Misplaced Pages

Algol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#686313

74-495: Algol / ˈ æ l ɡ ɒ l / , designated Beta Persei ( β Persei , abbreviated Beta Per , β Per ), known colloquially as the Demon Star , is a bright multiple star in the constellation of Perseus and one of the first non- nova variable stars to be discovered. Algol is a three-star system , consisting of Beta Persei Aa1, Aa2, and Ab – in which the hot luminous primary β Persei Aa1 and

148-529: A 1 MOA rifle should be capable, under ideal conditions, of repeatably shooting 1-inch groups at 100 yards. Most higher-end rifles are warrantied by their manufacturer to shoot under a given MOA threshold (typically 1 MOA or better) with specific ammunition and no error on the shooter's part. For example, Remington's M24 Sniper Weapon System is required to shoot 0.8 MOA or better, or be rejected from sale by quality control . Rifle manufacturers and gun magazines often refer to this capability as sub-MOA , meaning

222-495: A visual angle of one minute of arc, from a distance of twenty feet . A 20/20 letter subtends 5 minutes of arc total. The deviation from parallelism between two surfaces, for instance in optical engineering , is usually measured in arcminutes or arcseconds. In addition, arcseconds are sometimes used in rocking curve (ω-scan) x ray diffraction measurements of high-quality epitaxial thin films. Some measurement devices make use of arcminutes and arcseconds to measure angles when

296-687: A circle with a diameter of 1.047 inches (which is often rounded to just 1 inch) at 100 yards (2.66 cm at 91 m or 2.908 cm at 100 m), a traditional distance on American target ranges . The subtension is linear with the distance, for example, at 500 yards, 1 MOA subtends 5.235 inches, and at 1000 yards 1 MOA subtends 10.47 inches. Since many modern telescopic sights are adjustable in half ( ⁠ 1 / 2 ⁠ ), quarter ( ⁠ 1 / 4 ⁠ ) or eighth ( ⁠ 1 / 8 ⁠ ) MOA increments, also known as clicks , zeroing and adjustments are made by counting 2, 4 and 8 clicks per MOA respectively. For example, if

370-411: A close binary with a distant companion, with the other star(s) previously in the system ejected into interstellar space at high velocities. This dynamic may explain the runaway stars that might have been ejected during a collision of two binary star groups or a multiple system. This event is credited with ejecting AE Aurigae , Mu Columbae and 53 Arietis at above 200 km·s and has been traced to

444-459: A degree) and specify locations within about 120 metres (390 feet). For navigational purposes positions are given in degrees and decimal minutes, for instance The Needles lighthouse is at 50º 39.734’N 001º 35.500’W. Related to cartography, property boundary surveying using the metes and bounds system and cadastral surveying relies on fractions of a degree to describe property lines' angles in reference to cardinal directions . A boundary "mete"

518-560: A degree/day in the Earth's annual rotation around the Sun, which is off by roughly 1%. The same ratios hold for seconds, due to the consistent factor of 60 on both sides. The arcsecond is also often used to describe small astronomical angles such as the angular diameters of planets (e.g. the angular diameter of Venus which varies between 10″ and 60″); the proper motion of stars; the separation of components of binary star systems ; and parallax ,

592-411: A designation system, identifying the hierarchy within the system has the advantage that it makes identifying subsystems and computing their properties easier. However, it causes problems when new components are discovered at a level above or intermediate to the existing hierarchy. In this case, part of the hierarchy will shift inwards. Components which are found to be nonexistent, or are later reassigned to

666-883: A diagram multiplex if there is a node with more than two children , i.e. if the decomposition of some subsystem involves two or more orbits with comparable size. Because, as we have already seen for triple stars, this may be unstable, multiple stars are expected to be simplex , meaning that at each level there are exactly two children . Evans calls the number of levels in the diagram its hierarchy . Higher hierarchies are also possible. Most of these higher hierarchies either are stable or suffer from internal perturbations . Others consider complex multiple stars will in time theoretically disintegrate into less complex multiple stars, like more common observed triples or quadruples are possible. Trapezia are usually very young, unstable systems. These are thought to form in stellar nurseries, and quickly fragment into stable multiple stars, which in

