Misplaced Pages

Einstein field equations

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In cosmology , the cosmological constant (usually denoted by the Greek capital letter lambda : Λ ), alternatively called Einstein's cosmological constant , is a coefficient that Albert Einstein initially added to his field equations of general relativity . He later removed it; however, much later it was revived to express the energy density of space, or vacuum energy , that arises in quantum mechanics . It is closely associated with the concept of dark energy .

#56943

142-513: In the general theory of relativity , the Einstein field equations ( EFE ; also known as Einstein's equations ) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Albert Einstein in 1915 in the form of a tensor equation which related the local spacetime curvature (expressed by the Einstein tensor ) with the local energy, momentum and stress within that spacetime (expressed by

284-543: A pair of black holes merging . The simplest type of such a wave can be visualized by its action on a ring of freely floating particles. A sine wave propagating through such a ring towards the reader distorts the ring in a characteristic, rhythmic fashion (animated image to the right). Since Einstein's equations are non-linear , arbitrarily strong gravitational waves do not obey linear superposition , making their description difficult. However, linear approximations of gravitational waves are sufficiently accurate to describe

426-423: A vacuum state with an energy density ρ vac and isotropic pressure p vac that are fixed constants and given by ρ v a c = − p v a c = Λ κ , {\displaystyle \rho _{\mathrm {vac} }=-p_{\mathrm {vac} }={\frac {\Lambda }{\kappa }},} where it is assumed that Λ has SI unit m and κ

568-570: A body in accordance with Newton's second law of motion , which states that the net force acting on a body is equal to that body's (inertial) mass multiplied by its acceleration . The preferred inertial motions are related to the geometry of space and time: in the standard reference frames of classical mechanics, objects in free motion move along straight lines at constant speed. In modern parlance, their paths are geodesics , straight world lines in curved spacetime . Conversely, one might expect that inertial motions, once identified by observing

710-560: A computer, or by considering small perturbations of exact solutions. In the field of numerical relativity , powerful computers are employed to simulate the geometry of spacetime and to solve Einstein's equations for interesting situations such as two colliding black holes. In principle, such methods may be applied to any system, given sufficient computer resources, and may address fundamental questions such as naked singularities . Approximate solutions may also be found by perturbation theories such as linearized gravity and its generalization,

852-428: A cosmological constant of the order of M p l 2 {\textstyle M_{\rm {pl}}^{2}} ( 1 {\textstyle 1} in reduced Planck units). As noted above, the measured cosmological constant is smaller than this by a factor of ~10 . This discrepancy has been called "the worst theoretical prediction in the history of physics". Some supersymmetric theories require

994-410: A cosmological constant that is exactly zero, which further complicates things. This is the cosmological constant problem, the worst problem of fine-tuning in physics : there is no known natural way to derive the tiny cosmological constant used in cosmology from particle physics . No vacuum in the string theory landscape is known to support a metastable, positive cosmological constant, and in 2018

1136-508: A curiosity among physical theories. It was clearly superior to Newtonian gravity , being consistent with special relativity and accounting for several effects unexplained by the Newtonian theory. Einstein showed in 1915 how his theory explained the anomalous perihelion advance of the planet Mercury without any arbitrary parameters (" fudge factors "), and in 1919 an expedition led by Eddington confirmed general relativity's prediction for

1278-530: A curved generalization of Minkowski space. The metric tensor that defines the geometry—in particular, how lengths and angles are measured—is not the Minkowski metric of special relativity, it is a generalization known as a semi- or pseudo-Riemannian metric. Furthermore, each Riemannian metric is naturally associated with one particular kind of connection, the Levi-Civita connection , and this is, in fact,

1420-539: A curved geometry of spacetime in general relativity; there is no gravitational force deflecting objects from their natural, straight paths. Instead, gravity corresponds to changes in the properties of space and time, which in turn changes the straightest-possible paths that objects will naturally follow. The curvature is, in turn, caused by the energy–momentum of matter. Paraphrasing the relativist John Archibald Wheeler , spacetime tells matter how to move; matter tells spacetime how to curve. While general relativity replaces

1562-474: A different value. The value w = −1.028 ± 0.032 , measured by the Planck Collaboration (2018) is consistent with −1 , assuming w does not change over cosmic time. Observations announced in 1998 of distance–redshift relation for Type Ia supernovae indicated that the expansion of the universe is accelerating, if one assumes the cosmological principle . When combined with measurements of

SECTION 10

#1732797861057

1704-542: A gravitational field (cf. below ). The actual measurements show that free-falling frames are the ones in which light propagates as it does in special relativity. The generalization of this statement, namely that the laws of special relativity hold to good approximation in freely falling (and non-rotating) reference frames, is known as the Einstein equivalence principle , a crucial guiding principle for generalizing special-relativistic physics to include gravity. The same experimental data shows that time as measured by clocks in

1846-471: A gravitational field— proper time , to give the technical term—does not follow the rules of special relativity. In the language of spacetime geometry, it is not measured by the Minkowski metric . As in the Newtonian case, this is suggestive of a more general geometry. At small scales, all reference frames that are in free fall are equivalent, and approximately Minkowskian. Consequently, we are now dealing with

1988-424: A group of four physicists advanced a controversial conjecture which would imply that no such universe exists . One possible explanation for the small but non-zero value was noted by Steven Weinberg in 1987 following the anthropic principle . Weinberg explains that if the vacuum energy took different values in different domains of the universe, then observers would necessarily measure values similar to that which

