Misplaced Pages

EasyGo

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

EasyGo is a joint venture between Norway , Sweden , Denmark and Austria , that enables use of a single electronic toll tag on toll roads , ferries and bridges in all the member countries. The purpose of EasyGo is to enable the use of one OBE for payment when driving through any toll facility one might encounter on the way through Northern Europe and Austria.

#507492

69-470: EasyGo is based on DSRC 5.8 GHz microwave technology and there are major differences between the operators. The toll stations have different design and there is no common EasyGo signage, although there are some common features. EasyGo was Europe's first commercial cross-border toll collection service. Initial discussions began in 2004, when the Svinesund Bridge between Norway and Sweden

138-647: A band being used for Milstar . Global Navigation Satellite Systems (GNSS) including the Chinese Beidou , the American Global Positioning System (introduced in 1978) and the Russian GLONASS broadcast navigational signals in various bands between about 1.2 GHz and 1.6 GHz. Radar is a radiolocation technique in which a beam of radio waves emitted by a transmitter bounces off an object and returns to

207-785: A satellite radio and mobile TV standard which, as with proprietary systems in the United States, is incompatible with the open standards used in the rest of the world. In May 2009, Inmarsat and Solaris Mobile (a joint venture between Eutelsat and SES ( EchoStar Mobile )) were each awarded a 2×15 MHz portion of the S band by the European Commission . The two companies are allowed two years to start providing pan-European MSS services for 18 years. Allocated frequencies are 1.98 to 2.01 GHz for Earth to space communications, and from 2.17 to 2.2 GHz for space to Earth communications. The Eutelsat W2A satellite

276-516: A standing wave is present, they may also be used to measure the distance between the nodes , which is equal to half the wavelength. The precision of this method is limited by the determination of the nodal locations. Microwaves are non-ionizing radiation, which means that microwave photons do not contain sufficient energy to ionize molecules or break chemical bonds, or cause DNA damage, as ionizing radiation such as x-rays or ultraviolet can. The word "radiation" refers to energy radiating from

345-487: A wireless router to connect them to the Internet, and in wireless access points in public places like coffee shops, hotels, libraries and airports to provide the public Internet access for mobile devices. Mobile services are operated in the 2.3 GHz to 2.6 GHz range, specifically between the 2300 - 2400 MHz band and the 2500 - 2690 MHz band. Spectrum in the 3.55 - 3.7 GHz band has been auctioned off in

414-458: A . Microwaves travel solely by line-of-sight paths; unlike lower frequency radio waves, they do not travel as ground waves which follow the contour of the Earth, or reflect off the ionosphere ( skywaves ). Although at the low end of the band they can pass through building walls enough for useful reception, usually rights of way cleared to the first Fresnel zone are required. Therefore, on

483-431: A computer-controlled array of antennas that produces a beam that can be electronically steered in different directions. At microwave frequencies, the transmission lines which are used to carry lower frequency radio waves to and from antennas, such as coaxial cable and parallel wire lines , have excessive power losses, so when low attenuation is required, microwaves are carried by metal pipes called waveguides . Due to

552-405: A coupled electric field and magnetic field could travel through space as an electromagnetic wave , and proposed that light consisted of electromagnetic waves of short wavelength. In 1888, German physicist Heinrich Hertz was the first to demonstrate the existence of electromagnetic waves, generating radio waves using a primitive spark gap radio transmitter . S band The S band

621-535: A frequency near 2.45 GHz (12 cm) through food, causing dielectric heating primarily by absorption of the energy in water. Microwave ovens became common kitchen appliances in Western countries in the late 1970s, following the development of less expensive cavity magnetrons . Water in the liquid state possesses many molecular interactions that broaden the absorption peak. In the vapor phase, isolated water molecules absorb at around 22 GHz, almost ten times

690-422: A harmonic generator and a mixer. The accuracy of the measurement is limited by the accuracy and stability of the reference source. Mechanical methods require a tunable resonator such as an absorption wavemeter , which has a known relation between a physical dimension and frequency. In a laboratory setting, Lecher lines can be used to directly measure the wavelength on a transmission line made of parallel wires,