740-540: A different subsystem, also cause problems. During the 24th General Assembly of the International Astronomical Union in 2000, the WMC scheme was endorsed and it was resolved by Commissions 5, 8, 26, 42, and 45 that it should be expanded into a usable uniform designation scheme. A sample of a catalog using the WMC scheme, covering half an hour of right ascension , was later prepared. The issue

814-422: A fraction of a mrad) are collectively called a mrad reticle. If the markings are round they are called mil-dots . In the table below conversions from mrad to metric values are exact (e.g. 0.1 mrad equals exactly 10 mm at 100 metres), while conversions of minutes of arc to both metric and imperial values are approximate. In humans, 20/20 vision is the ability to resolve a spatial pattern separated by

SECTION 10

#1732773064687

888-484: A group measuring 0.7 inches followed by a group that is 1.3 inches, this is not statistically abnormal. The metric system counterpart of the MOA is the milliradian (mrad or 'mil'), being equal to 1 ⁄ 1000 of the target range, laid out on a circle that has the observer as centre and the target range as radius. The number of milliradians on a full such circle therefore always is equal to 2 × π × 1000, regardless

962-400: A gun consistently shooting groups under 1 MOA. This means that a single group of 3 to 5 shots at 100 yards, or the average of several groups, will measure less than 1 MOA between the two furthest shots in the group, i.e. all shots fall within 1 MOA. If larger samples are taken (i.e., more shots per group) then group size typically increases, however this will ultimately average out. If a rifle

1036-455: A line running from the starting point 85.69 feet in a direction 65° 39′ 18″ (or 65.655°) away from north toward the west. The arcminute is commonly found in the firearms industry and literature, particularly concerning the precision of rifles , though the industry refers to it as minute of angle (MOA). It is especially popular as a unit of measurement with shooters familiar with the imperial measurement system because 1 MOA subtends

1110-420: A minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS and aviation GPS receivers, which normally display latitude and longitude in the latter format by default. The average apparent diameter of the full Moon is about 31 arcminutes, or 0.52°. One arcminute is the approximate distance two contours can be separated by, and still be distinguished by,

1184-431: A modern second. Since antiquity, the arcminute and arcsecond have been used in astronomy : in the ecliptic coordinate system as latitude (β) and longitude (λ); in the horizon system as altitude (Alt) and azimuth (Az); and in the equatorial coordinate system as declination (δ). All are measured in degrees, arcminutes, and arcseconds. The principal exception is right ascension (RA) in equatorial coordinates, which

1258-922: A non-hierarchical system by this method, the same subsystem number will be used more than once; for example, a system with three visual components, A, B, and C, no two of which can be grouped into a subsystem, would have two subsystems numbered 1 denoting the two binaries AB and AC. In this case, if B and C were subsequently resolved into binaries, they would be given the subsystem numbers 12 and 13. The current nomenclature for double and multiple stars can cause confusion as binary stars discovered in different ways are given different designations (for example, discoverer designations for visual binary stars and variable star designations for eclipsing binary stars), and, worse, component letters may be assigned differently by different authors, so that, for example, one person's A can be another's C . Discussion starting in 1999 resulted in four proposed schemes to address this problem: For

1332-406: A number of more complicated arrangements. These arrangements can be organized by what Evans (1968) called mobile diagrams , which look similar to ornamental mobiles hung from the ceiling. Examples of hierarchical systems are given in the figure to the right ( Mobile diagrams ). Each level of the diagram illustrates the decomposition of the system into two or more systems with smaller size. Evans calls

1406-528: A period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. One nanoarcsecond is about the size of a penny on Neptune 's moon Triton as observed from Earth. Also notable examples of size in arcseconds are: The concepts of degrees, minutes, and seconds—as they relate to the measure of both angles and time—derive from Babylonian astronomy and time-keeping. Influenced by

1480-535: A person with 20/20 vision . One arcsecond is the approximate angle subtended by a U.S. dime coin (18 mm) at a distance of 4 kilometres (about 2.5 mi). An arcsecond is also the angle subtended by One milliarcsecond is about the size of a half dollar, seen from a distance equal to that between the Washington Monument and the Eiffel Tower . One microarcsecond is about the size of