2130-408: A hundred times the currently accepted value. In 1992, Weinberg refined this prediction of the cosmological constant to 5 to 10 times the matter density. This argument depends on the vacuum energy density being constant throughout spacetime, as would be expected if dark energy were the cosmological constant. There is no evidence that the vacuum energy does vary, but it may be the case if, for example,

2272-450: A massive central body M is given by A conservative total force can then be obtained as its negative gradient where L is the angular momentum . The first term represents the force of Newtonian gravity , which is described by the inverse-square law. The second term represents the centrifugal force in the circular motion. The third term represents the relativistic effect. There are alternatives to general relativity built upon

2414-779: A number of exact solutions are known, although only a few have direct physical applications. The best-known exact solutions, and also those most interesting from a physics point of view, are the Schwarzschild solution , the Reissner–Nordström solution and the Kerr metric , each corresponding to a certain type of black hole in an otherwise empty universe, and the Friedmann–Lemaître–Robertson–Walker and de Sitter universes , each describing an expanding cosmos. Exact solutions of great theoretical interest include

2556-453: A problem, however, as there is a lack of a self-consistent theory of quantum gravity . It is not yet known how gravity can be unified with the three non-gravitational forces: strong , weak and electromagnetic . Einstein's theory has astrophysical implications, including the prediction of black holes —regions of space in which space and time are distorted in such a way that nothing, not even light , can escape from them. Black holes are

2698-715: A relativistic theory of gravity. After numerous detours and false starts, his work culminated in the presentation to the Prussian Academy of Science in November 1915 of what are now known as the Einstein field equations, which form the core of Einstein's general theory of relativity. These equations specify how the geometry of space and time is influenced by whatever matter and radiation are present. A version of non-Euclidean geometry , called Riemannian geometry , enabled Einstein to develop general relativity by providing

2840-404: A result of the cosmological principle not applying in the late universe. As was only recently seen, by works of 't Hooft , Susskind and others, a positive cosmological constant has surprising consequences, such as a finite maximum entropy of the observable universe (see Holographic principle ). A major outstanding problem is that most quantum field theories predict a huge value for

2982-589: A specified distribution of matter and energy in the form of a stress–energy tensor, the EFE are understood to be equations for the metric tensor g μ ν {\displaystyle g_{\mu \nu }} , since both the Ricci tensor and scalar curvature depend on the metric in a complicated nonlinear manner. When fully written out, the EFE are a system of ten coupled, nonlinear, hyperbolic-elliptic partial differential equations . The above form of

SECTION 20

#1732797861057

3124-490: A university matriculation examination, and, despite the shortness of the book, a fair amount of patience and force of will on the part of the reader. The author has spared himself no pains in his endeavour to present the main ideas in the simplest and most intelligible form, and on the whole, in the sequence and connection in which they actually originated." General relativity can be understood by examining its similarities with and departures from classical physics. The first step

3266-539: A wave train traveling through empty space or Gowdy universes , varieties of an expanding cosmos filled with gravitational waves. But for gravitational waves produced in astrophysically relevant situations, such as the merger of two black holes, numerical methods are presently the only way to construct appropriate models. General relativity differs from classical mechanics in a number of predictions concerning orbiting bodies. It predicts an overall rotation ( precession ) of planetary orbits, as well as orbital decay caused by

3408-738: Is (+ − −) , Peebles (1980) and Efstathiou et al. (1990) are (− + +) , Rindler (1977), Atwater (1974), Collins Martin & Squires (1989) and Peacock (1999) are (− + −) . Authors including Einstein have used a different sign in their definition for the Ricci tensor which results in the sign of the constant on the right side being negative: R μ ν − 1 2 R g μ ν − Λ g μ ν = − κ T μ ν . {\displaystyle R_{\mu \nu }-{\frac {1}{2}}Rg_{\mu \nu }-\Lambda g_{\mu \nu }=-\kappa T_{\mu \nu }.} The sign of

3550-526: Is Minkowskian , and the laws of physics exhibit local Lorentz invariance . The core concept of general-relativistic model-building is that of a solution of Einstein's equations . Given both Einstein's equations and suitable equations for the properties of matter, such a solution consists of a specific semi- Riemannian manifold (usually defined by giving the metric in specific coordinates), and specific matter fields defined on that manifold. Matter and geometry must satisfy Einstein's equations, so in particular,

3692-432: Is a remaining theoretical challenge, the so-called cosmological constant problem . Some early generalizations of Einstein's gravitational theory, known as classical unified field theories , either introduced a cosmological constant on theoretical grounds or found that it arose naturally from the mathematics. For example, Arthur Eddington claimed that the cosmological constant version of the vacuum field equation expressed

3834-423: Is a scalar parameter of motion (e.g. the proper time ), and Γ μ α β {\displaystyle \Gamma ^{\mu }{}_{\alpha \beta }} are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) which is symmetric in the two lower indices. Greek indices may take the values: 0, 1, 2, 3 and

3976-452: Is a source of major contention, with the values predicted exceeding observation by some 120 orders of magnitude, a discrepancy that has been called "the worst theoretical prediction in the history of physics!". This issue is called the cosmological constant problem and it is one of the greatest mysteries in science with many physicists believing that "the vacuum holds the key to a full understanding of nature". The cosmological constant

