Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices ( electrochemical cells ) or different metals junctions generating an electromotive force .
24-638: Enfield Power Station is a 408 MW gas-fired station, opened on part of the original Brimsdown Power Station site on Brancroft Way at Brimsdown in the North London Borough of Enfield . It is near the A1055 and Lee Valley Park . Known as Enfield Power Station (originally Enfield Energy Centre ), construction was started in September 1997 and it was commissioned in December 1999. It
48-558: A light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ . This same amount of energy would light a 40-watt bulb for 2.5 hours, or a 50-watt bulb for 2 hours. Power stations are rated using units of power, typically megawatts or gigawatts (for example, the Three Gorges Dam in China is rated at approximately 22 gigawatts). This reflects
72-462: A period of one year: equivalent to approximately 114 megawatts of constant power output. The watt-second is a unit of energy, equal to the joule . One kilowatt hour is 3,600,000 watt seconds. While a watt per hour is a unit of rate of change of power with time, it is not correct to refer to a watt (or watt-hour) as a watt per hour. Electrical work Electric field work is formally equivalent to work by other force fields in physics, and
96-484: A transformer at 132 kV. Watt The watt (symbol: W ) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m ⋅s . It is used to quantify the rate of energy transfer . The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor , mechanical engineer , and chemist who improved
120-541: A turbine, which generates 648 MW e (i.e. electricity). Other SI prefixes are sometimes used, for example gigawatt electrical (GW e ). The International Bureau of Weights and Measures , which maintains the SI-standard, states that further information about a quantity should not be attached to the unit symbol but instead to the quantity symbol (e.g., P th = 270 W rather than P = 270 W th ) and so these unit symbols are non-SI. In compliance with SI,
144-424: A unit of time, namely 1 J/s. In this new definition, 1 absolute watt = 1.00019 international watts. Texts written before 1948 are likely to be using the international watt, which implies caution when comparing numerical values from this period with the post-1948 watt. In 1960, the 11th General Conference on Weights and Measures adopted the absolute watt into the International System of Units (SI) as
168-463: Is a CCGT type natural gas power station. Using an Alstom GT26B2.2 gas turbine , to drive an electrical generator rated at 500 MVA and with a terminal voltage of 21 kV. Waste heat is recovered by a Combustion Engineering heat recovery steam generator to drive an Alstom Steam Turbine unit connected via a SSS clutch to the main powertrain. It connects to the National Grid via
192-733: Is named after the Scottish inventor James Watt . The unit name was proposed by C. William Siemens in August 1882 in his President's Address to the Fifty-Second Congress of the British Association for the Advancement of Science . Noting that units in the practical system of units were named after leading physicists, Siemens proposed that watt might be an appropriate name for a unit of power. Siemens defined
216-523: Is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit). 1 W = 1 V ⋅ A . {\displaystyle \mathrm {1~W=1~V{\cdot }A} .} Two additional unit conversions for watt can be found using
240-825: The Newcomen engine with his own steam engine in 1776. Watt's invention was fundamental for the Industrial Revolution . When an object's velocity is held constant at one meter per second against a constant opposing force of one newton , the rate at which work is done is one watt. 1 W = 1 J / s = 1 N ⋅ m / s = 1 k g ⋅ m 2 ⋅ s − 3 . {\displaystyle \mathrm {1~W=1~J{/}s=1~N{\cdot }m{/}s=1~kg{\cdot }m^{2}{\cdot }s^{-3}} .} In terms of electromagnetism , one watt
264-433: The electric field , which is equal to the work that the electric field would do in moving that positive charge the same distance in the opposite direction. Similarly, it requires positive external work to transfer a negatively charged particle from a region of higher potential to a region of lower potential. Kirchhoff's voltage law , one of the most fundamental laws governing electrical and electronic circuits, tells us that
SECTION 10
#1732790740506288-469: The potential energy =0, for convenience), we would have to apply an external force against the Coulomb field and positive work would be performed. Mathematically, using the definition of a conservative force , we know that we can relate this force to a potential energy gradient as: Where U(r) is the potential energy of q+ at a distance r from the source Q. So, integrating and using Coulomb's Law for
312-470: The above equation and Ohm's law . 1 W = 1 V 2 / Ω = 1 A 2 ⋅ Ω , {\displaystyle \mathrm {1~W=1~V^{2}/\Omega =1~A^{2}{\cdot }\Omega } ,} where ohm ( Ω {\displaystyle \Omega } ) is the SI derived unit of electrical resistance . The watt
