The Electrochemical Society is a learned society ( professional association ) based in the United States that supports scientific inquiry in the field of electrochemistry solid-state science and related technology. The Society membership comprises more than 8,000 scientists and engineers in over 85 countries at all degree levels and in all fields of electrochemistry, solid-state science and related technologies. Additional support is provided by institutional members including corporations and laboratories.
69-429: The Edward Goodrich Acheson Award was established by The Electrochemical Society (ECS) in 1928 to honor the memory of Edward Goodrich Acheson , a charter member of ECS. The award is presented every 2 years for "conspicuous contribution to the advancement of the objectives, purposes, and activities of the society (ECS)". Recipients of the award receive a gold medal, wall plaque, and cash prize, ECS Life membership, and
138-625: A band gap of zero and thus cannot be used in transistors because of its constant conductivity, an inability to turn off. The zigzag edges of the nanoribbons introduce localized energy states in the conduction and valence bands and thus a bandgap that enables switching when fabricated as a transistor. As an example, a typical GNR of width of 10 nm has a desirable bandgap energy of 0.4 eV. ) More research will need to be performed, however, on sub-50 nm graphene layers, as its resistivity value increases and thus electron mobility decreases. In April 2005, Gordon Moore stated in an interview that
207-508: A law of physics , it is an empirical relationship . It is an experience-curve law , a type of law quantifying efficiency gains from experience in production. The observation is named after Gordon Moore , the co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 noted that the number of components per integrated circuit had been doubling every year , and projected this rate of growth would continue for at least another decade. In 1975, looking forward to
276-501: A self-fulfilling prophecy . Advancements in digital electronics , such as the reduction in quality-adjusted microprocessor prices, the increase in memory capacity ( RAM and flash ), the improvement of sensors , and even the number and size of pixels in digital cameras , are strongly linked to Moore's law. These ongoing changes in digital electronics have been a driving force of technological and social change, productivity , and economic growth. Industry experts have not reached
345-572: A 2015 interview, Moore noted of the 1965 article: "... I just did a wild extrapolation saying it's going to continue to double every year for the next 10 years." One historian of the law cites Stigler's law of eponymy , to introduce the fact that the regular doubling of components was known to many working in the field. In 1974, Robert H. Dennard at IBM recognized the rapid MOSFET scaling technology and formulated what became known as Dennard scaling , which describes that as MOS transistors get smaller, their power density stays constant such that
414-479: A basic measure of value for a digital camera, demonstrating the historical linearity (on a log scale) of this market and the opportunity to predict the future trend of digital camera price, LCD and LED screens, and resolution. The great Moore's law compensator (TGMLC) , also known as Wirth's law – generally is referred to as software bloat and is the principle that successive generations of computer software increase in size and complexity, thereby offsetting
483-425: A complimentary meeting registration. The Edward Goodrich Acheson Award is the first and most prestigious award of The Electrochemical Society. The award was established by a gift of $ 25,000 from past president (and namesake of the award) Edward Goodrich Acheson. Originally, recipients were presented with a prize of $ 1,000, a gold medal, and a bronze replica, with the intention that the gold medal would "find its way to
552-478: A consensus on exactly when Moore's law will cease to apply. Microprocessor architects report that semiconductor advancement has slowed industry-wide since around 2010, slightly below the pace predicted by Moore's law. In September 2022, Nvidia CEO Jensen Huang considered Moore's law dead, while Intel CEO Pat Gelsinger was of the opposite view. In 1959, Douglas Engelbart studied the projected downscaling of integrated circuit (IC) size, publishing his results in
621-459: A consequence of shrinking dimensions, Dennard scaling predicted that power consumption per unit area would remain constant. Combining these effects, David House deduced that computer chip performance would roughly double every 18 months. Also due to Dennard scaling, this increased performance would not be accompanied by increased power, i.e., the energy-efficiency of silicon -based computer chips roughly doubles every 18 months. Dennard scaling ended in
690-483: A factor of two per year". Dennard scaling – This posits that power usage would decrease in proportion to area (both voltage and current being proportional to length) of transistors. Combined with Moore's law, performance per watt would grow at roughly the same rate as transistor density, doubling every 1–2 years. According to Dennard scaling transistor dimensions would be scaled by 30% (0.7×) every technology generation, thus reducing their area by 50%. This would reduce