759-530: A place in the electromagnetic spectrum with frequency above ordinary radio waves , and below infrared light: In descriptions of the electromagnetic spectrum , some sources classify microwaves as radio waves, a subset of the radio wave band, while others classify microwaves and radio waves as distinct types of radiation. This is an arbitrary distinction. Bands of frequencies in the microwave spectrum are designated by letters. Unfortunately, there are several incompatible band designation systems, and even within

SECTION 10

#1732798589508

828-515: A receiver, allowing the location, range, speed, and other characteristics of the object to be determined. The short wavelength of microwaves causes large reflections from objects the size of motor vehicles, ships and aircraft. Also, at these wavelengths, the high gain antennas such as parabolic antennas which are required to produce the narrow beamwidths needed to accurately locate objects are conveniently small, allowing them to be rapidly turned to scan for objects. Therefore, microwave frequencies are

897-449: A source and not to radioactivity . The main effect of absorption of microwaves is to heat materials; the electromagnetic fields cause polar molecules to vibrate. It has not been shown conclusively that microwaves (or other non-ionizing electromagnetic radiation) have significant adverse biological effects at low levels. Some, but not all, studies suggest that long-term exposure may have a carcinogenic effect. During World War II , it

966-574: A system the frequency ranges corresponding to some of the letters vary somewhat between different application fields. The letter system had its origin in World War 2 in a top-secret U.S. classification of bands used in radar sets; this is the origin of the oldest letter system, the IEEE radar bands. One set of microwave frequency bands designations by the Radio Society of Great Britain (RSGB),

1035-492: A vacuum under the influence of controlling electric or magnetic fields, and include the magnetron (used in microwave ovens ), klystron , traveling-wave tube (TWT), and gyrotron . These devices work in the density modulated mode, rather than the current modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream of electrons. Low-power microwave sources use solid-state devices such as

1104-587: Is 2.4 GHz IEEE 802.11 Wi-Fi wireless networks, allowing smartphones, laptops, printers and TVs to connect to the internet without cables. The largest use of this band is by Wi-Fi networks; the IEEE 802.11b and 802.11g standards use the 2.4 GHz section of the S band. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers , smartphones , smart TVs , printers , and smart speakers together and to

1173-586: Is a cross-border toll collection service, allowing drivers of vehicles over 3.5 tons to pay tolls in Austria, Denmark, Sweden and Norway, using only one OBE in all four countries. There are several Service providers that offer the EasyGo services. However, some Service Providers only supply OBEs for one of the services. For an OBE to be valid in a toll domain, an agreement between the Service Provider and

1242-625: Is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4  gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control , weather radar , surface ship radar , and some communications satellites , particularly satellites used by NASA to communicate with

1311-566: Is also more bandwidth in the microwave spectrum than in the rest of the radio spectrum; the usable bandwidth below 300 MHz is less than 300 MHz while many GHz can be used above 300 MHz. Typically, microwaves are used in remote broadcasting of news or sports events as the backhaul link to transmit a signal from a remote location to a television station from a specially equipped van. See broadcast auxiliary service (BAS), remote pickup unit (RPU), and studio/transmitter link (STL). Most satellite communications systems operate in

1380-416: Is also used to perform rotational spectroscopy and can be combined with electrochemistry as in microwave enhanced electrochemistry . Microwave frequency can be measured by either electronic or mechanical techniques. Frequency counters or high frequency heterodyne systems can be used. Here the unknown frequency is compared with harmonics of a known lower frequency by use of a low-frequency generator,

1449-555: Is inversely proportional to the transmitted frequency. Microwaves are used in spacecraft communication, and much of the world's data, TV, and telephone communications are transmitted long distances by microwaves between ground stations and communications satellites . Microwaves are also employed in microwave ovens and in radar technology. Before the advent of fiber-optic transmission, most long-distance telephone calls were carried via networks of microwave radio relay links run by carriers such as AT&T Long Lines . Starting in

