The Enhanced Position Location Reporting System (EPLRS) is a secure, jam-resistant, computer-controlled communications network that distributes near real-time tactical information, generally integrated into radio sets, and coordinated by a Network Control Station. It is primarily used for data distribution, position location, and reporting. It enhances command and control of tactical units by providing commanders with the location of friendly units. It was first fielded by the US Army in 1987.
20-815: EPLRS is a Time Division Multiple Access System that uses a frequency hopping , spread spectrum waveform in the UHF band. It incorporates the Thornton family of COMSEC devices, and has the capability for Over the Air Rekeying (OTAR). EPLRS uses the Army Data Distribution System version of the X.25 CCITT and IEEE 802.3 protocols to interface with Army Tactical Command and Control System (ATCCS). Situation Awareness Data Link (SADL), installed on USAF F-16 and A-10 fighters, coordinates with EPLRS for ground support missions. Each network
40-419: A mobile phone to be in communication with up to 6 base stations simultaneously, a type of "same-frequency handover". The incoming packets are compared for quality, and the best one is selected. CDMA's "cell breathing" characteristic, where a terminal on the boundary of two congested cells will be unable to receive a clear signal, can often negate this advantage during peak periods. A disadvantage of TDMA systems
60-403: A whole time slot earlier so that it can be received at the proper time. Finally, if the mobile is beyond the 35 km cell range of GSM, the transmission will arrive in a neighbouring time slot and be ignored. It is this feature, rather than limitations of power, that limits the range of a GSM cell to 35 km when no special extension techniques are used. By changing the synchronization between
80-427: Is a channel access method for shared-medium networks . It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium (e.g. radio frequency channel) while using only a part of its channel capacity . Dynamic TDMA
100-545: Is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136 , Personal Digital Cellular (PDC) and iDEN , and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones . TDMA
120-630: Is controlled by a Network Control Station (NCS), AN/TSQ-158. These have gone through several iterations. Downsized version to fit in HMMWV , first fielded in 1991. Dimensions: 8.5'x7'x6', 4000 lbs The AN/TSQ-158(V)4 is produced by Raytheon . Housed in a HMMWV replacing the AN/UYK-44 computer with a Toughbook laptop computer. Data is displayed through the FBCB2 platform. Time Division Multiple Access Time-division multiple access ( TDMA )
140-432: Is that they create interference at a frequency which is directly connected to the time slot length. This is the buzz which can sometimes be heard if a TDMA phone is left next to a radio or speakers. Another disadvantage is that the "dead time" between time slots limits the potential bandwidth of a TDMA channel. These are implemented in part because of the difficulty in ensuring that different terminals transmit at exactly
160-510: Is the case in both GSM and IS-136 for example. Exceptions to this include the DECT and Personal Handy-phone System (PHS) micro-cellular systems, UMTS-TDD UMTS variant, and China's TD-SCDMA , which use time-division duplexing, where different time slots are allocated for the base station and handsets on the same frequency. A major advantage of TDMA is that the radio part of the mobile only needs to listen and broadcast for its own time slot. For
180-463: The GSM system, the synchronization of the mobile phones is achieved by sending timing advance commands from the base station which instruct the mobile phone to transmit earlier and by how much. This compensates for the speed-of-light propagation delay . The mobile phone is not allowed to transmit for its entire time slot; there is a guard interval at the end of each time slot. As the transmission moves into
200-441: The available spectrum, catering to diverse user demands and improving the adaptability of 3G networks to different operational environments. The ITU-T G.hn standard, which provides high-speed local area networking over existing home wiring (power lines, phone lines and coaxial cables) is based on a TDMA scheme. In G.hn , a "master" device allocates "Contention-Free Transmission Opportunities" (CFTXOP) to other "slave" devices in
220-413: The beginning of the time slot as received from the network. If the mobile is near the base station, the propagation delay is short and the initiation can succeed. If, however, the mobile phone is just less than 35 km from the base station, the delay will mean the mobile's transmission arrives at the end of the time slot. In this case, the mobile will be instructed to transmit its messages starting nearly