1554-468: A precision-oriented firearm's performance will be measured in MOA. This simply means that under ideal conditions (i.e. no wind, high-grade ammo, clean barrel, and a stable mounting platform such as a vise or a benchrest used to eliminate shooter error), the gun is capable of producing a group of shots whose center points (center-to-center) fit into a circle, the average diameter of circles in several groups can be subtended by that amount of arc. For example,

SECTION 20

#1732773064687

1628-549: A separate, though connected, constellation. Earlier the name of the constellation Perseus was Perseus and Medusa's Head where an asterism representing the head of Medusa after Perseus has cut it off already known in ancient Rome. Medusa is a gorgon so the star is also called Gorgonea Prima meaning the first star of the gorgon. In Chinese , 大陵 ( Dà Líng ), meaning Mausoleum , refers to an asterism consisting of β Persei, 9 Persei , τ Persei , ι Persei , κ Persei , ρ Persei , 16 Persei and 12 Persei . Consequently,

1702-416: A single star. In these systems there is little interaction between the orbits and the stars' motion will continue to approximate stable Keplerian orbits around the system's center of mass, unlike the unstable trapezia systems or the even more complex dynamics of the large number of stars in star clusters and galaxies . In a physical triple star system, each star orbits the center of mass of

1776-465: A system in which each subsystem in a mobile diagram is encoded by a sequence of digits. In the mobile diagram (d) above, for example, the widest system would be given the number 1, while the subsystem containing its primary component would be numbered 11 and the subsystem containing its secondary component would be numbered 12. Subsystems which would appear below this in the mobile diagram will be given numbers with three, four, or more digits. When describing

1850-651: A table of the first two batches of names approved by the WGSN; which included Algol for this star. It is so entered on the IAU Catalog of Star Names. Algol was called Rōsh ha Sāṭān or "Satan's Head" in Hebrew folklore, as stated by Edmund Chilmead , who called it "Divels head" or Rosch hassatan . A Latin name for Algol from the 16th century was Caput Larvae or "the Spectre's Head". Hipparchus and Pliny made this

1924-585: A wide variety of cultures. In the Tetrabiblos , the 2nd-century astrological text of the Alexandrian astronomer Ptolemy , Algol is referred to as "the Gorgon of Perseus " and associated with death by decapitation: a theme which mirrors the myth of the hero Perseus 's victory over the snake-haired Gorgon Medusa . In the astrology of fixed stars , Algol is considered one of the unluckiest stars in

1998-461: Is ⁠ 1 / 360 ⁠ of a turn, or complete rotation , one arcminute is ⁠ 1 / 21 600 ⁠ of a turn. The nautical mile (nmi) was originally defined as the arc length of a minute of latitude on a spherical Earth, so the actual Earth's circumference is very near 21 600  nmi . A minute of arc is ⁠ π / 10 800 ⁠ of a radian . A second of arc , arcsecond (arcsec), or arc second , denoted by

2072-434: Is also abbreviated as arcmin or amin . Similarly, double prime ″ (U+2033) designates the arcsecond, though a double quote " (U+0022) is commonly used where only ASCII characters are permitted. One arcsecond is thus written as 1″. It is also abbreviated as arcsec or asec . In celestial navigation , seconds of arc are rarely used in calculations, the preference usually being for degrees, minutes, and decimals of

2146-779: Is an optical multiple star Physical multiple stars are also commonly called multiple stars or multiple star systems . Most multiple star systems are triple stars . Systems with four or more components are less likely to occur. Multiple-star systems are called triple , ternary , or trinary if they contain 3 stars; quadruple or quaternary if they contain 4 stars; quintuple or quintenary with 5 stars; sextuple or sextenary with 6 stars; septuple or septenary with 7 stars; octuple or octenary with 8 stars. These systems are smaller than open star clusters , which have more complex dynamics and typically have from 100 to 1,000 stars. Most multiple star systems known are triple; for higher multiplicities,

2220-446: Is an example of a physical hierarchical triple system, which has an outer star orbiting an inner physical binary composed of two more red dwarf stars. Triple stars that are not all gravitationally bound might comprise a physical binary and an optical companion (such as Beta Cephei ) or, in rare cases, a purely optical triple star (such as Gamma Serpentis ). Hierarchical multiple star systems with more than three stars can produce