4118-445: Is a universality of free fall (also known as the weak equivalence principle , or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free fall depends only on its position and initial speed, but not on any of its material properties. A simplified version of this is embodied in Einstein's elevator experiment , illustrated in the figure on the right: for an observer in an enclosed room, it

4260-476: Is achieved in approximating the spacetime as having only small deviations from flat spacetime , leading to the linearized EFE . These equations are used to study phenomena such as gravitational waves . The Einstein field equations (EFE) may be written in the form: where G μ ν {\displaystyle G_{\mu \nu }} is the Einstein tensor, g μ ν {\displaystyle g_{\mu \nu }}

4402-592: Is based on recent measurements of vacuum energy density, ρ vac = 5.96 × 10  kg/m ≘ 5.3566 × 10  J/m = 3.35 GeV/m . However, due to the Hubble tension and the CMB dipole , recently it has been proposed that the cosmological principle is no longer true in the late universe and that the FLRW metric breaks down, so it is possible that observations usually attributed to an accelerating universe are simply

Einstein field equations - Misplaced Pages Continue

4544-402: Is based on the propagation of light, and thus on electromagnetism, which could have a different set of preferred frames . But using different assumptions about the special-relativistic frames (such as their being earth-fixed, or in free fall), one can derive different predictions for the gravitational redshift, that is, the way in which the frequency of light shifts as the light propagates through

4686-499: Is curved. The resulting Newton–Cartan theory is a geometric formulation of Newtonian gravity using only covariant concepts, i.e. a description which is valid in any desired coordinate system. In this geometric description, tidal effects —the relative acceleration of bodies in free fall—are related to the derivative of the connection, showing how the modified geometry is caused by the presence of mass. As intriguing as geometric Newtonian gravity may be, its basis, classical mechanics,

4828-650: Is defined as above. The existence of a cosmological constant is thus equivalent to the existence of a vacuum energy and a pressure of opposite sign. This has led to the terms "cosmological constant" and "vacuum energy" being used interchangeably in general relativity. General relativity is consistent with the local conservation of energy and momentum expressed as ∇ β T α β = T α β ; β = 0. {\displaystyle \nabla _{\beta }T^{\alpha \beta }={T^{\alpha \beta }}_{;\beta }=0.} Contracting

4970-512: Is defined by the vacuum state , which is composed of a collection of quantum fields . All these quantum fields exhibit fluctuations in their ground state (lowest energy density) arising from the zero-point energy existing everywhere in space. These zero-point fluctuations should contribute to the cosmological constant Λ , but actual calculations give rise to an enormous vacuum energy. The discrepancy between theorized vacuum energy from quantum field theory and observed vacuum energy from cosmology

5112-405: Is defined in the absence of gravity. For practical applications, it is a suitable model whenever gravity can be neglected. Bringing gravity into play, and assuming the universality of free fall motion, an analogous reasoning as in the previous section applies: there are no global inertial frames . Instead there are approximate inertial frames moving alongside freely falling particles. Translated into

5254-411: Is equivalent to R β δ ; ε − R β ε ; δ + R γ β δ ε ; γ = 0 {\displaystyle R_{\beta \delta ;\varepsilon }-R_{\beta \varepsilon ;\delta }+{R^{\gamma }}_{\beta \delta \varepsilon ;\gamma }=0} using

5396-445: Is impossible to decide, by mapping the trajectory of bodies such as a dropped ball, whether the room is stationary in a gravitational field and the ball accelerating, or in free space aboard a rocket that is accelerating at a rate equal to that of the gravitational field versus the ball which upon release has nil acceleration. Given the universality of free fall, there is no observable distinction between inertial motion and motion under

5538-560: Is known as gravitational time dilation. Gravitational redshift has been measured in the laboratory and using astronomical observations. Gravitational time dilation in the Earth's gravitational field has been measured numerous times using atomic clocks , while ongoing validation is provided as a side effect of the operation of the Global Positioning System (GPS). Tests in stronger gravitational fields are provided by

5680-404: Is mass. In special relativity, mass turns out to be part of a more general quantity called the energy–momentum tensor , which includes both energy and momentum densities as well as stress : pressure and shear. Using the equivalence principle, this tensor is readily generalized to curved spacetime. Drawing further upon the analogy with geometric Newtonian gravity, it is natural to assume that

5822-456: Is merely a limiting case of (special) relativistic mechanics. In the language of symmetry : where gravity can be neglected, physics is Lorentz invariant as in special relativity rather than Galilei invariant as in classical mechanics. (The defining symmetry of special relativity is the Poincaré group , which includes translations, rotations, boosts and reflections.) The differences between

Einstein field equations - Misplaced Pages Continue

5964-430: Is now associated with electrically charged black holes . In 1917, Einstein applied his theory to the universe as a whole, initiating the field of relativistic cosmology. In line with contemporary thinking, he assumed a static universe, adding a new parameter to his original field equations—the cosmological constant —to match that observational presumption. By 1929, however, the work of Hubble and others had shown that

6106-451: Is observed: the formation of life-supporting structures would be suppressed in domains where the vacuum energy is much larger. Specifically, if the vacuum energy is negative and its absolute value is substantially larger than it appears to be in the observed universe (say, a factor of 10 larger), holding all other variables (e.g. matter density) constant, that would mean that the universe is closed; furthermore, its lifetime would be shorter than

6248-465: Is related to the choice of convention for the Ricci tensor: R μ ν = [ S 2 ] × [ S 3 ] × R α μ α ν {\displaystyle R_{\mu \nu }=[S2]\times [S3]\times {R^{\alpha }}_{\mu \alpha \nu }} With these definitions Misner, Thorne, and Wheeler classify themselves as (+ + +) , whereas Weinberg (1972)