SECTION 20

#1732798589508

1518-424: Is limited to a few kilometers. A spectral band structure causes absorption peaks at specific frequencies (see graph at right). Above 100 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so effective that it is in effect opaque , until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges. In a microwave beam directed at an angle into

1587-432: Is tabulated below: Other definitions exist. The term P band is sometimes used for UHF frequencies below the L band but is now obsolete per IEEE Std 521. When radars were first developed at K band during World War 2, it was not known that there was a nearby absorption band (due to water vapor and oxygen in the atmosphere). To avoid this problem, the original K band was split into a lower band, K u , and upper band, K

1656-617: Is the range between 1 and 100 GHz (wavelengths between 30 cm and 3 mm), or between 1 and 3000 GHz (30 cm and 0.1 mm). The prefix micro- in microwave is not meant to suggest a wavelength in the micrometer range; rather, it indicates that microwaves are small (having shorter wavelengths), compared to the radio waves used in prior radio technology . The boundaries between far infrared , terahertz radiation , microwaves, and ultra-high-frequency (UHF) are fairly arbitrary and are used variously between different fields of study. In all cases, microwaves include

1725-616: The Big Bang , and is one of the few sources of information about conditions in the early universe. Due to the expansion and thus cooling of the Universe, the originally high-energy radiation has been shifted into the microwave region of the radio spectrum. Sufficiently sensitive radio telescopes can detect the CMBR as a faint signal that is not associated with any star, galaxy, or other object. A microwave oven passes microwave radiation at

1794-607: The James Webb Space Telescope , launched in 2021, utilizes 2 GHz S-band to enable 40 kbps real time telemetry from near the Sun–Earth L2 point . Microwave ovens operate at 2495 or 2450 MHz in the ISM band IEEE 802.16a . Some digital cordless telephones operate in this band too. 802.16e standards use a part of the frequency range of S band; under WiMAX standards. Most vendors are manufacturing equipment in

1863-617: The Norwegian Public Roads Administration withdrew from EasyGo starting a transition period until 31 March 2022. AutoPASS providers need to be EETS-registered and approved by the operators in order for the OBE to be valid in those toll facilities after the transition period ends. The EasyGo Basic service is for vehicles only travelling in Scandinavia or has a maximum allowable weight of 3.5 tons. EasyGo+

1932-743: The Space Shuttle and the International Space Station . The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. India's regional satellite navigation network ( IRNSS ) broadcasts on 2.483778 to 2.500278 GHz. The S band also contains the 2.4–2.483 GHz ISM band , widely used for low power unlicensed microwave devices such as cordless phones , wireless headphones ( Bluetooth ), garage door openers , keyless vehicle locks , baby monitors as well as for medical diathermy machines and microwave ovens (typically at 2.495 GHz). One of its largest uses

2001-577: The field-effect transistor (at least at lower frequencies), tunnel diodes , Gunn diodes , and IMPATT diodes . Low-power sources are available as benchtop instruments, rackmount instruments, embeddable modules and in card-level formats. A maser is a solid-state device which amplifies microwaves using similar principles to the laser , which amplifies higher frequency light waves. All warm objects emit low level microwave black-body radiation , depending on their temperature , so in meteorology and remote sensing , microwave radiometers are used to measure

2070-632: The laws in the countries was required. EasyGo countries have four different currencies and variable VAT levels . From 1 January 2021, OBE's must be issued by EETS-registered providers in order to be used at the Great Belt Fixed Link. Few of the Norwegian AutoPass providers were EETS providers, and most AutoPASS consequently could not be used at Storebælt. The Norwegian AutoPass providers SkyttelPASS, Flyt and Fremtind Service have since been EETS-registered. In December 2021,