2294-451: Is called a hierarchical system : the stars in the system can be divided into two smaller groups, each of which traverses a larger orbit around the system's center of mass . Each of these smaller groups must also be hierarchical, which means that they must be divided into smaller subgroups which themselves are hierarchical, and so on. Each level of the hierarchy can be treated as a two-body problem by considering close pairs as if they were

Algol - Misplaced Pages Continue

2368-486: Is described with a beginning reference point, the cardinal direction North or South followed by an angle less than 90 degrees and a second cardinal direction, and a linear distance. The boundary runs the specified linear distance from the beginning point, the direction of the distance being determined by rotating the first cardinal direction the specified angle toward the second cardinal direction. For example, North 65° 39′ 18″ West 85.69 feet would describe

2442-429: Is known as a binary star , binary star system or physical double star . If there are no tidal effects, no perturbation from other forces, and no transfer of mass from one star to the other, such a system is stable, and both stars will trace out an elliptical orbit around the barycenter of the system indefinitely. (See Two-body problem ) . Examples of binary systems are Sirius , Procyon and Cygnus X-1 ,

2516-423: Is measured in time units of hours, minutes, and seconds. Contrary to what one might assume, minutes and seconds of arc do not directly relate to minutes and seconds of time, in either the rotational frame of the Earth around its own axis (day), or the Earth's rotational frame around the Sun (year). The Earth's rotational rate around its own axis is 15 minutes of arc per minute of time (360 degrees / 24 hours in day);

2590-503: Is roughly 30 metres (98 feet). The exact distance varies along meridian arcs or any other great circle arcs because the figure of the Earth is slightly oblate (bulges a third of a percent at the equator). Positions are traditionally given using degrees, minutes, and seconds of arcs for latitude , the arc north or south of the equator, and for longitude , the arc east or west of the Prime Meridian . Any position on or above

2664-580: Is said to be the oldest historical documentation of the discovery of Algol. The association of Algol with a demon-like creature ( Gorgon in the Greek tradition, ghoul in the Arabic tradition) suggests that its variability was known long before the 17th century, but there is still no indisputable evidence for this. The Arabic astronomer al-Sufi said nothing about any variability of the star in his Book of Fixed Stars published c.964. The variability of Algol

2738-626: Is that some MOA scopes, including some higher-end models, are calibrated such that an adjustment of 1 MOA on the scope knobs corresponds to exactly 1 inch of impact adjustment on a target at 100 yards, rather than the mathematically correct 1.047 inches. This is commonly known as the Shooter's MOA (SMOA) or Inches Per Hundred Yards (IPHY). While the difference between one true MOA and one SMOA is less than half of an inch even at 1000 yards, this error compounds significantly on longer range shots that may require adjustment upwards of 20–30 MOA to compensate for

2812-460: The line of sight to the Earth. The eclipsing binary pair is separated by only 0.062  astronomical units (au) from each other, whereas the third star in the system (Algol Ab) is at an average distance of 2.69 au from the pair, and the mutual orbital period of the trio is 681 Earth days. The total mass of the system is about 5.8 solar masses, and the mass ratios of Aa1, Aa2, and Ab are about 4.5 to 1 to 2. The three components of

2886-534: The Chinese name for β Persei itself is 大陵五 ( Dà Líng wu , English: The Fifth Star of Mausoleum.). According to R.H. Allen the star bore the grim name of Tseih She 積屍 ( Zhi Shī ), meaning "Piled up Corpses" but this appears to be a misidentification, and Dié Shī is correctly π Persei , which is inside the Mausoleum. Historically, the star has received a strong association with bloody violence across

2960-631: The Solar System and its apparent magnitude was about −2.5, which is considerably brighter than the star Sirius is today. Because the total mass of the Algol system is about 5.8 solar masses, at the closest approach this might have given enough gravity to perturb the Oort cloud of the Solar System somewhat and hence increase the number of comets entering the inner Solar System. However,

3034-485: The Sumerians , the ancient Babylonians divided the Sun's perceived motion across the sky over the course of one full day into 360 degrees. Each degree was subdivided into 60 minutes and each minute into 60 seconds. Thus, one Babylonian degree was equal to four minutes in modern terminology, one Babylonian minute to four modern seconds, and one Babylonian second to ⁠ 1 / 15 ⁠ (approximately 0.067) of