6390-461: Is the Planck length . A positive vacuum energy density resulting from a cosmological constant implies a negative pressure, and vice versa. If the energy density is positive, the associated negative pressure will drive an accelerated expansion of the universe, as observed. (See Dark energy and Cosmic inflation for details.) Instead of the cosmological constant itself, cosmologists often refer to

6532-562: Is the Ricci curvature tensor , and R {\displaystyle R} is the scalar curvature . This is a symmetric second-degree tensor that depends on only the metric tensor and its first and second derivatives. The Einstein gravitational constant is defined as where G is the Newtonian constant of gravitation and c is the speed of light in vacuum . The EFE can thus also be written as In standard units, each term on

6674-495: Is the Shapiro Time Delay, the phenomenon that light signals take longer to move through a gravitational field than they would in the absence of that field. There have been numerous successful tests of this prediction. In the parameterized post-Newtonian formalism (PPN), measurements of both the deflection of light and the gravitational time delay determine a parameter called γ, which encodes the influence of gravity on

6816-897: Is the mass density. The orbit of a free-falling particle satisfies x → ¨ ( t ) = g → = − ∇ Φ ( x → ( t ) , t ) . {\displaystyle {\ddot {\vec {x}}}(t)={\vec {g}}=-\nabla \Phi \left({\vec {x}}(t),t\right)\,.} In tensor notation, these become Φ , i i = 4 π G ρ d 2 x i d t 2 = − Φ , i . {\displaystyle {\begin{aligned}\Phi _{,ii}&=4\pi G\rho \\{\frac {d^{2}x^{i}}{dt^{2}}}&=-\Phi _{,i}\,.\end{aligned}}} In general relativity, these equations are replaced by

6958-466: Is the metric tensor, T μ ν {\displaystyle T_{\mu \nu }} is the stress–energy tensor , Λ {\displaystyle \Lambda } is the cosmological constant and κ {\displaystyle \kappa } is the Einstein gravitational constant. The Einstein tensor is defined as where R μ ν {\displaystyle R_{\mu \nu }}

7100-409: Is the parametrized post-Newtonian (PPN) formalism, which allows quantitative comparisons between the predictions of general relativity and alternative theories. General relativity has a number of physical consequences. Some follow directly from the theory's axioms, whereas others have become clear only in the course of many years of research that followed Einstein's initial publication. Assuming that

7242-471: Is the realization that classical mechanics and Newton's law of gravity admit a geometric description. The combination of this description with the laws of special relativity results in a heuristic derivation of general relativity. At the base of classical mechanics is the notion that a body 's motion can be described as a combination of free (or inertial ) motion, and deviations from this free motion. Such deviations are caused by external forces acting on

SECTION 50

#1732797861057

7384-1069: Is the spacetime dimension. Solving for R and substituting this in the original EFE, one gets the following equivalent "trace-reversed" form: R μ ν − 2 D − 2 Λ g μ ν = κ ( T μ ν − 1 D − 2 T g μ ν ) . {\displaystyle R_{\mu \nu }-{\frac {2}{D-2}}\Lambda g_{\mu \nu }=\kappa \left(T_{\mu \nu }-{\frac {1}{D-2}}Tg_{\mu \nu }\right).} In D = 4 dimensions this reduces to R μ ν − Λ g μ ν = κ ( T μ ν − 1 2 T g μ ν ) . {\displaystyle R_{\mu \nu }-\Lambda g_{\mu \nu }=\kappa \left(T_{\mu \nu }-{\frac {1}{2}}T\,g_{\mu \nu }\right).} Reversing

7526-602: The curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation . The relation is specified by the Einstein field equations , a system of second-order partial differential equations . Newton's law of universal gravitation , which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitation in classical physics . These predictions concern

7668-432: The Einstein notation , meaning that repeated indices are summed (i.e. from zero to three). The Christoffel symbols are functions of the four spacetime coordinates, and so are independent of the velocity or acceleration or other characteristics of a test particle whose motion is described by the geodesic equation. In general relativity, the effective gravitational potential energy of an object of mass m revolving around

7810-609: The Gödel universe (which opens up the intriguing possibility of time travel in curved spacetimes), the Taub–NUT solution (a model universe that is homogeneous , but anisotropic ), and anti-de Sitter space (which has recently come to prominence in the context of what is called the Maldacena conjecture ). Given the difficulty of finding exact solutions, Einstein's field equations are also solved frequently by numerical integration on

7952-423: The chameleon particle or the symmetron theory to dark energy, in a laboratory setting, failed to detect a new force. Inferring the presence of dark energy through its interaction with baryons in the cosmic microwave background has also led to a negative result, although the current analyses have been derived only at the linear perturbation regime. It is also possible that the difficulty in detecting dark energy

8094-414: The cosmic microwave background radiation these implied a value of Ω Λ ≈ 0.7, a result which has been supported and refined by more recent measurements (as well as previous works ). If one assumes the cosmological principle, as in the case for all models that use the Friedmann–Lemaître–Robertson–Walker metric , while there are other possible causes of an accelerating universe , such as quintessence,

