Misplaced Pages

Earlie Formation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Stratigraphy is a branch of geology concerned with the study of rock layers ( strata ) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks . Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigraphy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy by age).

#569430

31-672: The Earlie Formation is a stratigraphic unit of Middle Cambrian age in the Western Canada Sedimentary Basin that is present beneath the plains of Alberta and eastern Saskatchewan . It was named for Earlie Lake in the County of Vermilion River , Alberta, by D.C. Pugh in 1971, who described the type section based on data from an oil well drilled in that area. The Earlie Formation consists of interbedded glauconitic siltstones and fine-grained sandstones and shales . The presence of glauconite indicates that

62-553: A North American varve chronology. Carl Caldenius visited Patagonia and Tierra del Fuego , and Erik Norin visited central Asia . By this stage, other geologists were investigating varve sequences, including Matti Sauramo who constructed a varve chronology of the last deglaciation in Finland . 1940 saw the publication of a now classic scientific paper by De Geer, the Geochronologia Suecica , in which he presented

93-581: A long-term timescale. However, by 2012, “missing” varves in the Lake Suigetsu sequence were identified in the Lake Suigetsu 2006 Project by overlapping multiple cores and improved varve counting techniques, extending the timescale to 52,800 years. Varves form in a variety of marine and lacustrine depositional environments from seasonal variation in clastic , biological, and chemical sedimentary processes. The classic varve archetype

124-615: A network of sites along the east coast of Sweden was established. The varved sediments exposed in these sites had formed in glaciolacustrine and glacimarine conditions in the Baltic basin as the last ice sheet retreated northwards. By 1914, De Geer had discovered that it was possible to compare varve sequences across long distances by matching variations in varve thickness, and distinct marker laminae. However, this discovery led De Geer and many of his co-workers into making incorrect correlations, which they called 'teleconnections', between continents,

155-486: A process criticised by other varve pioneers like Ernst Antevs . In 1924, the Geochronological Institute, a special laboratory dedicated to varve research was established. De Geer and his co-workers and students made trips to other countries and continents to investigate varved sediments. Ernst Antevs studied sites from Long Island , U.S.A. to Lake Timiskaming and Hudson Bay , Canada, and created

186-436: A section. The samples are analyzed to determine their detrital remanent magnetism (DRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. For sedimentary rocks this is possible because, as they fall through the water column, very fine-grained magnetic minerals (< 17  μm ) behave like tiny compasses , orienting themselves with Earth's magnetic field . Upon burial, that orientation

217-409: Is a light / dark coloured couplet deposited in a lake basin. During summer months, light lamine composed of silica and calcium carbonate are deposited. This is the consequence of dead phytoplankton , and other micro-organisms that create their skeletons or shells out of silica or calcium carbonate, falling to the lake bottom. This process of the precipatation and deposition of dead micro-organisms out of

248-431: Is also commonly used to delineate the nature and extent of hydrocarbon -bearing reservoir rocks, seals, and traps of petroleum geology . Chronostratigraphy is the branch of stratigraphy that places an absolute age, rather than a relative age on rock strata . The branch is concerned with deriving geochronological data for rock units, both directly and inferentially, so that a sequence of time-relative events that created

279-534: Is due to physical contrasts in rock type ( lithology ). This variation can occur vertically as layering (bedding), or laterally, and reflects changes in environments of deposition (known as facies change). These variations provide a lithostratigraphy or lithologic stratigraphy of the rock unit. Key concepts in stratigraphy involve understanding how certain geometric relationships between rock layers arise and what these geometries imply about their original depositional environment. The basic concept in stratigraphy, called

310-411: Is preserved. For volcanic rocks, magnetic minerals, which form in the melt, orient themselves with the ambient magnetic field, and are fixed in place upon crystallization of the lava. Oriented paleomagnetic core samples are collected in the field; mudstones , siltstones , and very fine-grained sandstones are the preferred lithologies because the magnetic grains are finer and more likely to orient with

341-612: The Deadwood Formation . It thickens to the west where it grades into the Mount Whyte , Cathedral , Stephen , and lower Pika Formations ; the upper Eldon formation is age-equivalent. It thins eastward to zero in Saskatchewan. Trilobite biostratigraphy supports an age in the upper Wuliuan ( Ehmaniella Zone, lower to upper Altiocculus subzone) Stratigraphy Catholic priest Nicholas Steno established

SECTION 10

#1732779855570

372-431: The law of superposition , states: in an undeformed stratigraphic sequence, the oldest strata occur at the base of the sequence. Chemostratigraphy studies the changes in the relative proportions of trace elements and isotopes within and between lithologic units. Carbon and oxygen isotope ratios vary with time, and researchers can use those to map subtle changes that occurred in the paleoenvironment. This has led to

403-564: The natural remanent magnetization (NRM) to reveal the DRM. Following statistical analysis, the results are used to generate a local magnetostratigraphic column that can then be compared against the Global Magnetic Polarity Time Scale. This technique is used to date sequences that generally lack fossils or interbedded igneous rocks. The continuous nature of the sampling means that it is also a powerful technique for

434-652: The Swedish Time Scale, a floating varve chronology for ice recession from Skåne to Indalsälven . Ragnar Lidén made the first attempts to link this time scale with the present day. Since then, there have been revisions as new sites are discovered, and old ones reassessed. At present, the Swedish varve chronology is based on thousands of sites, and covers 13,200 varve years. In 2008, although varves were considered likely to give similar information to dendrochronology , they were considered "too uncertain" for use on

465-556: The absence of bioturbation . Consequently, varves commonly form under anoxic conditions. A well-known marine example of varved sediments are those found in the Santa Barbara basin, off California . Another long record of varved sediments is the palaeo-lacustrine record of the Piànico–Sèllere Basin (southern Alps). Here, the detrital layer part of each varve was used as a proxy for 771 palaeofloods which occurred over

