The Dioxin affair was a political crisis that struck in Belgium during the spring of 1999. Contamination of feedstock with polychlorinated biphenyls (PCB) was detected in animal food products, mainly eggs and chickens. Although health inspectors reported the problem in January, measurements were taken only from May 1999 when the media revealed the case. The then Flemish Liberals and Democrats (VLD) opposition leader Guy Verhofstadt claimed that the government was trying to cover up the so-called "nota Destickere", which proved that several secretaries of state were informed much earlier that the food contained PCBs and dioxins .
147-516: The Dioxin Affair started with some complaints from chicken farmers who noticed increased death among newborn chickens. Laboratory analysis confirmed the presence of dioxin-like toxins well above normal limits in the eggs, tissues and feed of the affected birds. It was later confirmed that the dioxin-like toxicity was a result of the presence of PCBs, many of which form part of the group of dioxins and dioxin-like compounds which have toxic properties, in
294-427: A 1:1 mixture of HCl and H 2 O, the system separates completely into two separate liquid phases. Hydrochloric acid forms an azeotrope with boiling point 108.58 °C at 20.22 g HCl per 100 g solution; thus hydrochloric acid cannot be concentrated beyond this point by distillation. Unlike hydrogen fluoride, anhydrous liquid hydrogen chloride is difficult to work with as a solvent, because its boiling point
441-430: A chlorine derivative of perchloric acid (HOClO 3 ), similar to the thermally unstable chlorine derivatives of other oxoacids: examples include chlorine nitrate (ClONO 2 , vigorously reactive and explosive), and chlorine fluorosulfate (ClOSO 2 F, more stable but still moisture-sensitive and highly reactive). Dichlorine hexoxide is a dark-red liquid that freezes to form a solid which turns yellow at −180 °C: it
588-414: A chlorofluorinating agent, adding chlorine and fluorine across a multiple bond or by oxidation: for example, it will attack carbon monoxide to form carbonyl chlorofluoride, COFCl. It will react analogously with hexafluoroacetone , (CF 3 ) 2 CO, with a potassium fluoride catalyst to produce heptafluoroisopropyl hypochlorite, (CF 3 ) 2 CFOCl; with nitriles RCN to produce RCF 2 NCl 2 ; and with
735-546: A common mechanism of action via the aryl hydrocarbon receptor (AHR), but their potencies are very different. This means that similar effects are caused by all of them, but much larger doses of some of them are needed than of TCDD. Binding to the AHR as well as persistence in the environment and in the organism depends on the presence of so-called "lateral chlorines", in case of dioxins and furans, chlorine substitutes in positions 2,3,7, and 8. Each additional non-lateral chlorine decreases
882-747: A dangerously powerful and unstable oxidizer. Near the end of the nineteenth century, E. S. Smith patented a method of sodium hypochlorite production involving electrolysis of brine to produce sodium hydroxide and chlorine gas, which then mixed to form sodium hypochlorite. This is known as the chloralkali process , first introduced on an industrial scale in 1892, and now the source of most elemental chlorine and sodium hydroxide. In 1884 Chemischen Fabrik Griesheim of Germany developed another chloralkali process which entered commercial production in 1888. Elemental chlorine solutions dissolved in chemically basic water (sodium and calcium hypochlorite ) were first used as anti- putrefaction agents and disinfectants in
1029-445: A fluoride ion donor or acceptor (Lewis base or acid), although it does not dissociate appreciably into ClF 2 and ClF 4 ions. Chlorine pentafluoride (ClF 5 ) is made on a large scale by direct fluorination of chlorine with excess fluorine gas at 350 °C and 250 atm, and on a small scale by reacting metal chlorides with fluorine gas at 100–300 °C. It melts at −103 °C and boils at −13.1 °C. It
1176-429: A group of chemical compounds that are persistent organic pollutants (POPs) in the environment . They are mostly by-products of burning or various industrial processes or, in the case of dioxin-like PCBs and PBBs , unwanted minor components of intentionally produced mixtures. Some of them are highly toxic, but the toxicity among them varies 30,000-fold. They are grouped together because their mechanism of action
1323-468: A higher oxidation state than bromination with Br 2 when multiple oxidation states are available, such as in MoCl 5 and MoBr 3 . Chlorides can be made by reaction of an element or its oxide, hydroxide, or carbonate with hydrochloric acid, and then dehydrated by mildly high temperatures combined with either low pressure or anhydrous hydrogen chloride gas. These methods work best when the chloride product
1470-407: A known source of PCBs. Public concern about the quality of animal food in general became a hot issue in the media. This forced the commission to ban certain recycling streams (like frying oil) from entering the food chain in order to prevent future contamination. Later studies indicated that there was never a serious danger to human health because the contaminated material was largely diluted during
1617-784: A low-pressure discharge tube. The yellow [Cl 3 ] cation is more stable and may be produced as follows: This reaction is conducted in the oxidising solvent arsenic pentafluoride . The trichloride anion, [Cl 3 ] , has also been characterised; it is analogous to triiodide . The three fluorides of chlorine form a subset of the interhalogen compounds, all of which are diamagnetic . Some cationic and anionic derivatives are known, such as ClF 2 , ClF 4 , ClF 2 , and Cl 2 F . Some pseudohalides of chlorine are also known, such as cyanogen chloride (ClCN, linear), chlorine cyanate (ClNCO), chlorine thiocyanate (ClSCN, unlike its oxygen counterpart), and chlorine azide (ClN 3 ). Chlorine monofluoride (ClF)
SECTION 10
#17327659102051764-472: A member of the basic helix-loop-helix / Per-Arnt-Sim (bHLH/PAS) family of transcription factors , and it acts to modify transcription of a number of genes (see figure). AH receptor activity is necessary for normal development and many physiological functions. Mice lacking the AH receptor (knockouts) are sick with cardiac hypertrophy, liver fibrosis, reproductive problems, and impaired immunology. The AH receptor
1911-519: A reduction in oxidation state , which can also be achieved by reducing a higher chloride using hydrogen or a metal as a reducing agent. This may also be achieved by thermal decomposition or disproportionation as follows: Most metal chlorides with the metal in low oxidation states (+1 to +3) are ionic. Nonmetals tend to form covalent molecular chlorides, as do metals in high oxidation states from +3 and above. Both ionic and covalent chlorides are known for metals in oxidation state +3 (e.g. scandium chloride
2058-678: A relatively high solubility in lipids . Therefore, they tend to associate with organic matter such as plankton, plant leaves, and animal fat. In addition, they tend to be adsorbed to inorganic particles, such as ash and soil. Dioxins are extremely stable and consequently tend to accumulate in the food chain . They are eliminated very slowly in animals, e.g. TCDD has a half-life of 7 to 9 years in humans. Incidents of contamination with PCBs are often reported as dioxin contamination incidents since these are of most public and regulatory concern. There are 75 possible congeners of polychlorinated dibenzo -p- dioxins, but only 7 of them have affinity for
2205-408: A result of the increasing molecular weight of the halogens down the group, the density and heats of fusion and vaporisation of chlorine are again intermediate between those of bromine and fluorine, although all their heats of vaporisation are fairly low (leading to high volatility) thanks to their diatomic molecular structure. The halogens darken in colour as the group is descended: thus, while fluorine
2352-479: A result of these concerns, incineration processes have been improved with increased combustion temperatures (over 1,000 °C (1,830 °F)), better furnace control, and sufficient residence time allotted to ensure complete oxidation of organic compounds. Incineration or "coprocessing" of municipal and solid industrial wastes in cement kilns is another proven source of PCDD/F compounds despite extreme high temperatures 1,400–1,500 °C (2,550–2,730 °F), posing
2499-423: A result. The wood preservative pentachlorophenol often contained dioxins and dibenzofurans as impurities. The Stockholm Convention banned the production and use of dioxins in 2001. PCDD/F-compounds were never synthesized for any purpose, except for small quantities for scientific research. Small amounts of PCDD/Fs are formed whenever organics, oxygen and chlorine are available at suitable temperatures. This