Algol - Misplaced Pages Continue

3108-670: The Trapezium cluster in the Orion Nebula some two million years ago. The components of multiple stars can be specified by appending the suffixes A , B , C , etc., to the system's designation. Suffixes such as AB may be used to denote the pair consisting of A and B . The sequence of letters B , C , etc. may be assigned in order of separation from the component A . Components discovered close to an already known component may be assigned suffixes such as Aa , Ba , and so forth. A. A. Tokovinin's Multiple Star Catalogue uses

3182-400: The milliarcsecond (mas) and microarcsecond (μas), for instance, are commonly used in astronomy. For a three-dimensional area such as on a sphere, square arcminutes or seconds may be used. The prime symbol ′ ( U+ 2032 ) designates the arcminute, though a single quote ' (U+0027) is commonly used where only ASCII characters are permitted. One arcminute is thus written as 1′. It

3256-451: The Earth's reference ellipsoid can be precisely given with this method. However, when it is inconvenient to use base -60 for minutes and seconds, positions are frequently expressed as decimal fractional degrees to an equal amount of precision. Degrees given to three decimal places ( ⁠ 1 / 1000 ⁠ of a degree) have about ⁠ 1 / 4 ⁠ the precision of degrees-minutes-seconds ( ⁠ 1 / 3600 ⁠ of

3330-606: The Earth's atmosphere but are diffraction limited . For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Minutes (′) and seconds (″) of arc are also used in cartography and navigation . At sea level one minute of arc along the equator equals exactly one geographical mile (not to be confused with international mile or statute mile) along the Earth's equator or approximately one nautical mile (1,852 metres ; 1.151 miles ). A second of arc, one sixtieth of this amount,

3404-475: The Earth's rotational rate around the Sun (not entirely constant) is roughly 24 minutes of time per minute of arc (from 24 hours in day), which tracks the annual progression of the Zodiac. Both of these factor in what astronomical objects you can see from surface telescopes (time of year) and when you can best see them (time of day), but neither are in unit correspondence. For simplicity, the explanations given assume

3478-521: The actual increase in net cometary collisions is thought to have been quite small. Beta Persei is the star's Bayer designation . The name Algol derives from Arabic رأس الغول raʾs al-ghūl  : head ( raʾs ) of the ogre ( al-ghūl ) (see " ghoul "). The English name Demon Star was taken from the Arabic name. In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN) to catalog and standardize proper names for stars. The WGSN's first bulletin of July 2016 included

3552-451: The angle, measured in arcseconds, of the object's apparent movement caused by parallax. The European Space Agency 's astrometric satellite Gaia , launched in 2013, can approximate star positions to 7 microarcseconds (μas). Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus , a red giant with a diameter of 0.05″. Because of the effects of atmospheric blurring , ground-based telescopes will smear

3626-407: The bright triple star used to be, and still sometimes are, referred to as β Per A, B, and C. The Washington Double Star Catalog lists them as Aa1, Aa2, and Ab, with two very faint stars B and C about one arcmin distant. A further five faint stars are also listed as companions. The close pair consists of a B8 main sequence star and a much less massive K0 subgiant , which is highly distorted by

3700-628: The bullet drop. If a shot requires an adjustment of 20 MOA or more, the difference between true MOA and SMOA will add up to 1 inch or more. In competitive target shooting, this might mean the difference between a hit and a miss. The physical group size equivalent to m minutes of arc can be calculated as follows: group size = tan( ⁠ m / 60 ⁠ ) × distance. In the example previously given, for 1 minute of arc, and substituting 3,600 inches for 100 yards, 3,600 tan( ⁠ 1 / 60 ⁠ ) ≈ 1.047 inches. In metric units 1 MOA at 100 metres ≈ 2.908 centimetres. Sometimes,

3774-476: The first level of the hierarchy, lower-case letters (a, b, ...) for the second level, and numbers (1, 2, ...) for the third. Subsequent levels would use alternating lower-case letters and numbers, but no examples of this were found in the sample. Arcmin A minute of arc , arcminute ( arcmin ), arc minute , or minute arc , denoted by the symbol ′ , is a unit of angular measurement equal to ⁠ 1 / 60 ⁠ of one degree . Since one degree

