10278
94-514: EFS may refer to: Medicine and science [ edit ] Embryonal fyn-associated substrate , encoded by the EFS gene Enhancer-FACS-seq , a medical assay Estonian Physical Society (Estonian: Eesti Füüsika Selts ) Technology [ edit ] Canon EF-S lens mount Emergency flotation system , installed on helicopters Computing [ edit ] Amazon Elastic File System ,
188-520: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of
282-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.
376-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,
470-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on
564-636: A defunct American women's suffrage advocacy group Estrada de Ferro Sorocabana , a Brazilian railway Eternal functional subordination , a theological position Exchange of futures for swaps Expenditure and Food Survey , of the Office for National Statistics in Great Britain GE Energy Financial Services , an American energy infrastructure investor Swedish Evangelical Mission (Swedish: Evangeliska fosterlandsstiftelsen ) Ethnological Forgery Series,
658-851: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In
752-456: A direct interaction in vitro and in vivo between EFS and LYST (lysosomal trafficking regulator, aka CHS1 - Chediak-Higashi syndrome 1), a large protein that regulates the intracellular trafficking of proteins through endosomes that is mutated in CHS. These results may imply the role of EFS as a disease progression modifier, although further testing and establishment of mechanism is necessary. At
846-774: A file storage service Electronic Filing System , of the Singapore Judiciary Electronic Filing System (USPTO) , of United States Patent and Trademark office Extent File System , used in the IRIX operating system Encrypting File System , the encryption subsystem of the NTFS file system Other uses [ edit ] Emergency Fire Service , now the South Australian Country Fire Service Equal Franchise Society ,
940-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of
1034-477: A member of the CAS protein family, EFS is a multi-domain docking molecule that lacks any known enzymatic activity, but instead mediates signaling by promoting protein–protein interactions through conserved sequence motifs (Figure 1). An important role of EFS as a CAS-family member function is transmission of integrin -initiated signals from the extracellular matrix to downstream effectors, leading to reorganization of
SECTION 10
#17327722180641128-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by
1222-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using
1316-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters
1410-542: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although
1504-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit
1598-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),
1692-438: A series of songs by the krautrock band Can See also [ edit ] [REDACTED] Search for "efs" on Misplaced Pages. All pages with titles beginning with EFS All pages with titles containing EFS EF (disambiguation) EFSS (disambiguation) ESF (disambiguation) SEF (disambiguation) SFE (disambiguation) FSE (disambiguation) FES (disambiguation) Topics referred to by
1786-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate
1880-665: A study of cell lines and tumor tissue in malignant melanoma , EFS phosphorylation and activity significantly decreased (p<0.05) in response to vemurafenib treatment in BRAF wild-type melanoma tumors comparing to ones with BRAF (V600E-vemurfenib resistant) mutation. Finally, in a 2013 study of castration-resistant prostate cancer , EFS was identified as having significantly increased gross phosphorylation levels in samples from androgen-deprived (AD), long-term AD treated, or castration-resistant prostate carcinoma xenografts, versus in androgen deprivation therapy-naıve xenografts Based on
1974-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into
SECTION 20
#17327722180642068-522: Is a member of the CAS ( Crk -Associated Substrate) family of proteins. In humans and mammals, this group consists of four members: p130Cas/BCAR1 , NEDD9/HEF1 , CASS4 and EFS. There are no paraloguous genes for this family in yeasts and fungi , diploblasts and nematodes such as C. elegans . A single ancestral member is found in Drosophila . As the member of CAS protein family, EFS shares common structural characteristics with other members of
2162-519: Is crucial for their functional maturation and growth factor-mediated expansion. mTECs are important for proper T-cell maturation and negative selection of autoreactive clones, required for development of immunological self-tolerance. EFS has mostly a repressive role of EFS on processes associated with the activation of mature T-cells, including IL-2 pro-inflammatory cytokine secretion and IL-2-dependent clonal expansion of T cells. Upon T-cell receptor (TCR) stimulation, EFS dephosphorylation and release of