2646-402: A risk in countries where coprocessing is increasingly employed as a primary waste management strategy if appropriate environmental monitoring and controls are not put in place. Ideally, an incineration process oxidizes all carbon to CO 2 and converts all chlorine to HCl or inorganic chlorides prior to the gases passing through the temperature window of 400-700 °C where PCDD/F formation
2793-488: A separate gaseous substance was recognised by the Brabantian chemist and physician Jan Baptist van Helmont . The element was first studied in detail in 1774 by Swedish chemist Carl Wilhelm Scheele , and he is credited with the discovery. Scheele produced chlorine by reacting MnO 2 (as the mineral pyrolusite ) with HCl: Scheele observed several of the properties of chlorine: the bleaching effect on litmus ,
2940-713: A single dose, high concentrations are found in the liver, but in a few days, adipose tissue will predominate. In rat liver, however, high doses cause induction of CYP1A2 enzyme, and this binds dioxins. Thus, depending on the dose, the ratio of fat and liver tissue concentrations may vary considerably in rodents. Dioxins have no common uses. They are manufactured on a small scale for chemical and toxicological research, but mostly exist as by-products of industrial processes such as chlorine bleaching of paper pulp , pesticide manufacture, and combustion processes such as incineration . The defoliant Agent Orange contained trace amounts of dioxin impurities and caused severe health issues as
3087-625: A solution of sodium carbonate. The resulting liquid, known as " Eau de Javel " (" Javel water "), was a weak solution of sodium hypochlorite . This process was not very efficient, and alternative production methods were sought. Scottish chemist and industrialist Charles Tennant first produced a solution of calcium hypochlorite ("chlorinated lime"), then solid calcium hypochlorite (bleaching powder). These compounds produced low levels of elemental chlorine and could be more efficiently transported than sodium hypochlorite, which remained as dilute solutions because when purified to eliminate water, it became
SECTION 20
#17327659102053234-665: A thorough benefit/risk analysis is needed before setting limits, in order to avoid increased other risks or lost benefits. The uncertainty and variability in the dose–response relationship of dioxins in terms of their toxicity, as well as the ability of dioxins to bioaccumulate , have led WHO experts to recommending very low tolerable daily intake (TDI) of dioxin, 1-4 pg/kg body weight per day, i.e. 7x10 to 2.8x10 g per 70-kg person per day, to allow for this uncertainty and ensure public safety in all instances. Authorities have then set weekly or monthly intake levels that equal to TDIs around 2 pg/kg. Because dioxins are eliminated very slowly,
3381-416: Is hydrogen chloride , HCl, a major chemical in industry as well as in the laboratory, both as a gas and dissolved in water as hydrochloric acid . It is often produced by burning hydrogen gas in chlorine gas, or as a byproduct of chlorinating hydrocarbons . Another approach is to treat sodium chloride with concentrated sulfuric acid to produce hydrochloric acid, also known as the "salt-cake" process: In
3528-441: Is sodium chlorate , mostly used to make chlorine dioxide to bleach paper pulp. The decomposition of chlorate to chloride and oxygen is a common way to produce oxygen in the laboratory on a small scale. Chloride and chlorate may comproportionate to form chlorine as follows: Perchlorates and perchloric acid (HOClO 3 ) are the most stable oxo-compounds of chlorine, in keeping with the fact that chlorine compounds are most stable when
3675-474: Is a pale yellow gas, chlorine is distinctly yellow-green. This trend occurs because the wavelengths of visible light absorbed by the halogens increase down the group. Specifically, the colour of a halogen, such as chlorine, results from the electron transition between the highest occupied antibonding π g molecular orbital and the lowest vacant antibonding σ u molecular orbital. The colour fades at low temperatures, so that solid chlorine at −195 °C
3822-399: Is a poor solvent, only able to dissolve small molecular compounds such as nitrosyl chloride and phenol , or salts with very low lattice energies such as tetraalkylammonium halides. It readily protonates electrophiles containing lone-pairs or π bonds. Solvolysis , ligand replacement reactions, and oxidations are well-characterised in hydrogen chloride solution: Nearly all elements in
3969-486: Is a very poor conductor of electricity, and indeed its conductivity is so low as to be practically unmeasurable. Chlorine has two stable isotopes, Cl and Cl. These are its only two natural isotopes occurring in quantity, with Cl making up 76% of natural chlorine and Cl making up the remaining 24%. Both are synthesised in stars in the oxygen-burning and silicon-burning processes . Both have nuclear spin 3/2+ and thus may be used for nuclear magnetic resonance , although
4116-432: Is a very strong fluorinating agent, although it is still not as effective as chlorine trifluoride. Only a few specific stoichiometric reactions have been characterised. Arsenic pentafluoride and antimony pentafluoride form ionic adducts of the form [ClF 4 ] [MF 6 ] (M = As, Sb) and water reacts vigorously as follows: The product, chloryl fluoride , is one of the five known chlorine oxide fluorides. These range from
4263-442: Is a weak ligand, weaker than water, a few compounds involving coordinated ClO 4 are known. The Table below presents typical oxidation states for chlorine element as given in the secondary schools or colleges. There are more complex chemical compounds, the structure of which can only be explained using modern quantum chemical methods, for example, cluster technetium chloride [(CH 3 ) 4 N] 3 [Tc 6 Cl 14 ], in which 6 of
4410-506: Is almost colourless. Like solid bromine and iodine, solid chlorine crystallises in the orthorhombic crystal system , in a layered lattice of Cl 2 molecules. The Cl–Cl distance is 198 pm (close to the gaseous Cl–Cl distance of 199 pm) and the Cl···Cl distance between molecules is 332 pm within a layer and 382 pm between layers (compare the van der Waals radius of chlorine, 180 pm). This structure means that chlorine
4557-472: Is also produced when photolysing the solid at −78 °C: it is a dark brown solid that explodes below 0 °C. The ClO radical leads to the depletion of atmospheric ozone and is thus environmentally important as follows: Chlorine perchlorate (ClOClO 3 ) is a pale yellow liquid that is less stable than ClO 2 and decomposes at room temperature to form chlorine, oxygen, and dichlorine hexoxide (Cl 2 O 6 ). Chlorine perchlorate may also be considered
Dioxin affair - Misplaced Pages Continue
4704-414: Is augmented by metal catalysts such as copper. The optimal temperature range is 400 °C (752 °F) to 700 °C (1,292 °F). This means that formation is highest when organic material is burned in less-than-optimal conditions such as open fires, building fires, domestic fireplaces, and poorly operated and/or designed solid waste incinerators. Historically, municipal and medical waste incineration
4851-432: Is based on inappropriate activation of a physiologically important receptor, and therefore dose-response must be carefully considered. Inappropriate stimulation of many receptors leads to toxic outcomes, e.g. overdose of vitamin A leads to inappropriate activation of retinoid receptors resulting in e.g. malformations, and overdoses of corticosteroids or sex hormones lead to a multitude of adverse effects. Therefore, it
4998-523: Is cancer promotion. A mixture of PCBs such as Aroclor may contain PCB compounds which are known estrogen agonists but are not classified as dioxin-like in terms of toxicity. Mutagenic effects have been established for some lower chlorinated chemicals such as 3-chlorodibenzofuran, which is neither persistent nor an AH receptor agonist. High doses . The symptoms reported to be associated with dioxin toxicity in animal studies are incredibly wide-ranging, both in
5145-471: Is concentration in breast milk measured over decades. In many countries the concentrations have decreased to about one tenth of those in the 1970s, and the total TEQ concentrations are now of the order of 5-30 pg/g fat (please note the units, pg/g is the same as ng/kg, or the non-standard expression ppt used sometimes in the United States). The decrease is due to strict emission controls and also to
5292-658: Is even more unstable and cannot be isolated or concentrated without decomposition: it is known from the decomposition of aqueous chlorine dioxide. However, sodium chlorite is a stable salt and is useful for bleaching and stripping textiles, as an oxidising agent, and as a source of chlorine dioxide. Chloric acid (HOClO 2 ) is a strong acid that is quite stable in cold water up to 30% concentration, but on warming gives chlorine and chlorine dioxide. Evaporation under reduced pressure allows it to be concentrated further to about 40%, but then it decomposes to perchloric acid, chlorine, oxygen, water, and chlorine dioxide. Its most important salt
