaxies from the science verification data between August 2012 and February 2013. In 2021 weak lensing was used to map the dark matter in

8464-410: Was the first to measure the wavelengths of different colors of light, in 1802. The connection between the visible spectrum and color vision was explored by Thomas Young and Hermann von Helmholtz in the early 19th century. Their theory of color vision correctly proposed that the eye uses three distinct receptors to perceive color. The visible spectrum is limited to wavelengths that can both reach

#862137