759-891: A functional transistor. Below are several non-silicon substitutes in the fabrication of small nanometer transistors. One proposed material is indium gallium arsenide , or InGaAs. Compared to their silicon and germanium counterparts, InGaAs transistors are more promising for future high-speed, low-power logic applications. Because of intrinsic characteristics of III–V compound semiconductors , quantum well and tunnel effect transistors based on InGaAs have been proposed as alternatives to more traditional MOSFET designs. Biological computing research shows that biological material has superior information density and energy efficiency compared to silicon-based computing. Various forms of graphene are being studied for graphene electronics , e.g. graphene nanoribbon transistors have shown promise since its appearance in publications in 2008. (Bulk graphene has
SECTION 10
#1732793631014828-555: A fundamental limit. By then they'll be able to make bigger chips and have transistor budgets in the billions. In 2016 the International Technology Roadmap for Semiconductors , after using Moore's Law to drive the industry since 1998, produced its final roadmap. It no longer centered its research and development plan on Moore's law. Instead, it outlined what might be called the More than Moore strategy in which
897-578: A non-planar tri-gate FinFET at 22 nm in 2012 that is faster and consumes less power than a conventional planar transistor. The rate of performance improvement for single-core microprocessors has slowed significantly. Single-core performance was improving by 52% per year in 1986–2003 and 23% per year in 2003–2011, but slowed to just seven percent per year in 2011–2018. Quality adjusted price of IT equipment – The price of information technology (IT), computers and peripheral equipment, adjusted for quality and inflation, declined 16% per year on average over
966-422: A physical limit, some forecasters are optimistic about the continuation of technological progress in a variety of other areas, including new chip architectures, quantum computing, and AI and machine learning. Nvidia CEO Jensen Huang declared Moore's law dead in 2022; several days later, Intel CEO Pat Gelsinger countered with the opposite claim. Digital electronics have contributed to world economic growth in
1035-437: A prediction on the future of the semiconductor components industry over the next ten years. His response was a brief article entitled "Cramming more components onto integrated circuits". Within his editorial, he speculated that by 1975 it would be possible to contain as many as 65 000 components on a single quarter-square-inch (~ 1.6 cm ) semiconductor. The complexity for minimum component costs has increased at
1104-491: A rate of doubling approximately every two years. He outlined several contributing factors for this exponential behavior: Shortly after 1975, Caltech professor Carver Mead popularized the term "Moore's law". Moore's law eventually came to be widely accepted as a goal for the semiconductor industry, and it was cited by competitive semiconductor manufacturers as they strove to increase processing power. Moore viewed his eponymous law as surprising and optimistic: "Moore's law
1173-421: A rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. Moore posited a log–linear relationship between device complexity (higher circuit density at reduced cost) and time. In
1242-585: A year 2000 computer. Library expansion – was calculated in 1945 by Fremont Rider to double in capacity every 16 years, if sufficient space were made available. He advocated replacing bulky, decaying printed works with miniaturized microform analog photographs, which could be duplicated on-demand for library patrons or other institutions. He did not foresee the digital technology that would follow decades later to replace analog microform with digital imaging, storage, and transmission media. Automated, potentially lossless digital technologies allowed vast increases in
1311-507: Is "a natural part of the history of Moore's law". The rate of improvement in physical dimensions known as Dennard scaling also ended in the mid-2000s. As a result, much of the semiconductor industry has shifted its focus to the needs of major computing applications rather than semiconductor scaling. Nevertheless, leading semiconductor manufacturers TSMC and Samsung Electronics have claimed to keep pace with Moore's law with 10 , 7 , and 5 nm nodes in mass production. As
1380-554: Is a 501(c)(3) non-profit organization . The Society publishes numerous journals including the Journal of The Electrochemical Society (the oldest peer-reviewed journal in its field), the Journal of Solid State Science and Technology , ECS Meeting Abstracts , ECS Transactions , and ECS Interface . The Society sponsors the ECS Monographs Series. These distinguished monographs, published by John Wiley & Sons, are
1449-427: Is a peer-reviewed journal covering fundamental and applied areas of solid-state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. The Electrochemical Society Interface is a publication for those in the field of solid-state and electrochemical science and technology. Published quarterly, this four-color magazine contains technical articles about
SECTION 20
#17327936310141518-646: Is a violation of Murphy's law . Everything gets better and better." The observation was even seen as a self-fulfilling prophecy . The doubling period is often misquoted as 18 months because of a separate prediction by Moore's colleague, Intel executive David House . In 1975, House noted that Moore's revised law of doubling transistor count every 2 years in turn implied that computer chip performance would roughly double every 18 months (with no increase in power consumption). Mathematically, Moore's law predicted that transistor count would double every 2 years due to shrinking transistor dimensions and other improvements. As