2139-438: The 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges. Mobile Broadband Wireless Access (MBWA) protocols based on standards specifications such as IEEE 802.20 or ATIS/ANSI HC-SDMA (such as iBurst ) operate between 1.6 and 2.3 GHz to give mobility and in-building penetration characteristics similar to mobile phones but with vastly greater spectral efficiency. Some mobile phone networks, like GSM , use

EasyGo - Misplaced Pages Continue

2208-412: The 2700–2900 MHz range. Particle accelerators may be powered by S-band RF sources. The frequencies are then standardized at 2.998 GHz corresponding to a wavelength of 100 mm (Europe) or 2.856 GHz (US). The National NEXRAD Radar network operates with S-band frequencies. Before implementation of this system, C-band frequencies were commonly used for weather surveillance. In

2277-425: The 5 GHz range. Licensed long-range (up to about 25 km) Wireless Internet Access services have been used for almost a decade in many countries in the 3.5–4.0 GHz range. The FCC recently carved out spectrum for carriers that wish to offer services in this range in the U.S. — with emphasis on 3.65 GHz. Dozens of service providers across the country are securing or have already received licenses from

2346-689: The 95 GHz focused beam heats the skin to a temperature of 54 °C (129 °F) at a depth of 0.4 millimetres ( 1 ⁄ 64  in). The United States Air Force and Marines are currently using this type of active denial system in fixed installations. Microwave radiation is used in electron paramagnetic resonance (EPR or ESR) spectroscopy, typically in the X-band region (~9 GHz) in conjunction typically with magnetic fields of 0.3 T. This technique provides information on unpaired electrons in chemical systems, such as free radicals or transition metal ions such as Cu(II). Microwave radiation

2415-437: The C, X, K a , or K u bands of the microwave spectrum. These frequencies allow large bandwidth while avoiding the crowded UHF frequencies and staying below the atmospheric absorption of EHF frequencies. Satellite TV either operates in the C band for the traditional large dish fixed satellite service or K u band for direct-broadcast satellite . Military communications run primarily over X or K u -band links, with K

2484-457: The FCC to operate in this band. The WIMAX service offerings that can be carried on the 3.65 GHz band will give business customers another option for connectivity. Metropolitan area network (MAN) protocols, such as WiMAX (Worldwide Interoperability for Microwave Access) are based on standards such as IEEE 802.16 , designed to operate between 2 and 11 GHz. Commercial implementations are in

2553-400: The S band between 2.0 and 2.2 GHz for the creation of Mobile Satellite Service (MSS) networks in connection with Ancillary Terrestrial Components (ATC). There have been a number of companies attempting to deploy such networks, including ICO Satellite Management (now Pendrell Corporation ) and TerreStar (defunct). The 2.6 GHz range is used for China Multimedia Mobile Broadcasting ,

2622-498: The Toll Domain/Toll Charger is required. Microwave Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed. A more common definition in radio-frequency engineering

2691-500: The United States to be used for CBRS services and spectrum between 3.45 - 3.55 GHz and 3.7 - 3.98 GHz has been auctioned off by the FCC for 5G although this spectrum is referred to as C Band by the agency. In the United States, the FCC approved satellite-based Digital Audio Radio Service (DARS) broadcasting in the S band from 2.31 to 2.36 GHz in 1995, used by Sirius XM Radio . More recently, it has approved portions of

2760-735: The United States, the 3.55 to 3.7 GHz band is becoming shared spectrum under rules adopted by the Federal Communications Commission in April 2015 as a result of the National Broadband Plan (United States) . The biggest user of CBRS ( Citizens Broadband Radio Service ) spectrum is the United States Navy . Cable companies are planning to use the band for wireless broadband in rural areas, with Charter Communications beginning tests of

2829-548: The atmosphere and provide high-quality transmissions to small-diameter 80 cm antennas in regions that experience heavy rainfall such as Indonesia. A similar Ku- or C-band reception performance requires greater transmission power or much larger dish to penetrate the moist atmosphere. Many NASA spacecraft (near Earth and interplanetary) can communicate in the S-band, often using the Deep Space Network . For example,