496-615: The ambient field during deposition. If the ancient magnetic field were oriented similar to today's field ( North Magnetic Pole near the North Rotational Pole ), the strata would retain a normal polarity. If the data indicate that the North Magnetic Pole were near the South Rotational Pole , the strata would exhibit reversed polarity. Results of the individual samples are analyzed by removing

527-557: The estimation of sediment-accumulation rates. Varve A varve is an annual layer of sediment or sedimentary rock . The word 'varve' derives from the Swedish word varv whose meanings and connotations include 'revolution', 'in layers', and 'circle'. The term first appeared as Hvarfig lera (varved clay) on the first map produced by the Geological Survey of Sweden in 1862. Initially, "varve" referred to each of

558-512: The gap may be due to removal by erosion, in which case it may be called a stratigraphic vacuity. It is called a hiatus because deposition was on hold for a period of time. A physical gap may represent both a period of non-deposition and a period of erosion. A geologic fault may cause the appearance of a hiatus. Magnetostratigraphy is a chronostratigraphic technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout

589-444: The high levels of salt in normal sea water coagulate the clay into coarse grains. Since the saline waters leave coarse particles all year, it is nearly impossible to distinguish the individual layers in salt waters. Indeed, clay flocculation occurs at high ionic strength due to the collapse of the clay electrical double layer (EDL), which decreases the electrostatic repulsion between negatively charged clay particles. Although

620-470: The most important and illuminating in studies of past climate change . Varves are amongst the smallest-scale events recognised in stratigraphy . An annual layer can be highly visible because the particles washed into the layer in the spring when there is greater flow strength are much coarser than those deposited later in the year. This forms a pair of layers—one coarse and one fine—for each annual cycle. Varves form only in fresh or brackish water, because

651-437: The rock layers. Strata from widespread locations containing the same fossil fauna and flora are said to be correlatable in time. Biologic stratigraphy was based on William Smith's principle of faunal succession , which predated, and was one of the first and most powerful lines of evidence for, biological evolution . It provides strong evidence for the formation ( speciation ) and extinction of species . The geologic time scale

SECTION 20

#1732779855570

682-484: The rocks formation can be derived. The ultimate aim of chronostratigraphy is to place dates on the sequence of deposition of all rocks within a geological region, and then to every region, and by extension to provide an entire geologic record of the Earth. A gap or missing strata in the geological record of an area is called a stratigraphic hiatus. This may be the result of a halt in the deposition of sediment. Alternatively,

713-654: The sediments were deposited in a marine environment. The Earlie Formation underlies the plains of Alberta and eastern Saskatchewan. It rests conformably on the unnamed basal sandstone unit that was deposited on the Precambrian rocks of the North American Craton at the start of a marine transgression of that area. It is overlain by the Pika Formation or, in areas where the Pika is not present, by

744-429: The separate components comprising a single annual layer in glacial lake sediments , but at the 1910 Geological Congress, the Swedish geologist Gerard De Geer (1858–1943) proposed a new formal definition, where varve means the whole of any annual sedimentary layer. More recently introduced terms such as 'annually laminated' are synonymous with varve. Of the many rhythmites in the geological record, varves are one of

775-405: The significance of strata or rock layering and the importance of fossil markers for correlating strata; he created the first geologic map of England. Other influential applications of stratigraphy in the early 19th century were by Georges Cuvier and Alexandre Brongniart , who studied the geology of the region around Paris. Variation in rock units, most obviously displayed as visible layering,

806-406: The specialized field of isotopic stratigraphy. Cyclostratigraphy documents the often cyclic changes in the relative proportions of minerals (particularly carbonates ), grain size, thickness of sediment layers ( varves ) and fossil diversity with time, related to seasonal or longer term changes in palaeoclimates . Biostratigraphy or paleontologic stratigraphy is based on fossil evidence in

837-501: The term varve was not introduced until the late nineteenth century, the concept of an annual rhythm of deposition is at least two centuries old. In the 1840s, Edward Hitchcock suspected laminated sediment in North America could be seasonal, and in 1884 Warren Upham postulated that light-dark laminated couplets represented a single year's deposition. Despite these earlier forays, the chief pioneer and populariser of varve research

868-429: The theoretical basis for stratigraphy when he introduced the law of superposition , the principle of original horizontality and the principle of lateral continuity in a 1669 work on the fossilization of organic remains in layers of sediment. The first practical large-scale application of stratigraphy was by William Smith in the 1790s and early 19th century. Known as the "Father of English geology", Smith recognized

899-509: The water column is resticted to warm months when productivity (ecology) is high. The corresponding dark colored layers are composed of organic matter and fine sediment particles transported and deposited during spring freshets as a result of winter snowmelt. The alternation of these two distinct layers allows for high-precision dating of sediment profiles, for each couplet is equivalent to one year. In addition to seasonal variation of sedimentary processes and deposition, varve formation requires

930-558: Was Gerard De Geer. While working for the Geological Survey of Sweden, De Geer noticed a close visual similarity between the laminated sediments he was mapping, and tree-rings . This prompted him to suggest the coarse-fine couplets frequently found in the sediments of glacial lakes were annual layers. The first varve chronology was constructed by De Geer in Stockholm in the late 19th century. Further work soon followed, and

961-529: Was developed during the 19th century, based on the evidence of biologic stratigraphy and faunal succession. This timescale remained a relative scale until the development of radiometric dating , which was based on an absolute time framework, leading to the development of chronostratigraphy. One important development is the Vail curve , which attempts to define a global historical sea-level curve according to inferences from worldwide stratigraphic patterns. Stratigraphy

Earlie Formation - Misplaced Pages Continue

#569430