8236-843: The differential Bianchi identity R α β [ γ δ ; ε ] = 0 {\displaystyle R_{\alpha \beta [\gamma \delta ;\varepsilon ]}=0} with g gives, using the fact that the metric tensor is covariantly constant, i.e. g ;γ = 0 , R γ β γ δ ; ε + R γ β ε γ ; δ + R γ β δ ε ; γ = 0 {\displaystyle {R^{\gamma }}_{\beta \gamma \delta ;\varepsilon }+{R^{\gamma }}_{\beta \varepsilon \gamma ;\delta }+{R^{\gamma }}_{\beta \delta \varepsilon ;\gamma }=0} The antisymmetry of

8378-631: The field equation for gravity relates this tensor and the Ricci tensor , which describes a particular class of tidal effects: the change in volume for a small cloud of test particles that are initially at rest, and then fall freely. In special relativity, conservation of energy –momentum corresponds to the statement that the energy–momentum tensor is divergence -free. This formula, too, is readily generalized to curved spacetime by replacing partial derivatives with their curved- manifold counterparts, covariant derivatives studied in differential geometry. With this additional condition—the covariant divergence of

8520-472: The general theory of relativity , and as Einstein's theory of gravity , is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics . General relativity generalizes special relativity and refines Newton's law of universal gravitation , providing a unified description of gravity as a geometric property of space and time , or four-dimensional spacetime . In particular,

8662-473: The post-Newtonian expansion , both of which were developed by Einstein. The latter provides a systematic approach to solving for the geometry of a spacetime that contains a distribution of matter that moves slowly compared with the speed of light. The expansion involves a series of terms; the first terms represent Newtonian gravity, whereas the later terms represent ever smaller corrections to Newton's theory due to general relativity. An extension of this expansion

SECTION 60

#1732797861057

8804-420: The quantum vacuum . A common assumption is that the quantum vacuum is equivalent to the cosmological constant. Although no theory exists that supports this assumption, arguments can be made in its favor. Such arguments are usually based on dimensional analysis and effective field theory . If the universe is described by an effective local quantum field theory down to the Planck scale , then we would expect

8946-454: The scalar gravitational potential of classical physics by a symmetric rank -two tensor , the latter reduces to the former in certain limiting cases . For weak gravitational fields and slow speed relative to the speed of light, the theory's predictions converge on those of Newton's law of universal gravitation. As it is constructed using tensors, general relativity exhibits general covariance : its laws—and further laws formulated within

9088-417: The stress–energy tensor ). Analogously to the way that electromagnetic fields are related to the distribution of charges and currents via Maxwell's equations , the EFE relate the spacetime geometry to the distribution of mass–energy, momentum and stress, that is, they determine the metric tensor of spacetime for a given arrangement of stress–energy–momentum in the spacetime. The relationship between

9230-429: The summation convention is used for repeated indices α {\displaystyle \alpha } and β {\displaystyle \beta } . The quantity on the left-hand-side of this equation is the acceleration of a particle, and so this equation is analogous to Newton's laws of motion which likewise provide formulae for the acceleration of a particle. This equation of motion employs

9372-707: The " epistemological " property that the universe is "self- gauging ", and Erwin Schrödinger 's pure- affine theory using a simple variational principle produced the field equation with a cosmological term. In 1990s, Saul Perlmutter at Lawrence Berkeley National Laboratory, Brian Schmidt of the Australian National University and Adam Riess of the Space Telescope Science Institute were searching for type Ia supernovas. By that time, they expected to observe

9514-420: The 20th century. When T μν is zero, the field equation describes empty space (a vacuum ). The cosmological constant has the same effect as an intrinsic energy density of the vacuum, ρ vac (and an associated pressure ). In this context, it is commonly moved to the right-hand side of the equation using Λ = κρ vac . It is common to quote values of energy density directly, though still using

9656-1613: The EFE is the standard established by Misner, Thorne, and Wheeler (MTW). The authors analyzed conventions that exist and classified these according to three signs ([S1] [S2] [S3]): g μ ν = [ S 1 ] × diag ⁡ ( − 1 , + 1 , + 1 , + 1 ) R μ α β γ = [ S 2 ] × ( Γ α γ , β μ − Γ α β , γ μ + Γ σ β μ Γ γ α σ − Γ σ γ μ Γ β α σ ) G μ ν = [ S 3 ] × κ T μ ν {\displaystyle {\begin{aligned}g_{\mu \nu }&=[S1]\times \operatorname {diag} (-1,+1,+1,+1)\\[6pt]{R^{\mu }}_{\alpha \beta \gamma }&=[S2]\times \left(\Gamma _{\alpha \gamma ,\beta }^{\mu }-\Gamma _{\alpha \beta ,\gamma }^{\mu }+\Gamma _{\sigma \beta }^{\mu }\Gamma _{\gamma \alpha }^{\sigma }-\Gamma _{\sigma \gamma }^{\mu }\Gamma _{\beta \alpha }^{\sigma }\right)\\[6pt]G_{\mu \nu }&=[S3]\times \kappa T_{\mu \nu }\end{aligned}}} The third sign above

9798-440: The EFE reduce to Newton's law of gravitation in the limit of a weak gravitational field and velocities that are much less than the speed of light . Exact solutions for the EFE can only be found under simplifying assumptions such as symmetry . Special classes of exact solutions are most often studied since they model many gravitational phenomena, such as rotating black holes and the expanding universe . Further simplification