SECTION 50

#1732773064687

3848-405: The image of a star to an angular diameter of about 0.5″; in poor conditions this increases to 1.5″ or even more. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics , for example, can produce images around 0.05″ on a 10 m class telescope. Space telescopes are not affected by

3922-584: The larger, but cooler and fainter, β Persei Aa2 regularly pass in front of each other, causing eclipses. Thus Algol's magnitude is usually near-constant at 2.1, but regularly dips to 3.4 every 2.86 days during the roughly 10-hour-long partial eclipses. The secondary eclipse when the brighter primary star occults the fainter secondary is very shallow and can only be detected photoelectrically. Algol gives its name to its class of eclipsing variable, known as Algol variables . An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago

3996-402: The last of which probably consists of a star and a black hole . A multiple star system consists of two or more stars that appear from Earth to be close to one another in the sky. This may result from the stars actually being physically close and gravitationally bound to each other, in which case it is a physical multiple star, or this closeness may be merely apparent, in which case it

4070-529: The magnetic fields of these stars are up to ten times stronger than the field of the Sun , these radio flares are more powerful and more persistent. The secondary component was identified as the radio emitting source in Algol using Very-long-baseline interferometry by Lestrade and co-authors. Magnetic activity cycles in the chromospherically active secondary component induce changes in its radius of gyration that have been linked to recurrent orbital period variations on

4144-467: The more massive star. These two orbit every 2.9 days and undergo the eclipses that cause Algol to vary in brightness. The third star orbits these two every 680 days and is an A or F-type main sequence star. It has been classified as an Am star , but this is now considered doubtful. Studies of Algol led to the Algol paradox in the theory of stellar evolution : although components of a binary star form at

4218-481: The number of known systems with a given multiplicity decreases exponentially with multiplicity. For example, in the 1999 revision of Tokovinin's catalog of physical multiple stars, 551 out of the 728 systems described are triple. However, because of suspected selection effects , the ability to interpret these statistics is very limited. Multiple-star systems can be divided into two main dynamical classes: or Most multiple-star systems are organized in what

4292-497: The order of ⁠ ΔP / P ⁠  ≈  10 via the Applegate mechanism . Mass transfer between the components is small in the Algol system but could be a significant source of period change in other Algol-type binaries . The distance to Algol has been measured using very-long baseline interferometry , giving a value of 94  light-years . About 7.3 million years ago it passed within 9.8 light-years of

4366-507: The other star, which is still in the main sequence. In some binaries similar to Algol, a gas flow can be seen. The gas flow between the primary and secondary stars in Algol has been imaged using Doppler Tomography . This system also exhibits x-ray and radio wave flares. The x-ray flares are thought to be caused by the magnetic fields of the A and B components interacting with the mass transfer. The radio-wave flares might be created by magnetic cycles similar to those of sunspots , but because

4440-403: The point of impact is 3 inches high and 1.5 inches left of the point of aim at 100 yards (which for instance could be measured by using a spotting scope with a calibrated reticle, or a target delineated for such purposes), the scope needs to be adjusted 3 MOA down, and 1.5 MOA right. Such adjustments are trivial when the scope's adjustment dials have a MOA scale printed on them, and even figuring

4514-502: The process may eject components as galactic high-velocity stars . They are named after the multiple star system known as the Trapezium Cluster in the heart of the Orion Nebula . Such systems are not rare, and commonly appear close to or within bright nebulae . These stars have no standard hierarchical arrangements, but compete for stable orbits. This relationship is called interplay . Such stars eventually settle down to

SECTION 60

#1732773064687

4588-470: The right number of clicks is relatively easy on scopes that click in fractions of MOA. This makes zeroing and adjustments much easier: Another common system of measurement in firearm scopes is the milliradian (mrad). Zeroing an mrad based scope is easy for users familiar with base ten systems. The most common adjustment value in mrad based scopes is ⁠ 1 / 10 ⁠  mrad (which approximates 1 ⁄ 3 MOA). One thing to be aware of

4662-403: The same time, and massive stars evolve much faster than the less massive stars, the more massive component Algol Aa1 is still in the main sequence , but the less massive Algol Aa2 is a subgiant star at a later evolutionary stage. The paradox can be solved by mass transfer : when the more massive star became a subgiant, it filled its Roche lobe , and most of the mass was transferred to