5439-468: Is evidence on human carcinogenicity. Increases in cancer have been modest, in fact reaching statistical significance has been difficult even after high accidental or occupational exposures like in Yusho and Yucheng poisonings, Seveso accident, and combined occupational cohorts. Therefore, controversies on cancer risk at low population levels of dioxins are understandable. The problem with IARC evaluations
5586-894: Is extremely dangerous, and poisonous to most living organisms. As a chemical warfare agent, chlorine was first used in World War ;I as a poison gas weapon. In the form of chloride ions , chlorine is necessary to all known species of life. Other types of chlorine compounds are rare in living organisms, and artificially produced chlorinated organics range from inert to toxic. In the upper atmosphere , chlorine-containing organic molecules such as chlorofluorocarbons have been implicated in ozone depletion . Small quantities of elemental chlorine are generated by oxidation of chloride ions in neutrophils as part of an immune system response against bacteria. The most common compound of chlorine, sodium chloride, has been known since ancient times; archaeologists have found evidence that rock salt
5733-503: Is extremely slow. This results in biological half-lives of several years for all dioxins. That of TCDD is estimated to be 7 to 8 years, and for other PCDD/Fs from 1.4 to 13 years, PCDFs on average slightly shorter than PCDDs. In mammals, dioxins are found mostly in fat. Concentrations in fat seem to be relatively similar, be it serum fat, adipose tissue fat, or milk fat. This permits measuring dioxin burden by analysing breast milk. Initially, however, at least in laboratory animals, after
5880-551: Is extremely thermally stable, and is sold commercially in 500-gram steel lecture bottles. It is a colourless gas that melts at −155.6 °C and boils at −100.1 °C. It may be produced by the reaction of its elements at 225 °C, though it must then be separated and purified from chlorine trifluoride and its reactants. Its properties are mostly intermediate between those of chlorine and fluorine. It will react with many metals and nonmetals from room temperature and above, fluorinating them and liberating chlorine. It will also act as
6027-735: Is hoped to increase the reliability of risk assessment. Recently also developmental effects have been reassessed by the Contamination Panel of the European Food Safety Agency (EFSA). They propose decreasing the tolerable weekly intake (TWI) from 14 pg/kg to 2 pg/kg. This is likely to cause another controversy before being accepted by European countries. Dioxin intake and levels in breast milk in 1970s and 1980s were 5 to 10 times higher than presently, and very few effects have been found, possibly mild developmental effects on teeth. All dioxin-like compounds share
Dioxin affair - Misplaced Pages Continue
6174-618: Is important to separate the effects of low doses causing activation of the receptor around the physiological range from the effects of high toxic doses. This is all the more important because of large differences in exposures even among human beings. Western populations today are exposed to dioxins at doses leading to concentrations of 5 to 100 picograms/g (as TEQ in body fat), and the highest concentrations in accidental or deliberate poisonings have been 10,000 to 144,000 pg/g leading to dramatic but not lethal outcomes. The most relevant toxic outcomes of dioxins both in humans and animals are cancer and
6321-515: Is less reactive than fluorine and more reactive than bromine. It is also a weaker oxidising agent than fluorine, but a stronger one than bromine. Conversely, the chloride ion is a weaker reducing agent than bromide, but a stronger one than fluoride. It is intermediate in atomic radius between fluorine and bromine, and this leads to many of its atomic properties similarly continuing the trend from iodine to bromine upward, such as first ionisation energy , electron affinity , enthalpy of dissociation of
6468-442: Is less than +1.395 V, it would be expected that chlorine should be able to oxidise water to oxygen and hydrochloric acid. However, the kinetics of this reaction are unfavorable, and there is also a bubble overpotential effect to consider, so that electrolysis of aqueous chloride solutions evolves chlorine gas and not oxygen gas, a fact that is very useful for the industrial production of chlorine. The simplest chlorine compound
6615-452: Is likely that the TDI for other population groups could be higher. One important cause for differences in different assessments has been carcinogenicity. If the dose-response of TCDD in causing cancer is linear, it might be a true risk. If the dose-response is of a threshold-type or J-shape, there is little or no risk at the present concentrations. Understanding the mechanisms of toxicity better
6762-479: Is low, it has a small liquid range, its dielectric constant is low and it does not dissociate appreciably into H 2 Cl and HCl 2 ions – the latter, in any case, are much less stable than the bifluoride ions ( HF 2 ) due to the very weak hydrogen bonding between hydrogen and chlorine, though its salts with very large and weakly polarising cations such as Cs and NR 4 (R = Me , Et , Bu ) may still be isolated. Anhydrous hydrogen chloride
6909-437: Is made by reacting anhydrous sodium perchlorate or barium perchlorate with concentrated hydrochloric acid, filtering away the chloride precipitated and distilling the filtrate to concentrate it. Anhydrous perchloric acid is a colourless mobile liquid that is sensitive to shock that explodes on contact with most organic compounds, sets hydrogen iodide and thionyl chloride on fire and even oxidises silver and gold. Although it
7056-427: Is mostly ionic, but aluminium chloride is not). Silver chloride is very insoluble in water and is thus often used as a qualitative test for chlorine. Although dichlorine is a strong oxidising agent with a high first ionisation energy, it may be oxidised under extreme conditions to form the [Cl 2 ] cation. This is very unstable and has only been characterised by its electronic band spectrum when produced in
7203-415: Is one of the most reactive elements. Chlorine is a weaker oxidising agent than fluorine but a stronger one than bromine or iodine. This can be seen from the standard electrode potentials of the X 2 /X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At , approximately +0.3 V). However, this trend is not shown in the bond energies because fluorine
7350-465: Is possible. These substances cannot easily form organic compounds, and HCl is easily and safely neutralized in the scrubber while CO 2 is vented to the atmosphere. Inorganic chlorides are incorporated into the ash. Scrubber and particulate removal systems manage to capture some of the PCDD/F which forms even in sophisticated incineration plants. These PCDD/Fs are generally not destroyed but moved into
7497-400: Is present in solid crystalline hydrogen chloride at low temperatures, similar to the hydrogen fluoride structure, before disorder begins to prevail as the temperature is raised. Hydrochloric acid is a strong acid (p K a = −7) because the hydrogen bonds to chlorine are too weak to inhibit dissociation. The HCl/H 2 O system has many hydrates HCl· n H 2 O for n = 1, 2, 3, 4, and 6. Beyond
SECTION 50
#17327659102057644-419: Is produced in the atmosphere by spallation of Ar by interactions with cosmic ray protons . In the top meter of the lithosphere , Cl is generated primarily by thermal neutron activation of Cl and spallation of K and Ca . In the subsurface environment, muon capture by Ca becomes more important as a way to generate Cl. Chlorine is intermediate in reactivity between fluorine and bromine, and
7791-401: Is quite slow at temperatures below 70 °C in spite of the very favourable equilibrium constant of 10 . The chlorate ions may themselves disproportionate to form chloride and perchlorate (4 ClO 3 ⇌ Cl + 3 ClO 4 ) but this is still very slow even at 100 °C despite the very favourable equilibrium constant of 10 . The rates of reaction for the chlorine oxyanions increases as
7938-478: Is relevant in toxicology for two very different reasons. First, it induces several enzymes important in the metabolism of foreign substances, so called xenobiotics . These include both oxidative phase I enzymes and conjugative phase II enzymes, e.g. CYP 1A2, CYP1B1, CYP2S1, CYP2A5, ALDH3, GSTA1, UGT1A1, UGT1A6, UGT1A7 and NQO1. This is in essence a protective function preventing toxic or carcinogenic effects of xenobiotics, but in some conditions it may also result in