1587-400: Is another version, called Butters' Law of Photonics, a formulation that deliberately parallels Moore's law. Butters' law says that the amount of data coming out of an optical fiber is doubling every nine months. Thus, the cost of transmitting a bit over an optical network decreases by half every nine months. The availability of wavelength-division multiplexing (sometimes called WDM) increased
1656-493: Is the official conference proceedings publication of The Electrochemical Society. This publication features full-text content of proceedings from ECS meetings and ECS-sponsored meetings. ECST is a high-quality venue for authors and an excellent resource for researchers. The papers appearing in ECST are reviewed to ensure that submissions meet generally accepted scientific standards. ECS Meeting Abstracts contain extended abstracts of
1725-572: The 22 nm feature width around 2012, and continuing at 14 nm . Pat Gelsinger, Intel CEO, stated at the end of 2023 that "we're no longer in the golden era of Moore's Law, it's much, much harder now, so we're probably doubling effectively closer to every three years now, so we've definitely seen a slowing." The physical limits to transistor scaling have been reached due to source-to-drain leakage, limited gate metals and limited options for channel material. Other approaches are being investigated, which do not rely on physical scaling. These include
1794-483: The gate-all-around MOSFET ( GAAFET ) structure has even better gate control. Microprocessor architects report that semiconductor advancement has slowed industry-wide since around 2010, below the pace predicted by Moore's law. Brian Krzanich, the former CEO of Intel, announced, "Our cadence today is closer to two and a half years than two." Intel stated in 2015 that improvements in MOSFET devices have slowed, starting at
1863-713: The 1920s, topical interest area divisions began to be founded, including the High Temperature Materials Division and the Electrodeposition Division. In 1930, the international nature of the Society was officially recognized by dropping “American” from the name. A new category of membership was started in 1941 to permit industrial companies to support the Society’s mission. ECS began fulfilling the need for critical textbooks with
1932-468: The 2000s. Koomey later showed that a similar rate of efficiency improvement predated silicon chips and Moore's law, for technologies such as vacuum tubes. Microprocessor architects report that since around 2010, semiconductor advancement has slowed industry-wide below the pace predicted by Moore's law. Brian Krzanich , the former CEO of Intel, cited Moore's 1975 revision as a precedent for the current deceleration, which results from technical challenges and
2001-510: The Digital Library. ECS Monographs provide accounts on specific topics in electrochemistry and solid-state science and technology. Since the 1940s, ECS and publishers have cooperated to publish titles in these fields. JES is the flagship journal of The Electrochemical Society. Published continuously from 1902 to the present, JES is one of the most highly-cited journals in electrochemistry and solid-state science and technology. JSS
2070-507: The Middle East, North America, and Southern Asia; over 100 ECS student chapters are located in major universities in all of these regions as well as Eastern Europe and South Africa. Student members benefit from exposure to experts in their fields, sharing research, volunteer activities, and career development. ECS administers numerous international awards and supports STEM educational and outreach efforts. The Electrochemical Society
2139-683: The Society called for holding meetings and publishing papers presented there and the ensuing discussions. In 1902 the Society ushered in a new publication, Transactions of the American Electrochemical Society . In 1907 the first “local” section was formed at the University of Wisconsin. That same year, the American Electrochemical Society Bulletin was launched; it became the Journal of The Electrochemical Society in 1948. In
Edward Goodrich Acheson Award - Misplaced Pages Continue
2208-585: The Society in 1903 and enjoyed membership for 28 years. In 1965, Gordon Moore's seminal prediction, Moore's Law , developed its roots within the Society. ECS has included numerous Nobel laureates among its members, most recently the three co-winners of the 2019 Nobel Prize in Chemistry. John B. Goodenough , M. Stanley Whittingham , and Akira Yoshino shared the prize “for the development of lithium-ion batteries .” The Society has hosted scientific technical meetings since 1902 including its biannual meetings in
2277-549: The Society, through the ECS Honors & Awards Program —the international awards, medals, and prizes administered by the Society. Starting in 1919, Honorary Membership was bestowed for outstanding contributions to the Society. ECS's most prestigious award, the Edward Goodrich Acheson Award , established in 1928, is presented in even-numbered years for "conspicuous contribution to the advancement of
2346-468: The article "Microelectronics, and the Art of Similitude". Engelbart presented his findings at the 1960 International Solid-State Circuits Conference , where Moore was present in the audience. In 1965, Gordon Moore, who at the time was working as the director of research and development at Fairchild Semiconductor , was asked to contribute to the thirty-fifth anniversary issue of Electronics magazine with