9940-896: The Einstein field equations in the trace-reversed form R μ ν = K ( T μ ν − 1 2 T g μ ν ) {\displaystyle R_{\mu \nu }=K\left(T_{\mu \nu }-{\tfrac {1}{2}}Tg_{\mu \nu }\right)} for some constant, K , and the geodesic equation d 2 x α d τ 2 = − Γ β γ α d x β d τ d x γ d τ . {\displaystyle {\frac {d^{2}x^{\alpha }}{d\tau ^{2}}}=-\Gamma _{\beta \gamma }^{\alpha }{\frac {dx^{\beta }}{d\tau }}{\frac {dx^{\gamma }}{d\tau }}\,.} To see how

10082-439: The Einstein field equations were initially formulated in the context of a four-dimensional theory, some theorists have explored their consequences in n dimensions. The equations in contexts outside of general relativity are still referred to as the Einstein field equations. The vacuum field equations (obtained when T μν is everywhere zero) define Einstein manifolds . The equations are more complex than they appear. Given

10224-495: The Newtonian limit and treating the orbiting body as a test particle . For him, the fact that his theory gave a straightforward explanation of Mercury's anomalous perihelion shift, discovered earlier by Urbain Le Verrier in 1859, was important evidence that he had at last identified the correct form of the gravitational field equations. Cosmological constant Einstein introduced the constant in 1917 to counterbalance

10366-986: The Ricci curvature tensor and the scalar curvature then show that R ; ε − 2 R γ ε ; γ = 0 {\displaystyle R_{;\varepsilon }-2{R^{\gamma }}_{\varepsilon ;\gamma }=0} which can be rewritten as ( R γ ε − 1 2 g γ ε R ) ; γ = 0 {\displaystyle \left({R^{\gamma }}_{\varepsilon }-{\tfrac {1}{2}}{g^{\gamma }}_{\varepsilon }R\right)_{;\gamma }=0} A final contraction with g gives ( R γ δ − 1 2 g γ δ R ) ; γ = 0 {\displaystyle \left(R^{\gamma \delta }-{\tfrac {1}{2}}g^{\gamma \delta }R\right)_{;\gamma }=0} which by

10508-451: The Ricci tensor R μν , Ricci scalar R and the metric tensor g μν describe the structure of spacetime , the stress–energy tensor T μν describes the energy density, momentum density and stress at that point in spacetime, and κ = 8 πG / c . The gravitational constant G and the speed of light c are universal constants. When Λ is zero, this reduces to the field equation of general relativity usually used in

10650-649: The Riemann tensor allows the second term in the above expression to be rewritten: R γ β γ δ ; ε − R γ β γ ε ; δ + R γ β δ ε ; γ = 0 {\displaystyle {R^{\gamma }}_{\beta \gamma \delta ;\varepsilon }-{R^{\gamma }}_{\beta \gamma \varepsilon ;\delta }+{R^{\gamma }}_{\beta \delta \varepsilon ;\gamma }=0} which

10792-413: The actual motions of bodies and making allowances for the external forces (such as electromagnetism or friction ), can be used to define the geometry of space, as well as a time coordinate . However, there is an ambiguity once gravity comes into play. According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment ), there

10934-410: The age of our universe, possibly too short for intelligent life to form. On the other hand, a universe with a large positive cosmological constant would expand too fast, preventing galaxy formation. According to Weinberg, domains where the vacuum energy is compatible with life would be comparatively rare. Using this argument, Weinberg predicted that the cosmological constant would have a value of less than

11076-401: The base of cosmological models of an expanding universe . Widely acknowledged as a theory of extraordinary beauty , general relativity has often been described as the most beautiful of all existing physical theories. Henri Poincaré 's 1905 theory of the dynamics of the electron was a relativistic theory which he applied to all forces, including gravity. While others thought that gravity

11218-406: The connection that satisfies the equivalence principle and makes space locally Minkowskian (that is, in suitable locally inertial coordinates , the metric is Minkowskian, and its first partial derivatives and the connection coefficients vanish). Having formulated the relativistic, geometric version of the effects of gravity, the question of gravity's source remains. In Newtonian gravity, the source

11360-423: The core of the mathematical formulation of general relativity . The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors . Each tensor has 10 independent components. The four Bianchi identities reduce the number of independent equations from 10 to 6, leaving the metric with four gauge-fixing degrees of freedom , which correspond to the freedom to choose a coordinate system. Although

11502-526: The cosmological constant is in most respects the simplest solution . Thus, the Lambda-CDM model, the current standard model of cosmology which uses the FLRW metric, includes the cosmological constant, which is measured to be on the order of 10  m . It may be expressed as 10  s (multiplying by c ≈ 10  m ⋅s ) or as 10   ℓ P (where ℓ P is the Planck length). The value

11644-485: The cosmological constant may have a positive value. Since the 1990s, studies have shown that, assuming the cosmological principle , around 68% of the mass–energy density of the universe can be attributed to dark energy. The cosmological constant Λ is the simplest possible explanation for dark energy, and is used in the standard model of cosmology known as the ΛCDM model . According to quantum field theory (QFT), which underlies modern particle physics , empty space

11786-403: The cosmological constant was almost universally assumed to be zero. More recent astronomical observations have shown an accelerating expansion of the universe , and to explain this a positive value of Λ is needed. The effect of the cosmological constant is negligible at the scale of a galaxy or smaller. Einstein thought of the cosmological constant as an independent parameter, but its term in