8085-510: Is singular due to its small size, low polarisability, and inability to show hypervalence . As another difference, chlorine has a significant chemistry in positive oxidation states while fluorine does not. Chlorination often leads to higher oxidation states than bromination or iodination but lower oxidation states than fluorination. Chlorine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Cl bonds. Given that E°( 1 / 2 O 2 /H 2 O) = +1.229 V, which
8232-567: Is stable to hydrolysis; otherwise, the possibilities include high-temperature oxidative chlorination of the element with chlorine or hydrogen chloride, high-temperature chlorination of a metal oxide or other halide by chlorine, a volatile metal chloride, carbon tetrachloride , or an organic chloride. For instance, zirconium dioxide reacts with chlorine at standard conditions to produce zirconium tetrachloride , and uranium trioxide reacts with hexachloropropene when heated under reflux to give uranium tetrachloride . The second example also involves
8379-567: Is that they only assess hazard, i.e. carcinogenicity at any dose. It is likely that there is a practical safe threshold for the non-genotoxic dioxins, and the present population levels do not possess any risk of cancer. There is thus some agreement on that cancer risk is taken care of as well, if daily intake limits are set to protect from developmental effects. Among fishermen with high dioxin concentrations in their bodies, cancer deaths were decreased rather than increased. All this means that in case of important beneficial food items and breast feeding
8526-553: Is the anhydride of perchloric acid (HClO 4 ) and can readily be obtained from it by dehydrating it with phosphoric acid at −10 °C and then distilling the product at −35 °C and 1 mmHg. It is a shock-sensitive, colourless oily liquid. It is the least reactive of the chlorine oxides, being the only one to not set organic materials on fire at room temperature. It may be dissolved in water to regenerate perchloric acid or in aqueous alkalis to regenerate perchlorates. However, it thermally decomposes explosively by breaking one of
8673-430: Is the anhydride. It is thus an effective bleach and is mostly used to make hypochlorites . It explodes on heating or sparking or in the presence of ammonia gas. Chlorine dioxide (ClO 2 ) was the first chlorine oxide to be discovered in 1811 by Humphry Davy . It is a yellow paramagnetic gas (deep-red as a solid or liquid), as expected from its having an odd number of electrons: it is stable towards dimerisation due to
8820-643: Is the cause of the other. The main problem is that similar associations can be found with many quite different POPs, which have only long half-lives and tendency to accumulate in lipids in common. This suggests that they may all be related to diet and obesity which are by far the most common causes of type 2 diabetes. Over the years there have been speculations on various effects of dioxins on endometriosis , sexual development, liver function , thyroid hormone levels, white blood cell levels, immune functions, and even learning and intelligence. While some of these effects might be possible after heavy exposures (like in
8967-492: Is the most toxic dioxin TCDD which per definition has a TEF of one. In essence, multiplying the amount of a particular congener with its TEF produces the amount toxicologically equivalent to TCDD, and after this conversion all dioxin-like congeners can be summed up, and the resulting toxicity equivalent quantity (TEQ) gives an approximation of toxicity of the mixture measured as TCDD. Dioxins are virtually insoluble in water but have
SECTION 60
#17327659102059114-598: Is the same. They activate the aryl hydrocarbon receptor (AH receptor), albeit with very different binding affinities, leading to high differences in toxicity and other effects. They include: Dioxins have different toxicity depending on the number and position of the chlorine atoms. Because dioxins refer to such a broad class of compounds that vary widely in toxicity, the concept of toxic equivalency factor (TEF) has been developed to facilitate risk assessment and regulatory control. TEFs exist for seven congeners of dioxins, ten furans and twelve PCBs. The reference congener
9261-472: Is usually made by reaction of chlorine dioxide with oxygen. Despite attempts to rationalise it as the dimer of ClO 3 , it reacts more as though it were chloryl perchlorate, [ClO 2 ] [ClO 4 ] , which has been confirmed to be the correct structure of the solid. It hydrolyses in water to give a mixture of chloric and perchloric acids: the analogous reaction with anhydrous hydrogen fluoride does not proceed to completion. Dichlorine heptoxide (Cl 2 O 7 )
9408-496: The European Food Safety Agency (EFSA) recommended decreasing tolerable weekly intake (TWI) levels based on the Russian children study. This recommendation can be challenged, because it does not properly consider competing risks following from lost benefits of important and healthy food items such as certain fish. TWI levels are not applied for breast feeding, because benefits of breast milk are judged to be far more important than
9555-434: The aryl hydrocarbon receptor (AH receptor) and are toxic via this mechanism. The crucial structures are so called lateral chlorines in positions 2,3,7, and 8. These 4 chlorines also make the congeners persistent, because they prevent microbial degradation. Additional chlorines make the compounds less potent, but basically the effects remain the same although at higher doses. There are 135 possible dibenzofurans, and 10 in which
9702-411: The body burden accumulated during the whole lifetime is high compared with daily doses, and occasional modest exceedances of limit values do not change it much. Therefore, long-term intake is much more important than daily intake. Specifically, the TDI has been assessed to guarantee the safety of children born to mothers exposed to such a daily intake of dioxins all their lifetime prior to pregnancy. It
9849-530: The federal elections of 1999 (as well as the regional elections of 1999 ). The governing party, Christian People's Party (CVP), suffered a historic loss and forced the end of premier Jean-Luc Dehaene 's eight-year reign. This meant a victory for the VLD and Guy Verhofstadt , who had brought the affair to public attention in the first place, resulting in him becoming Prime Minister of Belgium until 2007. Green parties Ecolo and Agalev were also able to profit from
9996-489: The fly ash . Catalytic systems have been designed which destroy vapor-phase PCDD/Fs at relatively low temperatures. This technology is often combined with the baghouse or SCR system at the tail end of an incineration plant. The European Union limit for concentration of dioxin-like compounds in the discharged flue gas is 0.1 ng/Nm³ TEQ. Both in Europe and in U.S.A., the emissions have decreased dramatically since
10143-465: The halogens , it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent : among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale , behind only oxygen and fluorine. Chlorine played an important role in
10290-938: The liver , thymus , and other organs. Some effects such as thymic atrophy are common in many species, but e.g. liver toxicity is typical in rabbits. Low doses . Very few signs of toxicity are seen in adult animals after low doses, but developmental effects may occur at low dioxin levels, including foetal , neonatal , and possibly pubescent stages. Well established developmental effects are cleft palate , hydronephrosis , disturbances in tooth development and sexual development , and endocrine effects. Surprisingly, enzyme induction, several developmental effects and aversion to novel foods occur at similar dose levels in animals that respond differently to acute high-dose toxicity. Therefore, it has been suggested that dioxin effects be divided to type I effects (enzyme induction etc.) and type II effects (lethality, liver damage, anorexia, and tumour promotion). The reason may be different requirements of
10437-473: The neutron activation of natural chlorine. The most stable chlorine radioisotope is Cl. The primary decay mode of isotopes lighter than Cl is electron capture to isotopes of sulfur ; that of isotopes heavier than Cl is beta decay to isotopes of argon ; and Cl may decay by either mode to stable S or Ar. Cl occurs in trace quantities in nature as a cosmogenic nuclide in a ratio of about (7–10) × 10 to 1 with stable chlorine isotopes: it
10584-483: The noble gases xenon and radon do not escape fluorination. An impermeable fluoride layer is formed by sodium , magnesium , aluminium , zinc , tin , and silver , which may be removed by heating. Nickel , copper, and steel containers are usually used due to their great resistance to attack by chlorine trifluoride, stemming from the formation of an unreactive layer of metal fluoride. Its reaction with hydrazine to form hydrogen fluoride, nitrogen, and chlorine gases