EasyGo - Misplaced Pages Continue

2898-490: The body. The lens and cornea of the eye are especially vulnerable because they contain no blood vessels that can carry away heat. Exposure to microwave radiation can produce cataracts by this mechanism, because the microwave heating denatures proteins in the crystalline lens of the eye (in the same way that heat turns egg whites white and opaque). Exposure to heavy doses of microwave radiation (as from an oven that has been tampered with to allow operation even with

2967-508: The door open) can produce heat damage in other tissues as well, up to and including serious burns that may not be immediately evident because of the tendency for microwaves to heat deeper tissues with higher moisture content. Microwaves were first generated in the 1890s in some of the earliest radio wave experiments by physicists who thought of them as a form of "invisible light". James Clerk Maxwell in his 1873 theory of electromagnetism , now called Maxwell's equations , had predicted that

3036-466: The early 1950s, frequency-division multiplexing was used to send up to 5,400 telephone channels on each microwave radio channel, with as many as ten radio channels combined into one antenna for the hop to the next site, up to 70 km away. Wireless LAN protocols , such as Bluetooth and the IEEE 802.11 specifications used for Wi-Fi, also use microwaves in the 2.4 GHz ISM band , although 802.11a uses ISM band and U-NII frequencies in

3105-819: The earth's surface as ground waves , or reflect from the ionosphere , so terrestrial microwave communication links are limited by the visual horizon to about 40 miles (64 km). At the high end of the band, they are absorbed by gases in the atmosphere, limiting practical communication distances to around a kilometer. Microwaves are widely used in modern technology, for example in point-to-point communication links, wireless networks , microwave radio relay networks, radar , satellite and spacecraft communication , medical diathermy and cancer treatment, remote sensing , radio astronomy , particle accelerators , spectroscopy , industrial heating, collision avoidance systems , garage door openers and keyless entry systems , and for cooking food in microwave ovens . Microwaves occupy

3174-528: The entire super high frequency (SHF) band (3 to 30 GHz, or 10 to 1 cm) at minimum. A broader definition includes UHF and extremely high frequency (EHF) ( millimeter wave ; 30 to 300 GHz) bands as well. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S , C , X , K u , K , or K a band , or by similar NATO or EU designations. Microwaves travel by line-of-sight ; unlike lower frequency radio waves , they do not diffract around hills, follow

3243-414: The frequency can then be calculated. A similar technique is to use a slotted waveguide or slotted coaxial line to directly measure the wavelength. These devices consist of a probe introduced into the line through a longitudinal slot so that the probe is free to travel up and down the line. Slotted lines are primarily intended for measurement of the voltage standing wave ratio on the line. However, provided

3312-406: The frequency of the microwave oven. Microwave heating is used in industrial processes for drying and curing products. Many semiconductor processing techniques use microwaves to generate plasma for such purposes as reactive ion etching and plasma-enhanced chemical vapor deposition (PECVD). Microwaves are used in stellarators and tokamak experimental fusion reactors to help break down

3381-458: The gas into a plasma and heat it to very high temperatures. The frequency is tuned to the cyclotron resonance of the electrons in the magnetic field, anywhere between 2–200 GHz, hence it is often referred to as Electron Cyclotron Resonance Heating (ECRH). The upcoming ITER thermonuclear reactor will use up to 20 MW of 170 GHz microwaves. Microwaves can be used to transmit power over long distances, and post- World War 2 research

3450-459: The high cost and maintenance requirements of waveguide runs, in many microwave antennas the output stage of the transmitter or the RF front end of the receiver is located at the antenna. The term microwave also has a more technical meaning in electromagnetics and circuit theory . Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly

3519-577: The low-microwave/high-UHF frequencies around 1.8 and 1.9 GHz in the Americas and elsewhere, respectively. DVB-SH and S-DMB use 1.452 to 1.492 GHz, while proprietary/incompatible satellite radio in the U.S. uses around 2.3 GHz for DARS . Microwave radio is used in point-to-point telecommunications transmissions because, due to their short wavelength, highly directional antennas are smaller and therefore more practical than they would be at longer wavelengths (lower frequencies). There