2256-562: Is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in
2350-416: Is different from Wikidata All article disambiguation pages All disambiguation pages Embryonal fyn-associated substrate 13644 n/a ENSMUSG00000022203 O43281 Q64355 NM_001277174 NM_005864 NM_032459 NM_001385607 NM_010112 NP_001264103 NP_005855 NP_115835 NP_034242 Embryonal fyn-associated substrate is a protein that in humans
2444-513: Is encoded by the EFS gene . It is also known as CASS3. EFS ( E mbryonal F yn-associated S ubstrate), also known as SIN ( S rc IN teracting or S ignal Integrating protein) was originally identified using cDNA library screening of mouse embryonal libraries for proteins containing SH3 -interacting domains, or interacting with the SRC SH3 domain, in two independent studies by Ishino et al. in 1995 and Alexandropoulos et al. in 1996. In humans,
2538-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and
2632-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"
2726-506: Is important for negative selection of T-cells during their development, which implies an important role of EFS in maintaining immune homeostasis and autoimmunity prevention. In these studies, mice with defective EFS progressed normally during embryogenesis but then developed massive inflammatory lesions in multiple tissues that bore a striking histological resemblance to inflammatory bowel diseases such as Crohn's disease. Mechanistically, EFS expressed in medullary thymic epithelial cells (mTECs)
2820-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through
2914-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with
EFS - Misplaced Pages Continue
3008-603: Is one of more than 100 of the genes located in a centromeric 10.21 Mb "minimal critical region" on Chromosome 14 that are highly expressed in gestational choriocarcinoma . The EFS mRNA was also identified as differentially expressed in two of the three groups of glioblastoma multiforme as identified by gene expression profiles (GEPs). EFS was differentially expressed in the GEP1 and GEP3 groups, which were associated with worse prognosis, with more significant cytogenetic abnormalities and genomic instabilities observed in this groups. At
3102-535: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form
3196-431: The SH3 domain of members of EFS and another CAS protein, NEDD9 . In normal untransformed cells, EFS acts as a SRC family kinase substrate in neurite outgrowth, a process that is dependent on activity of SRC kinases. Reciprocally, EFS activates SRC signaling through c-CRK and RAP1 . Further, SRC directly phosphorylates residues Y576 and Y577 tyrosine sites on the EFS, enhancing targeting FAK , and eventually
3290-415: The SH3 domain . hEFS3 (392 aa) also lacks a functional SH3 domain and has the same C-terminus and short N-terminal amino acid tail as the full-length protein. Although little functional analysis of hEFS2 has been performed, speculatively, given lack of an SH3 domain , abundant hEFS2 may inhibit hEFS1 signaling by titrating partner proteins. As of 2015, there has been no functional analysis of hEFS3. As
3384-524: The actin cytoskeleton and changes in motility and invasion. The SH3 domain is a point of contact with polyproline sequences on focal adhesion kinase ( FAK ). or the related kinase PTK2B , also known as RAFTK/Pyk2/CAKβ. Typically, phosphorylation of the C-terminal region of CAS proteins by FAK or PTK2B creates a binding site for the SH2 domain of a SRC -family protein, which then hyper-phosphorylates
3478-492: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled
3572-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis
3666-475: The placenta , and the embryonal central nervous system , heart , testes and lungs . Although its expression has been reported as lower in thymus and lymphocytes , functional studies of EFS to date have best defined it as important for immune system function. One screen for implantation-related genes regulated by progesterone found that EFS was downregulated by 17β-estradiol and progesterone in explants of late proliferative phase endometrium . EFS
3760-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,
3854-497: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in
EFS - Misplaced Pages Continue
3948-572: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions
4042-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )
4136-517: The 561 amino acid EFS protein acts as a scaffolding protein for cell signaling based on interactions with SRC , FAK , and other proteins, and has been linked to roles in the function of the immune system , and the development of cancer . The chromosomal location of the EFS gene is 14q11.2 and its genomic coordinates are 14:23356400-23365633 on the reverse strand in GRChB38p2 (Genome Reference Consortium Human Build 38 patch release 2). According to
4230-519: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by