SECTION 10
#1732780929820240-427: The case of the uplink from a mobile phone to a base station this becomes particularly difficult because the mobile phone can move around and vary the timing advance required to make its transmission match the gap in transmission from its peers. Most 2G cellular systems, with the notable exception of IS-95 , are based on TDMA. GSM , D-AMPS , PDC , iDEN , and PHS are examples of TDMA cellular systems. In
260-416: The guard period, the mobile network adjusts the timing advance to synchronize the transmission. Initial synchronization of a phone requires even more care. Before a mobile transmits there is no way to know the offset required. For this reason, an entire time slot has to be dedicated to mobiles attempting to contact the network; this is known as the random-access channel (RACH) in GSM. The mobile transmits at
280-478: The network. Only one device can use a CFTXOP at a time, thus avoiding collisions. FlexRay protocol which is also a wired network used for safety-critical communication in modern cars, uses the TDMA method for data transmission control. In radio systems, TDMA is usually used alongside frequency-division multiple access (FDMA) and frequency-division duplex (FDD); the combination is referred to as FDMA/TDMA/FDD. This
300-613: The other hand, combines CDMA with TDMA and TDD. In this scheme, the same frequency band is used for both uplink and downlink, but at different times. This time-based separation is particularly advantageous in scenarios with asymmetric traffic loads, where the data rates for uplink and downlink differ significantly. By dynamically allocating time slots based on demand, UTRA-TDD can efficiently manage varying traffic patterns and enhance overall network capacity. The combination of these technologies in UMTS allows for more flexible and efficient use of
320-712: The rest of the time, the mobile can carry out measurements on the network, detecting surrounding transmitters on different frequencies. This allows safe inter frequency handovers , something which is difficult in CDMA systems, not supported at all in IS-95 and supported through complex system additions in Universal Mobile Telecommunications System (UMTS). This in turn allows for co-existence of microcell layers with macrocell layers. CDMA, by comparison, supports "soft hand-off" which allows
340-507: The supported range would be mostly impractical anyway. TDMA (Time Division Multiple Access) is a communication method that allocates radio frequency (RF) bandwidth into discrete time slots, allowing multiple users to share the channel in a sequential manner. This approach not only improves spectrum efficiency compared to analog systems but also offers several specific advantages that enhance communication quality and system performance. In dynamic time-division multiple access ( dynamic TDMA ),
360-443: The times required. Handsets that are moving will need to constantly adjust their timings to ensure their transmission is received at precisely the right time, because as they move further from the base station, their signal will take longer to arrive. This also means that the major TDMA systems have hard limits on cell sizes in terms of range, though in practice the power levels required to receive and transmit over distances greater than
380-762: The uplink and downlink at the base station, however, this limitation can be overcome. In the context of 3G systems, the integration of Time-Division Multiple Access (TDMA) with Code-Division Multiple Access (CDMA) and Time-Division Duplexing (TDD) in the Universal Mobile Telecommunications System (UMTS) represents a sophisticated approach to optimizing spectrum efficiency and network performance. UTRA-FDD (Frequency Division Duplex) employs CDMA and FDD, where separate frequency bands are allocated for uplink and downlink transmissions. This separation minimizes interference and allows for continuous data transmission in both directions, making it suitable for environments with balanced traffic loads. UTRA-TDD (Time Division Duplex), on
400-492: Was first used in satellite communication systems by Western Union in its Westar 3 communications satellite in 1979. It is now used extensively in satellite communications, combat-net radio systems, and passive optical network (PON) networks for upstream traffic from premises to the operator. TDMA is a type of time-division multiplexing (TDM), with the special point that instead of having one transmitter connected to one receiver , there are multiple transmitters. In
#819180