2415-498: The breakdown is that at small sizes, current leakage poses greater challenges, and also causes the chip to heat up, which creates a threat of thermal runaway and therefore, further increases energy costs. The breakdown of Dennard scaling prompted a greater focus on multicore processors, but the gains offered by switching to more cores are lower than the gains that would be achieved had Dennard scaling continued. In another departure from Dennard scaling, Intel microprocessors adopted
2484-508: The capacity that could be placed on a single fiber by as much as a factor of 100. Optical networking and dense wavelength-division multiplexing (DWDM) is rapidly bringing down the cost of networking, and further progress seems assured. As a result, the wholesale price of data traffic collapsed in the dot-com bubble . Nielsen's Law says that the bandwidth available to users increases by 50% annually. Pixels per dollar – Similarly, Barry Hendy of Kodak Australia has plotted pixels per dollar as
2553-832: The cause of the productivity acceleration to technological innovations in the production of semiconductors that sharply reduced the prices of such components and of the products that contain them (as well as expanding the capabilities of such products)." The primary negative implication of Moore's law is that obsolescence pushes society up against the Limits to Growth . As technologies continue to rapidly "improve", they render predecessor technologies obsolete. In situations in which security and survivability of hardware or data are paramount, or in which resources are limited, rapid obsolescence often poses obstacles to smooth or continued operations. Several measures of digital technology are improving at exponential rates related to Moore's law, including
2622-409: The cost of computer power to the consumer falls, the cost for producers to fulfill Moore's law follows an opposite trend: R&D, manufacturing, and test costs have increased steadily with each new generation of chips. The cost of the tools, principally EUVL ( Extreme ultraviolet lithography ), used to manufacture chips doubles every 4 years. Rising manufacturing costs are an important consideration for
2691-812: The delay by 30% (0.7×) and therefore increase operating frequency by about 40% (1.4×). Finally, to keep electric field constant, voltage would be reduced by 30%, reducing energy by 65% and power (at 1.4× frequency) by 50%. Therefore, in every technology generation transistor density would double, circuit becomes 40% faster, while power consumption (with twice the number of transistors) stays the same. Dennard scaling ended in 2005–2010, due to leakage currents. The exponential processor transistor growth predicted by Moore does not always translate into exponentially greater practical CPU performance. Since around 2005–2007, Dennard scaling has ended, so even though Moore's law continued after that, it has not yielded proportional dividends in improved performance. The primary reason cited for
2760-450: The density of transistors at which the cost per transistor is the lowest. As more transistors are put on a chip, the cost to make each transistor decreases, but the chance that the chip will not work due to a defect increases. In 1965, Moore examined the density of transistors at which cost is minimized, and observed that, as transistors were made smaller through advances in photolithography , this number would increase at "a rate of roughly
2829-400: The disk media, thermal stability, and writability using available magnetic fields. Fiber-optic capacity – The number of bits per second that can be sent down an optical fiber increases exponentially, faster than Moore's law. Keck's law , in honor of Donald Keck . Network capacity – According to Gerald Butters, the former head of Lucent's Optical Networking Group at Bell Labs, there
Edward Goodrich Acheson Award - Misplaced Pages Continue
2898-411: The field. Notable members of The Electrochemical Society include numerous Nobel Prize laureates including the three co-winners of the 2019 Nobel Prize for Chemistry. Moore%27s law Moore's law is the observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than
2967-426: The fields of electrochemistry and solid state science and technology, and to the Society. The Vittorio de Nora Award was established in 1971 to recognize distinguished contributions to the field of electrochemical engineering and technology. Through competitive fellowship stipends, ECS supports students and young professionals as they pursue new ideas and forge connections with professionals both within and outside
3036-454: The five decades from 1959 to 2009. The pace accelerated, however, to 23% per year in 1995–1999 triggered by faster IT innovation, and later, slowed to 2% per year in 2010–2013. While quality-adjusted microprocessor price improvement continues, the rate of improvement likewise varies, and is not linear on a log scale. Microprocessor price improvement accelerated during the late 1990s, reaching 60% per year (halving every nine months) versus
3105-444: The key economic indicator of innovation." Moore's law describes a driving force of technological and social change, productivity, and economic growth. An acceleration in the rate of semiconductor progress contributed to a surge in U.S. productivity growth, which reached 3.4% per year in 1997–2004, outpacing the 1.6% per year during both 1972–1996 and 2005–2013. As economist Richard G. Anderson notes, "Numerous studies have traced