10731-414: The 14 chlorine atoms are formally divalent, and oxidation states are fractional. In addition, all the above chemical regularities are valid for "normal" or close to normal conditions, while at ultra-high pressures (for example, in the cores of large planets), chlorine can exhibit an oxidation state of -3, forming a Na3Cl compound with sodium, which does not fit into traditional concepts of chemistry. Like
10878-545: The 1820s, in France, long before the establishment of the germ theory of disease . This practice was pioneered by Antoine-Germain Labarraque , who adapted Berthollet's "Javel water" bleach and other chlorine preparations. Elemental chlorine has since served a continuous function in topical antisepsis (wound irrigation solutions and the like) and public sanitation, particularly in swimming and drinking water. Chlorine gas
11025-436: The 1980s, by even 90% (see Figure). This has also led to decreases in human body burdens, which is neatly demonstrated by the decrease of dioxin concentrations in breast milk . With the substantial decrease of emissions from municipal waste incinerators, other potentially large sources of dioxin-like compounds, for example from forest and wild fires, have increased relative to industrial sources. They are however not included in
11172-401: The AHR. Some toxic effects (especially of PCBs) may be independent of the AHR, and those are not taken into account by using TEQs. TEFs are also approximations with certain amount of scientific judgement rather than scientific facts. Therefore, they may be re-evaluated from time to time. There have been several TEF versions since the 1980s. The most recent re-assessment was by an expert group of
11319-510: The Arctic. Only a minor portion of PCBs in mixtures are dioxin-like. Other sources of PCDD/F include: Improvements and changes have been made to nearly all industrial sources to reduce PCDD/F production. In waste incineration, large amounts of publicity and concern surrounded dioxin-like compounds during the 1980s-1990s continues to pervade the public consciousness, especially when new incineration and waste-to-energy facilities are proposed. As
11466-525: The Earth's crust is in the form of ionic chloride compounds, which includes table salt. It is the second-most abundant halogen (after fluorine) and 20th most abundant element in Earth's crust. These crystal deposits are nevertheless dwarfed by the huge reserves of chloride in seawater. Elemental chlorine is commercially produced from brine by electrolysis , predominantly in the chloralkali process . The high oxidising potential of elemental chlorine led to
11613-541: The German and Dutch names of oxygen : sauerstoff or zuurstof , both translating into English as acid substance ), so a number of chemists, including Claude Berthollet , suggested that Scheele's dephlogisticated muriatic acid air must be a combination of oxygen and the yet undiscovered element, muriaticum . In 1809, Joseph Louis Gay-Lussac and Louis-Jacques Thénard tried to decompose dephlogisticated muriatic acid air by reacting it with charcoal to release
11760-491: The Greek word χλωρος ( chlōros , "green-yellow"), in reference to its colour. The name " halogen ", meaning "salt producer", was originally used for chlorine in 1811 by Johann Salomo Christoph Schweigger . This term was later used as a generic term to describe all the elements in the chlorine family (fluorine, bromine, iodine), after a suggestion by Jöns Jakob Berzelius in 1826. In 1823, Michael Faraday liquefied chlorine for
11907-587: The Seveso disaster), these claims are only based on potential exposures of population, not supported by actual measurements of dioxin concentrations. E.g. absorption from bleached tampons claimed to be associated with endometriosis is insignificant compared with daily dioxin intake from food. Dioxins are well established carcinogens in animal studies, although the precise mechanism is not clear. Dioxins are not mutagenic or genotoxic . The United States Environmental Protection Agency has categorised dioxin, and
12054-511: The World Health organization in 2005. Greenpeace and some other environmental groups have called for the chlorine industry to be phased out. However, chlorine industry supporters say that "banning chlorine would mean that millions of people in the third world would die from want of disinfected water". Sharon Beder and others have argued that the dioxin controversy has been very political and that large companies have tried to play down
12201-496: The X 2 molecule (X = Cl, Br, I), ionic radius, and X–X bond length. (Fluorine is anomalous due to its small size.) All four stable halogens experience intermolecular van der Waals forces of attraction, and their strength increases together with the number of electrons among all homonuclear diatomic halogen molecules. Thus, the melting and boiling points of chlorine are intermediate between those of fluorine and bromine: chlorine melts at −101.0 °C and boils at −34.0 °C. As
12348-476: The absolute and relative significance of dairy products and meat have decreased due to strict emission controls, and brought about the decrease of total intake. E.g. in the United Kingdom the total intake of PCDD/F in 1982 was 239 pg/day and in 2001 only 21 pg/day (WHO-TEQ). Since the half-lives are very long (for e.g. TCDD 7–8 years), the body burden will increase almost over the whole lifetime. Therefore,
12495-510: The actual amount or concentration of a congener by its TEF, the product is the virtual amount or concentration of TCDD having effects of the same magnitude as the compound in question. This multiplication is done for all compounds in a mixture, and these "equivalents of TCDD" can then simply be added, resulting in TEQ, the amount or concentration of TCDD toxicologically equivalent to the mixture. The TEQ conversion makes it possible to use all studies on
12642-409: The background levels of dioxins. They do not reach concentrations causing typical dioxin-like toxicity, however. The aryl hydrocarbon receptor (AH receptor) is an ancient receptor, and its many functions have been revealed only recently. It is an over 600-million-year-old protein occurring in all vertebrates, and its homologs have been discovered in invertebrates and insects. It is classified as
12789-572: The best proven effect is chloracne. The suspected effects in adults are liver damage, and alterations in heme metabolism, serum lipid levels, thyroid functions, as well as diabetes and immunological effects . Low exposures. Effects after low exposures such as from food have been difficult to prove. Levels of dioxins in contemporary population are 5 to 20 pg/g (TEQ in fat) and 50 to 100 pg in older people or at least 1000 times lower than those in poisonings (see above). Tooth deformities have been considered plausible after long breast-feeding, when
12936-408: The best studied TCDD to assess the toxicity of a mixture. This is most useful in regulatory work, but it can also be used in scientific studies. This resembles the common measure of all alcoholic drinks: beer, wine and whiskey can be added together as absolute alcohol, and this sum gives the toxicologically meaningful measure of the total impact. The TEQ only applies to dioxin-like effects mediated by
13083-555: The birds’ feed. Karel Pinxten [ nl ] , Minister of Agriculture, and Marcel Colla [ nl ] , Minister of Health, immediately resigned their positions and a commission was installed to investigate the probable sources of contamination and the errors that had been made by the government. Later investigations revealed that the source of the contamination came from an oil-and-fat-recycling company, Verkest, from Deinze . The fats were reprocessed into animal feed that also contained transformer oil ( coolant fluid),
13230-606: The central Cl–O bonds, producing the radicals ClO 3 and ClO 4 which immediately decompose to the elements through intermediate oxides. Chlorine forms four oxoacids: hypochlorous acid (HOCl), chlorous acid (HOClO), chloric acid (HOClO 2 ), and perchloric acid (HOClO 3 ). As can be seen from the redox potentials given in the adjacent table, chlorine is much more stable towards disproportionation in acidic solutions than in alkaline solutions: The hypochlorite ions also disproportionate further to produce chloride and chlorate (3 ClO ⇌ 2 Cl + ClO 3 ) but this reaction
13377-424: The chlorine atom is in its lowest (−1) or highest (+7) possible oxidation states. Perchloric acid and aqueous perchlorates are vigorous and sometimes violent oxidising agents when heated, in stark contrast to their mostly inactive nature at room temperature due to the high activation energies for these reactions for kinetic reasons. Perchlorates are made by electrolytically oxidising sodium chlorate, and perchloric acid