SECTION 50

#1732798589508

3588-759: The main frequencies used in radar. Microwave radar is widely used for applications such as air traffic control , weather forecasting, navigation of ships, and speed limit enforcement . Long-distance radars use the lower microwave frequencies since at the upper end of the band atmospheric absorption limits the range, but millimeter waves are used for short-range radar such as collision avoidance systems . Microwaves emitted by astronomical radio sources ; planets, stars, galaxies , and nebulas are studied in radio astronomy with large dish antennas called radio telescopes . In addition to receiving naturally occurring microwave radiation, radio telescopes have been used in active radar experiments to bounce microwaves off planets in

3657-520: The origin of the Universe . Microwave technology is extensively used for point-to-point telecommunications (i.e., non-broadcast uses). Microwaves are especially suitable for this use since they are more easily focused into narrower beams than radio waves, allowing frequency reuse ; their comparatively higher frequencies allow broad bandwidth and high data transmission rates , and antenna sizes are smaller than at lower frequencies because antenna size

3726-425: The printed circuit inverted F antenna (PIFA) used in cell phones. Their short wavelength also allows narrow beams of microwaves to be produced by conveniently small high gain antennas from a half meter to 5 meters in diameter. Therefore, beams of microwaves are used for point-to-point communication links, and for radar . An advantage of narrow beams is that they do not interfere with nearby equipment using

3795-641: The range of 3.5 GHz. The exact frequency range allocated for this type of use varies between countries. In North America, 2.4–2.483 GHz is an ISM band used for unlicensed spectrum devices such as cordless phones , wireless headphones , and video senders , among other consumer electronics uses, including Bluetooth which operates between 2.402 GHz and 2.480 GHz. Amateur radio and amateur satellite operators have two S-band allocations, 13 cm (2.4 GHz) and 9 cm (3.4 GHz). Amateur television repeaters also operate in these bands. Airport surveillance radars typically operate in

3864-639: The same as the dimensions of the circuit, so that lumped-element circuit theory is inaccurate, and instead distributed circuit elements and transmission-line theory are more useful methods for design and analysis. As a consequence, practical microwave circuits tend to move away from the discrete resistors , capacitors , and inductors used with lower-frequency radio waves . Open-wire and coaxial transmission lines used at lower frequencies are replaced by waveguides and stripline , and lumped-element tuned circuits are replaced by cavity resonators or resonant stubs . In turn, at even higher frequencies, where

3933-406: The same frequency, allowing frequency reuse by nearby transmitters. Parabolic ("dish") antennas are the most widely used directive antennas at microwave frequencies, but horn antennas , slot antennas and lens antennas are also used. Flat microstrip antennas are being increasingly used in consumer devices. Another directive antenna practical at microwave frequencies is the phased array ,

4002-468: The service in January 2018. The band is also used as a transmit intermediate frequency in satellite communications as a replacement for L band where a single/shared coaxial connection is used between the modem/IDU and antenna/ODU for both the transmit and receive signals. This is to prevent interference between the transmit and receive signals which would otherwise not occur on a dual coaxial setup where

4071-898: The sky, a small amount of the power will be randomly scattered as the beam passes through the troposphere . A sensitive receiver beyond the horizon with a high gain antenna focused on that area of the troposphere can pick up the signal. This technique has been used at frequencies between 0.45 and 5 GHz in tropospheric scatter (troposcatter) communication systems to communicate beyond the horizon, at distances up to 300 km. The short wavelengths of microwaves allow omnidirectional antennas for portable devices to be made very small, from 1 to 20 centimeters long, so microwave frequencies are widely used for wireless devices such as cell phones , cordless phones , and wireless LANs (Wi-Fi) access for laptops , and Bluetooth earphones. Antennas used include short whip antennas , rubber ducky antennas , sleeve dipoles , patch antennas , and increasingly