4324-501: The Human Genome Organization ( HUGO ) Gene Nomenclature Committee ( HGNC ) its approved symbol is EFS and its synonyms are "Cas scaffolding protein family member 3", CASS3, EFS1, EFS2, HEFS and SIN. The official Gene IDs assigned to EFS are 16898 ( HGNC ), 10278 ( Entrez Gene ) and ENSG00000100842 ( Ensembl ). In humans, at least three transcript variants are known for EFS: isoform 1, containing 6 exons end encoding
4418-665: The PC-3 and LNCaP prostate cancer cells. In another study, methylation of the EFS CpG island was observed in 69% of cases of uveal melanoma (UM) and only UM with EFS methylation gave rise to metastases. RT-PCR expression analysis revealed a significant inverse correlation between EFS mRNA expression with EFS methylation in UM. EFS methylation was tissue-specific with full methylation in peripheral blood cells, but no methylation in other tissues such as fetal muscle, kidney and brain. The EFS gene
4512-995: The SRC family kinase FYN and phospholipase C-γ normally lead to self-limitation of the immune response. Consistent with this mechanism, EFS overexpression in T cell-derived cell lines decreased IL-2 concentration in supernatants in response to TCR stimulation, while T cells derived from mice lacking EFS gene showed increased IL-2 production. A dual role of EFS in mature T cells function has been proposed because both overexpression and siRNA knockdown of this protein in cell models resulted in decreased transcriptional activation of IL-2 dependent promoters following TCR stimulation. Altered EFS function has been associated with various human immunopathological conditions. Although an initial genome-wide association studies (GWAS) study of Crohn's disease did not identify EFS, EFS single nucleotide polymorphisms (SNPs) were subsequently linked to Crohn's disease. SNPs linked to EFS are trans-acting, potentially affecting
4606-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how
4700-484: The above discussion, it is possible that therapeutic benefits can be achieved by using EFS expression or phosphorylation as a marker of disease progression and prognosis in some forms of cancer. Further assessment of EFS expression, mutational status, and potential polymorphic variants may be of use in understanding the biology and developing treatment strategies for immune system pathologies such as CHS . There are currently no therapeutic approaches targeting EFS, and given
4794-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of
SECTION 50
#17327722180644888-607: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are
4982-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that
5076-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,
5170-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play
5264-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis
5358-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in
5452-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and
5546-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin
5640-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by
5734-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in
SECTION 60
#17327722180645828-660: The conserved functional properties of EFS relevant to cellular adhesion and migration, and RTK signaling, suggest changes in activity of this protein may also be relevant to cancer and other disease states, influencing prognosis and therapeutic response. The changes in EFS expression and post-translational modification in the context of disease discussed below are summarized in Table 2. EFS regulates T-cell function and maturation, preventing expansion of autoreactive clones and pathological immune responses. Two studies that have reported that EFS expression in medullar thymus epithelial cells
5922-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in
6016-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of
6110-451: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as
6204-442: The family. This includes 4 defined domains (summarized in Table 1): There are three protein isoforms of human Efs. hEfs1 and hEfs2 were identified by Ishino et al. hEFS1 (561 aa) represents the human counterpart of mouse embryonal Efs (mEfs1) originally identified. hEFS1 and mEfs1 are 80% identical in their amino acid sequences and 100% identical within the SH3 domain . hEFS2 (468 aa) is identical to hEFS1, except for its lack of
6298-671: The full-length protein with 561 amino acids; isoform 2, containing 5 exons and encoding a shorter protein (468 amino acids in length); and isoform 3, containing 6 exons and encoding the shortest protein (392 amino acids). Little is known about the transcriptional regulation of EFS, but several transcriptional regulators for EFS have been proposed based on consensus binding sites in its promoter region for ATF (Activating transcription factor), NF-κβ , NF-κβ1, GATA-3, C/EBPα (CCAAT/enhancer-binding protein alpha), glucocorticoid receptors α and β, and p53 . Expression of isoforms 1 and 2 has been detected in multiple tissues, with maximal expression in