11928-415: The cosmological constant. However, Einstein was not happy about adding this cosmological term. He later stated that "Since I introduced this term, I had always a bad conscience. ... I am unable to believe that such an ugly thing is actually realized in nature". Einstein's static universe is unstable against matter density perturbations. Furthermore, without the cosmological constant Einstein could have found

12070-486: The cosmological term would change in both these versions if the (+ − − −) metric sign convention is used rather than the MTW (− + + +) metric sign convention adopted here. Taking the trace with respect to the metric of both sides of the EFE one gets R − D 2 R + D Λ = κ T , {\displaystyle R-{\frac {D}{2}}R+D\Lambda =\kappa T,} where D

12212-467: The deceleration of the supernovas caused by the gravitation attraction of mass according to Einstein's gravitational theory. The first reports published in July 1997 from Supernova Cosmology Project used the supernova observation to support such deceleration hypothesis. But soon they found that supernovas were flying away in an accelerating manner. In 1998, both teams announced this surprising result. It implied

12354-1006: The definition of the Ricci tensor . Next, contract again with the metric g β δ ( R β δ ; ε − R β ε ; δ + R γ β δ ε ; γ ) = 0 {\displaystyle g^{\beta \delta }\left(R_{\beta \delta ;\varepsilon }-R_{\beta \varepsilon ;\delta }+{R^{\gamma }}_{\beta \delta \varepsilon ;\gamma }\right)=0} to get R δ δ ; ε − R δ ε ; δ + R γ δ δ ε ; γ = 0 {\displaystyle {R^{\delta }}_{\delta ;\varepsilon }-{R^{\delta }}_{\varepsilon ;\delta }+{R^{\gamma \delta }}_{\delta \varepsilon ;\gamma }=0} The definitions of

12496-560: The deflection of starlight by the Sun during the total solar eclipse of 29 May 1919 , instantly making Einstein famous. Yet the theory remained outside the mainstream of theoretical physics and astrophysics until developments between approximately 1960 and 1975, now known as the golden age of general relativity . Physicists began to understand the concept of a black hole, and to identify quasars as one of these objects' astrophysical manifestations. Ever more precise solar system tests confirmed

12638-481: The effect of gravity and achieve a static universe , which was then assumed. Einstein's cosmological constant was abandoned after Edwin Hubble confirmed that the universe was expanding. From the 1930s until the late 1990s, most physicists agreed with Einstein's choice of setting the cosmological constant to zero. That changed with the discovery in 1998 that the expansion of the universe is accelerating , implying that

12780-452: The emission of gravitational waves and effects related to the relativity of direction. In general relativity, the apsides of any orbit (the point of the orbiting body's closest approach to the system's center of mass ) will precess ; the orbit is not an ellipse , but akin to an ellipse that rotates on its focus, resulting in a rose curve -like shape (see image). Einstein first derived this result by using an approximate metric representing

12922-500: The end-state for massive stars . Microquasars and active galactic nuclei are believed to be stellar black holes and supermassive black holes . It also predicts gravitational lensing , where the bending of light results in multiple images of the same distant astronomical phenomenon. Other predictions include the existence of gravitational waves , which have been observed directly by the physics collaboration LIGO and other observatories. In addition, general relativity has provided

13064-413: The energy of the universe due to the cosmological constant, i.e., what we would intuitively call the fraction of the universe that is made up of dark energy. Note that this value changes over time: The critical density changes with cosmological time but the energy density due to the cosmological constant remains unchanged throughout the history of the universe, because the amount of dark energy increases as

13206-555: The energy–momentum tensor, and hence of whatever is on the other side of the equation, is zero—the simplest nontrivial set of equations are what are called Einstein's (field) equations: G μ ν ≡ R μ ν − 1 2 R g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }\equiv R_{\mu \nu }-{\textstyle 1 \over 2}R\,g_{\mu \nu }=\kappa T_{\mu \nu }\,} On

13348-446: The equivalence principle holds, gravity influences the passage of time. Light sent down into a gravity well is blueshifted , whereas light sent in the opposite direction (i.e., climbing out of the gravity well) is redshifted ; collectively, these two effects are known as the gravitational frequency shift. More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect

13490-456: The exceedingly weak waves that are expected to arrive here on Earth from far-off cosmic events, which typically result in relative distances increasing and decreasing by 10 − 21 {\displaystyle 10^{-21}} or less. Data analysis methods routinely make use of the fact that these linearized waves can be Fourier decomposed . Some exact solutions describe gravitational waves without any approximation, e.g.,

13632-478: The expansion of the universe before Hubble's observations. In 1929, not long after Einstein developed his static theory, observations by Edwin Hubble indicated that the universe appears to be expanding; this was consistent with a cosmological solution to the original general relativity equations that had been found by the mathematician Alexander Friedmann , working on the Einstein equations of general relativity. Einstein reportedly referred to his failure to accept

13774-417: The expansion releases vacuum energy , which causes yet more expansion. Likewise, a universe that contracts slightly will continue contracting. However, the cosmological constant remained a subject of theoretical and empirical interest. Empirically, the cosmological data of recent decades strongly suggests that our universe has a positive cosmological constant. The explanation of this small but positive value

13916-408: The exterior Schwarzschild solution or, for more than a single mass, the post-Newtonian expansion), several effects of gravity on light propagation emerge. Although the bending of light can also be derived by extending the universality of free fall to light, the angle of deflection resulting from such calculations is only half the value given by general relativity. Closely related to light deflection