3174-469: The key technical challenges of engineering future nanoscale transistors is the design of gates. As device dimensions shrink, controlling the current flow in the thin channel becomes more difficult. Modern nanoscale transistors typically take the form of multi-gate MOSFETs , with the FinFET being the most common nanoscale transistor. The FinFET has gate dielectric on three sides of the channel. In comparison,
3243-400: The late twentieth and early twenty-first centuries. The primary driving force of economic growth is the growth of productivity , which Moore's law factors into. Moore (1995) expected that "the rate of technological progress is going to be controlled from financial realities". The reverse could and did occur around the late-1990s, however, with economists reporting that "Productivity growth is
3312-534: The latest developments in the field and presents news and information about and for Society members. ECS Meeting Abstracts contain extended abstracts of the technical papers presented at the ECS biannual meetings and ECS-sponsored meetings. This publication offers a first look into current research in the field. ECS Meeting Abstracts are freely available to all visitors to the ECS Digital Library. ECST
3381-535: The leading textbooks in their fields. The ECS Digital Library on IOPscience encompasses over 160,000 journal and magazine articles and meeting abstracts. The Society supports open access through the Society’s initiative to make research freely available to world readers and free for authors to publish. The Society has thirteen topic interest area divisions as well as regional sections in Asia, Europe, Latin America,
3450-486: The most complex chips. The graph at the top of this article shows this trend holds true today. As of 2017 , the commercially available processor possessing the highest number of transistors is the 48 core Centriq with over 18 billion transistors. Density at minimum cost per transistor – This is the formulation given in Moore's 1965 paper. It is not just about the density of transistors that can be achieved, but about
3519-502: The needs of applications drive chip development, rather than a focus on semiconductor scaling. Application drivers range from smartphones to AI to data centers. IEEE began a road-mapping initiative in 2016, "Rebooting Computing", named the International Roadmap for Devices and Systems (IRDS). Some forecasters, including Gordon Moore, predict that Moore's law will end by around 2025. Although Moore's Law will reach
SECTION 50
#17327936310143588-476: The next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. Moore's empirical evidence did not directly imply that the historical trend would continue, nevertheless his prediction has held since 1975 and has since become known as a "law". Moore's prediction has been used in the semiconductor industry to guide long-term planning and to set targets for research and development , thus functioning to some extent as
3657-459: The objectives, purposes, and activities of the society". Supporting students and early career scientists has been a long-held goal of The Electrochemical Society. The Norman Hackerman Young Author Award —established in 1928—is one of the first awards created by the Society. It is given for the best paper published in the Journal of The Electrochemical Society that year by a young author or co-authors. Recipients must be under 31 years of age. Among
3726-511: The performance gains predicted by Moore's law. In a 2008 article in InfoWorld , Randall C. Kennedy, formerly of Intel, introduces this term using successive versions of Microsoft Office between the year 2000 and 2007 as his premise. Despite the gains in computational performance during this time period according to Moore's law, Office 2007 performed the same task at half the speed on a prototypical year 2007 computer as compared to Office 2000 on
3795-415: The power use remains in proportion with area. Evidence from the semiconductor industry shows that this inverse relationship between power density and areal density broke down in the mid-2000s. At the 1975 IEEE International Electron Devices Meeting , Moore revised his forecast rate, predicting semiconductor complexity would continue to double annually until about 1980, after which it would decrease to
3864-550: The projection cannot be sustained indefinitely: "It can't continue forever. The nature of exponentials is that you push them out and eventually disaster happens." He also noted that transistors eventually would reach the limits of miniaturization at atomic levels: In terms of size [of transistors] you can see that we're approaching the size of atoms which is a fundamental barrier, but it'll be two or three generations before we get that far—but that's as far out as we've ever been able to see. We have another 10 to 20 years before we reach
3933-574: The publication of its second monograph, the Corrosion Handbook , by H. H. Uhlig in 1948. Throughout the latter half of the 20th century, the Society continued to grow in size and importance, expanding the number of its publications, and the significance of the technical research unveiled at its meetings. Over time, the Society’s members and publications’ authors have included many distinguished scientists and engineers. The Society’s original charter members included: Thomas A. Edison joined