336-408: The charges will be either positive or negative according to their (dis)similarity). If one of the charges were to be negative in the earlier example, the work taken to wrench that charge away to infinity would be exactly the same as the work needed in the earlier example to push that charge back to that same position. This is easy to see mathematically, as reversing the boundaries of integration reverses
360-515: The energy company Ørsted A/S uses the unit megawatt for produced electrical power and the equivalent unit megajoule per second for delivered heating power in a combined heat and power station such as Avedøre Power Station . When describing alternating current (AC) electricity, another distinction is made between the watt and the volt-ampere . While these units are equivalent for simple resistive circuits , they differ when loads exhibit electrical reactance . Radio stations usually report
384-404: The force: Now, use the relationship To show that the external work done to move a point charge q+ from infinity to a distance r is: This could have been obtained equally by using the definition of W and integrating F with respect to r, which will prove the above relationship. In the example both charges are positive; this equation is applicable to any charge configuration (as the product of
408-433: The formalism for electrical work is identical to that of mechanical work. Particles that are free to move, if positively charged, normally tend towards regions of lower electric potential (net negative charge), while negatively charged particles tend to shift towards regions of higher potential (net positive charge). Any movement of a positive charge into a region of higher potential requires external work to be done against
432-460: The maximum power output it can achieve at any point in time. A power station's annual energy output, however, would be recorded using units of energy (not power), typically gigawatt hours. Major energy production or consumption is often expressed as terawatt hours for a given period; often a calendar year or financial year. One terawatt hour of energy is equal to a sustained power delivery of one terawatt for one hour, or approximately 114 megawatts for
456-488: The power of their transmitters in units of watts, referring to the effective radiated power . This refers to the power that a half-wave dipole antenna would need to radiate to match the intensity of the transmitter's main lobe . The terms power and energy are closely related but distinct physical quantities. Power is the rate at which energy is generated or consumed and hence is measured in units (e.g. watts) that represent energy per unit time . For example, when
480-569: The unit of power. In the electric power industry , megawatt electrical ( MWe or MW e ) refers by convention to the electric power produced by a generator, while megawatt thermal or thermal megawatt (MWt, MW t , or MWth, MW th ) refers to thermal power produced by the plant. For example, the Embalse nuclear power plant in Argentina uses a fission reactor to generate 2,109 MW t (i.e. heat), which creates steam to drive
504-570: The unit within the existing system of practical units as "the power conveyed by a current of an Ampère through the difference of potential of a Volt". In October 1908, at the International Conference on Electric Units and Standards in London, so-called international definitions were established for practical electrical units. Siemens' definition was adopted as the international watt. (Also used: 1 A × 1 Ω.) The watt
SECTION 20
#1732790740506528-490: The voltage gains and the drops in any electrical circuit always sum to zero. The formalism for electric work has an equivalent format to that of mechanical work. The work per unit of charge, when moving a negligible test charge between two points, is defined as the voltage between those points. where Given a charged object in empty space, Q+. To move q+ closer to Q+ (starting from r 0 = ∞ {\displaystyle r_{0}=\infty } , where
552-420: Was defined as equal to 10 units of power in the practical system of units. The "international units" were dominant from 1909 until 1948. After the 9th General Conference on Weights and Measures in 1948, the international watt was redefined from practical units to absolute units (i.e., using only length, mass, and time). Concretely, this meant that 1 watt was defined as the quantity of energy transferred in
576-551: Was opened as the Enfield Energy Centre Ltd by original owners Indeck Energy Services and Enfield Holdings BV, itself jointly owned by NRG Energy Services and El Paso Energy . E.ON UK bought it for £109 million on 6 May 2005 and operated it until January 2016 when the new company of Uniper was formed. It is one of seven power stations that Uniper owns and operates in the United Kingdom. It
#505494