6392-534: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to
6486-430: The level of EFS expression but not its coding sequence. Another study suggested that EFS might contribute to acute rheumatic fever susceptibility. In this work, peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid heart disease (RHD) and control subjects that had never experienced acute rheumatoid fever were stimulated with rheumatogenic and non-rheumatogenic group A streptococci (GAS) strains. EFS
6580-655: The level of EFS mRNA expression, the local and systemic recurrence of prostate cancer is associated with CpG site hypermethylation of number of genes, including FLNC and EFS (p ≤ .03), both genes involved in cell attachment, and is predicted to result in reduction of gene expression. EFS expression was strongly downregulated in hormonal therapy resistant PC346DCC, PC346Flu1 and PC346Flu2 prostate cancer cells compared to therapy responsive PC346C cells. Another study found that decreased EFS mRNA expression levels are observed in higher Gleason score prostate cancer samples. Low EFS expression also correlated with malignant behavior of
6674-432: The level of the EFS protein, a study of BT474 breast cancer cells found significant increases in expression of EFS and other proteins relevant to SRC kinase signaling, including CDCP1/Trask and Paxillin , in trastuzumab (Herceptin) resistant versus sensitive cells Importantly, EFS knockdown with siRNA restored trastuzumab sensitivity. Reflecting the importance of post-translational modification of CAS proteins, in
6768-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of
6862-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis
6956-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in
7050-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported
7144-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of
7238-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by
7332-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on
7426-649: The protein lacks a catalytic domain and extracellular moieties, it may be challenging to generate such agents. Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which
7520-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,
7614-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since
7708-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows
7802-498: The same term [REDACTED] This disambiguation page lists articles associated with the title EFS . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=EFS&oldid=1252370452 " Category : Disambiguation pages Hidden categories: Articles containing Estonian-language text Articles containing Swedish-language text Short description
7896-581: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes
7990-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to
8084-507: The solubility and/or stability of the complex. Through SRC , EFS may also negatively regulate expression of E-cadherin at adherens junctions, a function that has been reported for other CAS proteins ( NEDD9 and BCAR1 ); however, this point has not been directly established for EFS. The well-studied CAS proteins BCAR1 and NEDD9 have important roles in cancer and other pathological conditions, which have been addressed in many studies and reviews. EFS has attracted less study. However,
8178-538: The substrate domain, allowing the CAS protein to function as a scaffold for other proteins including CRK proteins and C3G , a guanine nucleotide exchange factor (GEF) for RAP1 . PTP-PEST , a soluble protein tyrosine phosphatase that is ubiquitously expressed in mice both during embryonic development and in adult tissues, opposes FAK and PTK2B activity, as it dephosphorylates PTK2B , FAK and CAS family members, among other proteins. The PTP-PEST proline-rich sequence PPKPPR has been shown to interact directly with
8272-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in
8366-716: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are
8460-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or
8554-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as
8648-472: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won
8742-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced
8836-699: Was one of only four genes with significantly increased expression in both arms of the study: 1) RHD patient versus control PBMCs after stimulation of both groups with rheumatogenic GAS and 2) RHD patient PBMC stimulated with rheumatogenic versus non-rheumatogenic GAS. Another study has implicated EFS in the Chediak-Higashi syndrome (CHS). This rare and severe autosomal recessive disorder associated with partial albinism, peripheral neuropathy, mild coagulation defects and propensity to recurrent bacterial and fungal infections, caused by incomplete phagocytosis due to failure in phagolysosome formation. This work identified
#63936