13524-543: The city. The highest TCDD levels were found in children, up to 56,000 pg/g fat. Acute effects were limited to chloracne, although many animals such as rabbits died after eating contaminated grass. Dental aberrations were found after 25 years in persons exposed as children, and a slightly increased cancer risk was confirmed 35 years later. In line with animal studies, developmental effects may be much more important than effects in adults. These include disturbances of tooth development, and of sexual development. An example of
13671-483: The concentrations may increase five to tenfold from age 20 to age 60. For the same reason, short term higher intake such as after food contamination incidents, is not crucial unless it is extremely high or lasts for several months or years. The highest body burdens were found in Western Europe in the 1970s and early 1980s, and the trends have been similar in the U.S. The most useful measure of time trends
13818-408: The control of concentrations in food. In the U.S. young adult female population (age group 20–39), the concentration was 9.7 pg/g lipid in 2001-2002 (geometric mean). Certain professions such as subsistence fishermen in some areas are exposed to exceptionally high amounts of dioxins and related substances. This along with high industrial exposures may be the most valuable source of information on
13965-429: The dark. Crystalline clathrate hydrates ClO 2 · n H 2 O ( n ≈ 6–10) separate out at low temperatures. However, in the presence of light, these solutions rapidly photodecompose to form a mixture of chloric and hydrochloric acids. Photolysis of individual ClO 2 molecules result in the radicals ClO and ClOO, while at room temperature mostly chlorine, oxygen, and some ClO 3 and Cl 2 O 6 are produced. Cl 2 O 3
14112-424: The deadly effect on insects, the yellow-green colour, and the smell similar to aqua regia . He called it " dephlogisticated muriatic acid air " since it is a gas (then called "airs") and it came from hydrochloric acid (then known as "muriatic acid"). He failed to establish chlorine as an element. Common chemical theory at that time held that an acid is a compound that contains oxygen (remnants of this survive in
14259-576: The delocalisation of the unpaired electron. It explodes above −40 °C as a liquid and under pressure as a gas and therefore must be made at low concentrations for wood-pulp bleaching and water treatment. It is usually prepared by reducing a chlorate as follows: Its production is thus intimately linked to the redox reactions of the chlorine oxoacids. It is a strong oxidising agent, reacting with sulfur , phosphorus , phosphorus halides, and potassium borohydride . It dissolves exothermically in water to form dark-green solutions that very slowly decompose in
14406-574: The development of commercial bleaches and disinfectants , and a reagent for many processes in the chemical industry. Chlorine is used in the manufacture of a wide range of consumer products, about two-thirds of them organic chemicals such as polyvinyl chloride (PVC), many intermediates for the production of plastics , and other end products which do not contain the element. As a common disinfectant, elemental chlorine and chlorine-generating compounds are used more directly in swimming pools to keep them sanitary . Elemental chlorine at high concentration
14553-416: The developmental effects on offspring. Both have been documented at high doses, most accurately in animal experiments. As to developmental effects there is an agreement that the present dioxin levels in many populations are not very far from those causing some effects, but there is not yet consensus on the safe level. As to cancer, there is a disagreement on how to extrapolate the risk from high toxic doses to
14700-477: The dioxin concentrations were high in 1970s and 1980s. When the concentrations decreased during 1990s and 2000s, the effects were no longer seen. According to a study in Russia, sperm counts in 18-19 year old young men were lower when dioxin levels were higher at the age of 8 to 9 years. This was in industrial environments causing relatively high exposures to boys as well as their mothers. The contamination panel of
14847-409: The experiments conducted by medieval alchemists , which commonly involved the heating of chloride salts like ammonium chloride ( sal ammoniac ) and sodium chloride ( common salt ), producing various chemical substances containing chlorine such as hydrogen chloride , mercury(II) chloride (corrosive sublimate), and aqua regia . However, the nature of free chlorine gas as a separate substance
14994-447: The first time, and demonstrated that what was then known as "solid chlorine" had a structure of chlorine hydrate (Cl 2 ·H 2 O). Chlorine gas was first used by French chemist Claude Berthollet to bleach textiles in 1785. Modern bleaches resulted from further work by Berthollet, who first produced sodium hypochlorite in 1789 in his laboratory in the town of Javel (now part of Paris , France), by passing chlorine gas through
15141-482: The first two. Chlorine has the electron configuration [Ne]3s 3p , with the seven electrons in the third and outermost shell acting as its valence electrons . Like all halogens, it is thus one electron short of a full octet, and is hence a strong oxidising agent, reacting with many elements in order to complete its outer shell. Corresponding to periodic trends , it is intermediate in electronegativity between fluorine and bromine (F: 3.98, Cl: 3.16, Br: 2.96, I: 2.66), and
15288-477: The food market during the period from January to May. To protect the farmers, the Belgian government promised to compensate them for their losses. The crisis also damaged the export of Belgian animal products. Many Belgians went shopping for meat and dairy products in foreign countries. The total costs of the food crisis are estimated at 25 billion francs, or 625 million euros. The dioxin crisis strongly influenced
15435-405: The formation of tumours caused by other factors, and adversely affect the normal mechanisms for inhibiting tumour growth. Some researchers have also proposed that dioxin induces cancer progression through a very different mitochondrial pathway. As with many toxic endpoints of dioxin, a clear dose–response relationship is difficult to establish. After accidental or high occupational exposures there
15582-545: The free element muriaticum (and carbon dioxide). They did not succeed and published a report in which they considered the possibility that dephlogisticated muriatic acid air is an element, but were not convinced. In 1810, Sir Humphry Davy tried the same experiment again, and concluded that the substance was an element, and not a compound. He announced his results to the Royal Society on 15 November that year. At that time, he named this new element "chlorine", from
15729-609: The gaseous products were discarded, and hydrogen chloride may have been produced many times before it was discovered that it can be put to chemical use. One of the first such uses was the synthesis of mercury(II) chloride (corrosive sublimate), whose production from the heating of mercury either with alum and ammonium chloride or with vitriol and sodium chloride was first described in the De aluminibus et salibus ("On Alums and Salts", an eleventh- or twelfth century Arabic text falsely attributed to Abu Bakr al-Razi and translated into Latin in
15876-629: The health risks of dioxins. Dioxins are absorbed well from the digestive tract if they are dissolved in fats or oils (e.g. in fish or meat). On the other hand, dioxins tend to adsorb tightly to soil particles, and absorption may be quite low: 13.8% of the given dose of TEQs in contaminated soil was absorbed. The same features causing persistence of dioxins in the environment also cause very slow elimination in humans and animals. Because of low water solubility, kidneys cannot excrete them in urine as such. They must first be metabolised to more-water-soluble metabolites, but that metabolism, especially in humans,
16023-456: The heaviest elements beyond bismuth ); and having an electronegativity higher than chlorine's ( oxygen and fluorine ) so that the resultant binary compounds are formally not chlorides but rather oxides or fluorides of chlorine. Even though nitrogen in NCl 3 is bearing a negative charge, the compound is usually called nitrogen trichloride . Chlorination of metals with Cl 2 usually leads to
16170-455: The laboratory, hydrogen chloride gas may be made by drying the acid with concentrated sulfuric acid. Deuterium chloride, DCl, may be produced by reacting benzoyl chloride with heavy water (D 2 O). At room temperature, hydrogen chloride is a colourless gas, like all the hydrogen halides apart from hydrogen fluoride , since hydrogen cannot form strong hydrogen bonds to the larger electronegative chlorine atom; however, weak hydrogen bonding
16317-482: The lateral chlorines are dioxin-like. There are 209 PCB compounds. Analogously to PCDDs at least two lateral chlorines in each ring in positions 3,4, and/or 5 are needed for dioxin-like activity. Because the AH receptor requires a planar (flat) structure, only PCB congeners that can rotate freely along the C—C axis between the rings can attach the receptor. Substituents in ortho-positions 2 and 6 prevent rotation and thus hinder