4002-437: The rapid (in some cases hyperexponential) decreases in cost, and increases in performance, of a variety of technologies, including DNA sequencing, DNA synthesis, and a range of physical and computational tools used in protein expression and in determining protein structures. Eroom's law – is a pharmaceutical drug development observation that was deliberately written as Moore's Law spelled backwards in order to contrast it with
4071-506: The rapidity of information growth in an era that now sometimes is called the Information Age . Carlson curve – is a term coined by The Economist to describe the biotechnological equivalent of Moore's law, and is named after author Rob Carlson. Carlson accurately predicted that the doubling time of DNA sequencing technologies (measured by cost and performance) would be at least as fast as Moore's law. Carlson Curves illustrate
4140-485: The safe deposit box," while the replica was reserved for "everyday use". The Acheson family later agreed to have the medal be electroplated gold in order to keep the award fund in balance. Thanks to continuous donations from the Acheson family between 1942 and 1991, the endowment fund has allowed the monetary prize to be increased 3 times since its establishment. As listed by ECS: The Electrochemical Society ECS
4209-526: The semiconductor industry that on a semi-log plot approximates a straight line. I hesitate to review its origins and by doing so restrict its definition." Hard disk drive areal density – A similar prediction (sometimes called Kryder's law ) was made in 2005 for hard disk drive areal density . The prediction was later viewed as over-optimistic. Several decades of rapid progress in areal density slowed around 2010, from 30 to 100% per year to 10–15% per year, because of noise related to smaller grain size of
SECTION 60
#17327936310144278-622: The significant talents recognized at an early age by this award is Nobel laureate, M. Stanley Whittingham, who received it in 1970. The Olin Palladium Award (formerly the Palladium Medal Award), established in 1950, is presented in odd-numbered years to recognize "distinguished contributions to the field of electrochemical or corrosion science." ECS honors members with the designation, Fellow of The Electrochemical Society for having made significant accomplishments to
4347-419: The size, cost, density, and speed of components. Moore wrote only about the density of components, "a component being a transistor, resistor, diode or capacitor", at minimum cost. Transistors per integrated circuit – The most popular formulation is of the doubling of the number of transistors on ICs every two years. At the end of the 1970s, Moore's law became known as the limit for the number of transistors on
4416-461: The spin state of electron spintronics , tunnel junctions , and advanced confinement of channel materials via nano-wire geometry. Spin-based logic and memory options are being developed actively in labs. The vast majority of current transistors on ICs are composed principally of doped silicon and its alloys. As silicon is fabricated into single nanometer transistors, short-channel effects adversely change desired material properties of silicon as
4485-399: The spring and fall of each year. ECS publishes peer-reviewed technical journals, proceedings, monographs, conference abstracts, and a quarterly news magazine . Since 1902, the Society has published journals now available through ECS’s publishing partner. Several ECS journals which have ceased publication are now preserved as an archive. These archived publications are available through
4554-825: The sustaining of Moore's law. This led to the formulation of Moore's second law , also called Rock's law (named after Arthur Rock ), which is that the capital cost of a semiconductor fabrication plant also increases exponentially over time. Numerous innovations by scientists and engineers have sustained Moore's law since the beginning of the IC era. Some of the key innovations are listed below, as examples of breakthroughs that have advanced integrated circuit and semiconductor device fabrication technology, allowing transistor counts to grow by more than seven orders of magnitude in less than five decades. Computer industry technology road maps predicted in 2001 that Moore's law would continue for several generations of semiconductor chips. One of
4623-442: The technical papers presented at the ECS biannual meetings and ECS-sponsored meetings. This publication offers a first look into current research in the field. ECS Meeting Abstracts are freely available to all visitors to the ECS Digital Library. The society recognizes members for outstanding technical achievement in electrochemical and solid-state science and technology at various career levels, and recognizes exceptional service to
4692-489: The typical 30% improvement rate (halving every two years) during the years earlier and later. Laptop microprocessors in particular improved 25–35% per year in 2004–2010, and slowed to 15–25% per year in 2010–2013. The number of transistors per chip cannot explain quality-adjusted microprocessor prices fully. Moore's 1995 paper does not limit Moore's law to strict linearity or to transistor count, "The definition of 'Moore's Law' has come to refer to almost anything related to
4761-514: Was founded in 1902 in Philadelphia , PA. At the beginning, ECS was called the American Electrochemical Society. The 19th century saw many applications of electricity to chemical processes and chemical understanding. Bridging the gap between electrical engineering and chemistry led people in industrial and academic circles to search for a new forum to discuss developments in the burgeoning field of electrochemistry. The original constitution of
#13986