4140-651: The solar system, to determine the distance to the Moon or map the invisible surface of Venus through cloud cover. A recently completed microwave radio telescope is the Atacama Large Millimeter Array , located at more than 5,000 meters (16,597 ft) altitude in Chile, which observes the universe in the millimeter and submillimeter wavelength ranges. The world's largest ground-based astronomy project to date, it consists of more than 66 dishes and

4209-433: The surface of the Earth, microwave communication links are limited by the visual horizon to about 30–40 miles (48–64 km). Microwaves are absorbed by moisture in the atmosphere, and the attenuation increases with frequency, becoming a significant factor ( rain fade ) at the high end of the band. Beginning at about 40 GHz, atmospheric gases also begin to absorb microwaves, so above this frequency microwave transmission

SECTION 60

#1732798589508

4278-464: The temperature of objects or terrain. The sun and other astronomical radio sources such as Cassiopeia A emit low level microwave radiation which carries information about their makeup, which is studied by radio astronomers using receivers called radio telescopes . The cosmic microwave background radiation (CMBR), for example, is a weak microwave noise filling empty space which is a major source of information on cosmology 's Big Bang theory of

4347-530: The transmit and receive signals are separate and both can use the whole L-band frequency range. In a single coaxial connection using S-Band to "frequency shift" the transmit signal away from L band, a multiplier such as 10, is usually applied to form the SHF frequency. For example, the modem would transmit at 2.815 GHz IF (S Band) to the ODU and then the ODU up-converts this signal to 28.15 GHz SHF ( Ka Band ) towards

4416-410: The wavelength of the electromagnetic waves becomes small in comparison to the size of the structures used to process them, microwave techniques become inadequate, and the methods of optics are used. High-power microwave sources use specialized vacuum tubes to generate microwaves. These devices operate on different principles from low-frequency vacuum tubes, using the ballistic motion of electrons in

4485-670: Was being built. The Norwegian Public Roads Administration and the Swedish Transport Agency , together with Sund & Bælt (operator of the Great Belt Fixed Link ) and Øresundsbro Konsortiet (Danish/Swedish joint venture, operator of the Øresund Bridge ),established EasyGo in 2007. Austrian ASFiNAG joined the partnership in 2009. All existing systems implemented in the Nordic countries by 2007 ( AutoPASS and BroBizz ) are included, and no revision of

4554-416: Was built in an international collaboration by Europe, North America, East Asia and Chile. A major recent focus of microwave radio astronomy has been mapping the cosmic microwave background radiation (CMBR) discovered in 1964 by radio astronomers Arno Penzias and Robert Wilson . This faint background radiation, which fills the universe and is almost the same in all directions, is "relic radiation" from

4623-443: Was done to examine possibilities. NASA worked in the 1970s and early 1980s to research the possibilities of using solar power satellite (SPS) systems with large solar arrays that would beam power down to the Earth's surface via microwaves. Less-than-lethal weaponry exists that uses millimeter waves to heat a thin layer of human skin to an intolerable temperature so as to make the targeted person move away. A two-second burst of

4692-453: Was launched in April 2009 and is located at 10° East. In Indonesia , S band is used by MNC Vision for Direct-to-Home satellite television (unlike similar services in most countries, which use K u band ). The frequency typically allocated for this service is 2.5 to 2.7 GHz (LOF 1.570 GHz). IndoStar-1 was the world's first commercial communications satellite to use S-band frequencies for broadcast, which efficiently penetrate

4761-493: Was observed that individuals in the radiation path of radar installations experienced clicks and buzzing sounds in response to microwave radiation. Research by NASA in the 1970s has shown this to be caused by thermal expansion in parts of the inner ear. In 1955, Dr. James Lovelock was able to reanimate rats chilled to 0 and 1 °C (32 and 34 °F) using microwave diathermy. When injury from exposure to microwaves occurs, it usually results from dielectric heating induced in

#507492