16464-424: The mixture of substances associated with sources of dioxin toxicity as a "likely human carcinogen". The International Agency for Research on Cancer has classified TCDD as a human carcinogen (class 1) on the basis of clear animal carcinogenicity and limited human data, and subsequently also 2,3,4,7,8-PCDF and PCB 126 as class 1 carcinogens. The mechanism is thought to be mainly promotion, i.e. dioxins can accelerate
16611-566: The molecule from assuming a planar position. Mono-ortho congeners (one Cl in 2, 2', 6, or 6') have minimal activity. No significant dioxin-like activities have been noticed, if there are two or more o-chlorines. Brominated dioxins and biphenyls have similar properties, but they have been studied much less. Many natural compounds have very high affinity to AH receptors. These include indoles, flavones, benzoflavones, imidazoles and pyridines. These compounds are metabolized rapidly, but continuous intake from food may cause similar receptor activation as
16758-620: The most prominent symptom was chloracne after initial stomach pain indicating hepatitis and pancreatitis . These episodes show that a human being is not as sensitive as the most sensitive animals, since the doses must have been up to 25 μg/kg. Two serious food contamination accidents were caused by PCB oils used in heat exchangers. The PCB oil leaked to rice bran oil consumed by thousands of people in Japan ( Yusho disease 1968) and Taiwan ( Yu-cheng disease 1979). The toxic effects have been attributed to dioxin-like PCBs and PCDFs. Their daily intake
16905-563: The most reactive chemical compounds known, the list of elements it sets on fire is diverse, containing hydrogen , potassium , phosphorus , arsenic , antimony , sulfur , selenium , tellurium , bromine , iodine , and powdered molybdenum , tungsten , rhodium , iridium , and iron . It will also ignite water, along with many substances which in ordinary circumstances would be considered chemically inert such as asbestos , concrete, glass, and sand. When heated, it will even corrode noble metals as palladium , platinum , and gold , and even
17052-794: The multiple bonds on alkenes and alkynes as well, giving di- or tetrachloro compounds. However, due to the expense and reactivity of chlorine, organochlorine compounds are more commonly produced by using hydrogen chloride, or with chlorinating agents such as phosphorus pentachloride (PCl 5 ) or thionyl chloride (SOCl 2 ). The last is very convenient in the laboratory because all side products are gaseous and do not have to be distilled out. Many organochlorine compounds have been isolated from natural sources ranging from bacteria to humans. Chlorinated organic compounds are found in nearly every class of biomolecules including alkaloids , terpenes , amino acids , flavonoids , steroids , and fatty acids . Organochlorides, including dioxins , are produced in
17199-458: The other carbon–halogen bonds, the C–Cl bond is a common functional group that forms part of core organic chemistry . Formally, compounds with this functional group may be considered organic derivatives of the chloride anion. Due to the difference of electronegativity between chlorine (3.16) and carbon (2.55), the carbon in a C–Cl bond is electron-deficient and thus electrophilic . Chlorination modifies
17346-605: The oxidation state of chlorine decreases. The strengths of the chlorine oxyacids increase very quickly as the oxidation state of chlorine increases due to the increasing delocalisation of charge over more and more oxygen atoms in their conjugate bases. Most of the chlorine oxoacids may be produced by exploiting these disproportionation reactions. Hypochlorous acid (HOCl) is highly reactive and quite unstable; its salts are mostly used for their bleaching and sterilising abilities. They are very strong oxidising agents, transferring an oxygen atom to most inorganic species. Chlorous acid (HOClO)
17493-406: The periodic table form binary chlorides. The exceptions are decidedly in the minority and stem in each case from one of three causes: extreme inertness and reluctance to participate in chemical reactions (the noble gases , with the exception of xenon in the highly unstable XeCl 2 and XeCl 4 ); extreme nuclear instability hampering chemical investigation before decay and transmutation (many of
17640-418: The physical properties of hydrocarbons in several ways: chlorocarbons are typically denser than water due to the higher atomic weight of chlorine versus hydrogen, and aliphatic organochlorides are alkylating agents because chloride is a leaving group . Alkanes and aryl alkanes may be chlorinated under free-radical conditions, with UV light. However, the extent of chlorination is difficult to control:
17787-654: The potency, but qualitatively the effects remain similar. Therefore, a simple sum of different dioxin congeners is not a meaningful measure of toxicity. To compare the toxicities of various congeners and to render it possible to make a toxicologically meaningful sum of a mixture, a toxicity equivalency (TEQ) concept was created. Each congener has been given a toxicity equivalence factor (TEF). This indicates its relative toxicity as compared with TCDD. Most TEFs have been extracted from in vivo toxicity data on animals, but if these are missing (e.g. in case of some PCBs), less reliable in vitro data have been used. After multiplying
17934-472: The present low exposures. While the affinity of dioxins and related industrial toxicants to the Ah receptor may not fully explain all their toxic effects including immunotoxicity, endocrine effects and tumor promotion , toxic responses appear to be typically dose-dependent within certain concentration ranges. A multiphasic dose–response relationship has also been reported, leading to uncertainty and debate about
18081-445: The production of reactive metabolites that are mutagenic and carcinogenic. This enzyme induction can be initiated by many natural or synthetic compounds, e.g., carcinogenic polycyclic hydrocarbons such as benzo (a) pyrene , several natural compounds, and dioxins. Secondly, AH receptors are involved in the activation or silencing of genes that lead to the toxic effects of high doses of dioxins. Because TCDD at high doses can influence
18228-409: The production of the animal feed. Seven million chickens and fifty thousand pigs were slaughtered and discarded. Many farms were closed down for months and animal food products were banned from the market. During the investigation, questions were raised as to whether the costs for destroying the food and feedstock were necessary, as it seemed obvious that the contaminated food had already passed through
18375-573: The public concern around environment and food quality. In 2001, a public report announced that high dioxin levels were detected in Belgians' blood plasma compared to other European populations. A direct link to the dioxin crisis seemed obvious. Later comparison with blood samples that were taken before the crisis disproved this hypothesis. High levels could also be attributed to the dense populations and industry. Dioxins and dioxin-like compounds Dioxins and dioxin-like compounds ( DLCs ) are
18522-536: The reaction is not regioselective and often results in a mixture of various isomers with different degrees of chlorination, though this may be permissible if the products are easily separated. Aryl chlorides may be prepared by the Friedel-Crafts halogenation , using chlorine and a Lewis acid catalyst. The haloform reaction , using chlorine and sodium hydroxide , is also able to generate alkyl halides from methyl ketones, and related compounds. Chlorine adds to
18669-458: The remote risks of dioxins. A general conclusion may be that safety margins are not very great concerning developmental effects, but toxic effects are not likely at the present population levels of dioxins. A number of cross-sectional studies have shown associations between type 2 diabetes and several POP compounds including dioxins. Such observational studies cannot prove causality, i.e. there may be an association which does not prove that one
18816-444: The same species, with the most notable disparity being between the seemingly similar species of hamster and guinea pig . The oral LD 50 for guinea pigs is as low as 0.5 to 2 μg/kg body weight, whereas the oral LD 50 for hamsters can be as high as 1 to 5 mg/kg body weight. Even between different mouse or rat strains there may be tenfold to thousandfold differences in acute toxicity. Many pathological findings are seen in
18963-439: The scope of the biological systems affected and in the range of dosage needed to bring these about. Acute effects of single high dose dioxin exposure include reduced feed intake and wasting syndrome , and typically a delayed death of the animal in 1 to 6 weeks. By far most toxicity studies have been performed using 2,3,7,8-tetrachlorodibenzo- p -dioxin . The LD 50 of TCDD varies wildly between species and even strains of