4736-521: The sky, and was listed as one of the 15 Behenian stars . Multiple star A star system or stellar system is a small number of stars that orbit each other, bound by gravitational attraction . A large group of stars bound by gravitation is generally called a star cluster or galaxy , although, broadly speaking, they are also star systems. Star systems are not to be confused with planetary systems , which include planets and similar bodies (such as comets ). A star system of two stars

4810-411: The small change of position of a star or Solar System body as the Earth revolves about the Sun. These small angles may also be written in milliarcseconds (mas), or thousandths of an arcsecond. The unit of distance called the parsec , abbreviated from the par allax angle of one arc sec ond, was developed for such parallax measurements. The distance from the Sun to a celestial object is the reciprocal of

4884-460: The spectrum of Algol, inferring variations in the radial velocity of this binary system. Thus, Algol became one of the first known spectroscopic binaries . Joel Stebbins at the University of Illinois Observatory used an early selenium cell photometer to produce the first-ever photoelectric study of a variable star. The light curve revealed the second minimum and the reflection effect between

4958-633: The star (or else that the star itself has a darker region that is periodically turned toward the Earth). For his report he was awarded the Copley Medal . In 1881, the Harvard astronomer Edward Charles Pickering presented evidence that Algol was actually an eclipsing binary. This was confirmed a few years later, in 1889, when the Potsdam astronomer Hermann Carl Vogel found periodic doppler shifts in

5032-673: The symbol ″ , is ⁠ 1 / 60 ⁠ of an arcminute, ⁠ 1 / 3600 ⁠ of a degree, ⁠ 1 / 1 296 000 ⁠ of a turn, and ⁠ π / 648 000 ⁠ (about ⁠ 1 / 206 264 .8 ⁠ ) of a radian. These units originated in Babylonian astronomy as sexagesimal (base 60) subdivisions of the degree; they are used in fields that involve very small angles, such as astronomy , optometry , ophthalmology , optics , navigation , land surveying , and marksmanship . To express even smaller angles, standard SI prefixes can be employed;

5106-400: The system. Usually, two of the stars form a close binary system , and the third orbits this pair at a distance much larger than that of the binary orbit. This arrangement is called hierarchical . The reason for this arrangement is that if the inner and outer orbits are comparable in size, the system may become dynamically unstable, leading to a star being ejected from the system. EZ Aquarii

5180-419: The target range. Therefore, 1 MOA ≈ 0.2909 mrad. This means that an object which spans 1 mrad on the reticle is at a range that is in metres equal to the object's linear size in millimetres (e.g. an object of 100 mm subtending 1 mrad is 100 metres away). So there is no conversion factor required, contrary to the MOA system. A reticle with markings (hashes or dots) spaced with a one mrad apart (or

5254-442: The two stars. Some difficulties in explaining the observed spectroscopic features led to the conjecture that a third star may be present in the system; four decades later this conjecture was found to be correct. Algol is a multiple-star system with three confirmed and two suspected stellar components. From the point of view of the Earth, Algol Aa1 and Algol Aa2 form an eclipsing binary because their orbital plane contains

5328-581: Was discussed again at the 25th General Assembly in 2003, and it was again resolved by commissions 5, 8, 26, 42, and 45, as well as the Working Group on Interferometry, that the WMC scheme should be expanded and further developed. The sample WMC is hierarchically organized; the hierarchy used is based on observed orbital periods or separations. Since it contains many visual double stars , which may be optical rather than physical, this hierarchy may be only apparent. It uses upper-case letters (A, B, ...) for

5402-544: Was noted in 1667 by Italian astronomer Geminiano Montanari , but the periodic nature of its variations in brightness was not recognized until more than a century later, when the British amateur astronomer John Goodricke also proposed a mechanism for the star's variability. In May 1783, he presented his findings to the Royal Society , suggesting that the periodic variability was caused by a dark body passing in front of

5476-446: Was truly a 1 MOA rifle, it would be just as likely that two consecutive shots land exactly on top of each other as that they land 1 MOA apart. For 5-shot groups, based on 95% confidence , a rifle that normally shoots 1 MOA can be expected to shoot groups between 0.58 MOA and 1.47 MOA, although the majority of these groups will be under 1 MOA. What this means in practice is if a rifle that shoots 1-inch groups on average at 100 yards shoots

#686313