19110-615: The second half of the twelfth century by Gerard of Cremona , 1144–1187). Another important development was the discovery by pseudo-Geber (in the De inventione veritatis , "On the Discovery of Truth", after c. 1300) that by adding ammonium chloride to nitric acid , a strong solvent capable of dissolving gold (i.e., aqua regia ) could be produced. Although aqua regia is an unstable mixture that continually gives off fumes containing free chlorine gas, this chlorine gas appears to have been ignored until c. 1630, when its nature as
19257-441: The seriousness of the problems of dioxin. The companies involved have often said that the campaign against dioxin is based on "fear and emotion" and not on science. Most intake of dioxin-like chemicals is from food of animal origin: meat, dairy products, or fish predominate, depending on the country. The daily intake of dioxins and dioxin-like PCBs as TEQ is of the order of 100 pg/day, i.e. 1-2 pg/kg/day. In many countries both
19404-481: The spin magnitude being greater than 1/2 results in non-spherical nuclear charge distribution and thus resonance broadening as a result of a nonzero nuclear quadrupole moment and resultant quadrupolar relaxation. The other chlorine isotopes are all radioactive, with half-lives too short to occur in nature primordially . Of these, the most commonly used in the laboratory are Cl ( t 1/2 = 3.0×10 y) and Cl ( t 1/2 = 37.2 min), which may be produced from
19551-437: The sulfur oxides SO 2 and SO 3 to produce ClSO 2 F and ClOSO 2 F respectively. It will also react exothermically with compounds containing –OH and –NH groups, such as water: Chlorine trifluoride (ClF 3 ) is a volatile colourless molecular liquid which melts at −76.3 °C and boils at 11.8 °C. It may be formed by directly fluorinating gaseous chlorine or chlorine monofluoride at 200–300 °C. One of
19698-586: The thermally unstable FClO to the chemically unreactive perchloryl fluoride (FClO 3 ), the other three being FClO 2 , F 3 ClO, and F 3 ClO 2 . All five behave similarly to the chlorine fluorides, both structurally and chemically, and may act as Lewis acids or bases by gaining or losing fluoride ions respectively or as very strong oxidising and fluorinating agents. The chlorine oxides are well-studied in spite of their instability (all of them are endothermic compounds). They are important because they are produced when chlorofluorocarbons undergo photolysis in
19845-408: The total inventory due to uncertainties in available data. A more recent study on the environmental effects of accidental fires, including forest fires , estimated the emissions from dioxins (PCDD/Fs) to be about equivalent to those from traffic and municipal waste combustion. Chlorine Chlorine is a chemical element ; it has symbol Cl and atomic number 17. The second-lightest of
19992-570: The transactivation domain structure of the AH receptor for different genes. Some of these low-dose effects can in fact be interpreted as protective rather than toxic (enzyme induction, aversion to novel foods). High doses. Toxicity of dioxins at high doses has been well documented after accidents, deliberate poisonings, food contamination episodes, and high industrial exposures. Three women in Vienna, Austria, were poisoned with large doses of TCDD in 1998. The highest concentration of TCDD in fat tissue
20139-517: The transcription of perhaps hundreds of genes, the genes crucial for the multitude of toxic effects of dioxins are still not known very well. Binding of dioxin-like compounds to the AH receptor has made it possible to measure total dioxin-like activity of a sample using CALUX (Chemical Activated LUciferase gene eXpression) bioassay. The results have been comparable to TEQ levels measured by much more expensive gas chromatography-high resolution mass spectrometry in environmental samples. Dioxin toxicity
20286-591: The true role of dioxins in cancer rates. The endocrine disrupting activity of dioxins is thought to occur as a down-stream function of AH receptor activation, with thyroid status in particular being a sensitive marker of exposure. TCDD, along with the other PCDDs, PCDFs and dioxin-like coplanar PCBs are not direct agonists or antagonists of hormones, and are not active in assays which directly screen for these activities such as ER-CALUX and AR-CALUX. These compounds have also not been shown to have any direct mutagenic or genotoxic activity. Their main action in causing cancer
20433-406: The upper atmosphere and cause the destruction of the ozone layer. None of them can be made from directly reacting the elements. Dichlorine monoxide (Cl 2 O) is a brownish-yellow gas (red-brown when solid or liquid) which may be obtained by reacting chlorine gas with yellow mercury(II) oxide . It is very soluble in water, in which it is in equilibrium with hypochlorous acid (HOCl), of which it
20580-592: The variation in responses is clearly seen in a study following the Seveso disaster indicating that sperm count and motility were affected in different ways in exposed males, depending on whether they were exposed before, during or after puberty. In occupational settings many symptoms have been seen, but exposures have always been to a multitude of chemicals including chlorophenols , chlorophenoxy acid herbicides , and solvents . Therefore, definitive proof of dioxins as causative factors has been difficult to obtain. By far
20727-418: Was 144,000 pg/g, the highest ever reported in human beings. The main feature was chloracne , a serious skin disease. The victim survived, and other symptoms were modest after initial gastrointestinal symptoms and amenorrhea . Another acute incident was the deliberate poisoning of Victor Yushchenko , then presidential candidate of Ukraine, in 2004. TCDD concentration in fat was 108,000 pg/g. Also in this case
20874-569: Was first used as a weapon on April 22, 1915, at the Second Battle of Ypres by the German Army . The effect on the allies was devastating because the existing gas masks were difficult to deploy and had not been broadly distributed. Chlorine is the second halogen , being a nonmetal in group 17 of the periodic table. Its properties are thus similar to fluorine , bromine , and iodine , and are largely intermediate between those of
21021-511: Was only recognised around 1630 by Jan Baptist van Helmont . Carl Wilhelm Scheele wrote a description of chlorine gas in 1774, supposing it to be an oxide of a new element. In 1809, chemists suggested that the gas might be a pure element, and this was confirmed by Sir Humphry Davy in 1810, who named it after the Ancient Greek χλωρός ( khlōrós , "pale green") because of its colour. Because of its great reactivity, all chlorine in
21168-526: Was the most important source of PCDD/Fs. PCB-compounds , always containing low concentrations of dioxin-like PCBs and PCDFs, were synthesized for various technical purposes (see Polychlorinated biphenyls ). They have entered the environment through accidents such as fires or leaks from transformers or heat exchangers, or from PCB-containing products in landfills or during incineration. Because PCBs are somewhat volatile, they have also been transported long distances by air leading to global distribution including
21315-562: Was up to 100,000 times higher than average intake presently. There were many skin problems, chloracne, swelling of eyelids, and hypersecretion of Meibomian glands in the eyes. Babies born to Yusho and Yu-cheng mothers were smaller than normal, they had dark pigmentation and sometimes teeth at birth and tooth deformities. Foetal deaths and miscarriages were common. Perhaps the best known dioxin accident occurred in Seveso, Italy, in 1976. A tank of chlorophenols released its contents to air including many kilograms of TCDD, and contaminated much of
21462-628: Was used as early as 3000 BC and brine as early as 6000 BC. Around 900, the authors of the Arabic writings attributed to Jabir ibn Hayyan (Latin: Geber) and the Persian physician and alchemist Abu Bakr al-Razi ( c. 865–925, Latin: Rhazes) were experimenting with sal ammoniac ( ammonium chloride ), which when it was distilled together with vitriol (hydrated sulfates of various metals) produced hydrogen chloride . However, it appears that in these early experiments with chloride salts ,
21609-434: Was used in experimental rocket engine, but has problems largely stemming from its extreme hypergolicity resulting in ignition without any measurable delay. Today, it is mostly used in nuclear fuel processing, to oxidise uranium to uranium hexafluoride for its enriching and to separate it from plutonium , as well as in the semiconductor industry, where it is used to clean chemical vapor deposition chambers. It can act as
#204795