14058-430: The field equation can also be moved algebraically to the other side and incorporated as part of the stress–energy tensor: T μ ν ( v a c ) = − Λ κ g μ ν . {\displaystyle T_{\mu \nu }^{\mathrm {(vac)} }=-{\frac {\Lambda }{\kappa }}g_{\mu \nu }\,.} This tensor describes

14200-433: The first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric . This solution laid the groundwork for the description of the final stages of gravitational collapse, and the objects known today as black holes. In the same year, the first steps towards generalizing Schwarzschild's solution to electrically charged objects were taken, eventually resulting in the Reissner–Nordström solution , which

14342-412: The general relativistic framework—take on the same form in all coordinate systems . Furthermore, the theory does not contain any invariant geometric background structures, i.e. it is background independent . It thus satisfies a more stringent general principle of relativity , namely that the laws of physics are the same for all observers. Locally , as expressed in the equivalence principle, spacetime

14484-484: The geometry of space. Predicted in 1916 by Albert Einstein, there are gravitational waves: ripples in the metric of spacetime that propagate at the speed of light. These are one of several analogies between weak-field gravity and electromagnetism in that, they are analogous to electromagnetic waves . On 11 February 2016, the Advanced LIGO team announced that they had directly detected gravitational waves from

14626-469: The history of the universe and have provided the modern framework for cosmology , thus leading to the discovery of the Big Bang and cosmic microwave background radiation. Despite the introduction of a number of alternative theories , general relativity continues to be the simplest theory consistent with experimental data . Reconciliation of general relativity with the laws of quantum physics remains

14768-441: The image), and a set of events for which such an influence is impossible (such as event C in the image). These sets are observer -independent. In conjunction with the world-lines of freely falling particles, the light-cones can be used to reconstruct the spacetime's semi-Riemannian metric, at least up to a positive scalar factor. In mathematical terms, this defines a conformal structure or conformal geometry. Special relativity

14910-446: The influence of the gravitational force. This suggests the definition of a new class of inertial motion, namely that of objects in free fall under the influence of gravity. This new class of preferred motions, too, defines a geometry of space and time—in mathematical terms, it is the geodesic motion associated with a specific connection which depends on the gradient of the gravitational potential . Space, in this construction, still has

15052-417: The key mathematical framework on which he fit his physical ideas of gravity. This idea was pointed out by mathematician Marcel Grossmann and published by Grossmann and Einstein in 1913. The Einstein field equations are nonlinear and considered difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But in 1916, the astrophysicist Karl Schwarzschild found

15194-410: The language of spacetime: the straight time-like lines that define a gravity-free inertial frame are deformed to lines that are curved relative to each other, suggesting that the inclusion of gravity necessitates a change in spacetime geometry. A priori, it is not clear whether the new local frames in free fall coincide with the reference frames in which the laws of special relativity hold—that theory

15336-601: The latter reduces to the former, we assume that the test particle's velocity is approximately zero d x β d τ ≈ ( d t d τ , 0 , 0 , 0 ) {\displaystyle {\frac {dx^{\beta }}{d\tau }}\approx \left({\frac {dt}{d\tau }},0,0,0\right)} and thus d d t ( d t d τ ) ≈ 0 {\displaystyle {\frac {d}{dt}}\left({\frac {dt}{d\tau }}\right)\approx 0} and that

15478-474: The left has units of 1/length. The expression on the left represents the curvature of spacetime as determined by the metric; the expression on the right represents the stress–energy–momentum content of spacetime. The EFE can then be interpreted as a set of equations dictating how stress–energy–momentum determines the curvature of spacetime. These equations, together with the geodesic equation , which dictates how freely falling matter moves through spacetime, form

15620-405: The left-hand side is the Einstein tensor , G μ ν {\displaystyle G_{\mu \nu }} , which is symmetric and a specific divergence-free combination of the Ricci tensor R μ ν {\displaystyle R_{\mu \nu }} and the metric. In particular, is the curvature scalar. The Ricci tensor itself is related to

15762-477: The light of stars or distant quasars being deflected as it passes the Sun . This and related predictions follow from the fact that light follows what is called a light-like or null geodesic —a generalization of the straight lines along which light travels in classical physics. Such geodesics are the generalization of the invariance of lightspeed in special relativity. As one examines suitable model spacetimes (either

15904-465: The local conservation of stress–energy. This conservation law is a physical requirement. With his field equations Einstein ensured that general relativity is consistent with this conservation condition. The nonlinearity of the EFE distinguishes general relativity from many other fundamental physical theories. For example, Maxwell's equations of electromagnetism are linear in the electric and magnetic fields , and charge and current distributions (i.e.

16046-455: The matter's energy–momentum tensor must be divergence-free. The matter must, of course, also satisfy whatever additional equations were imposed on its properties. In short, such a solution is a model universe that satisfies the laws of general relativity, and possibly additional laws governing whatever matter might be present. Einstein's equations are nonlinear partial differential equations and, as such, difficult to solve exactly. Nevertheless,

16188-1119: The metric and its derivatives are approximately static and that the squares of deviations from the Minkowski metric are negligible. Applying these simplifying assumptions to the spatial components of the geodesic equation gives d 2 x i d t 2 ≈ − Γ 00 i {\displaystyle {\frac {d^{2}x^{i}}{dt^{2}}}\approx -\Gamma _{00}^{i}} where two factors of ⁠ dt / dτ ⁠ have been divided out. This will reduce to its Newtonian counterpart, provided Φ , i ≈ Γ 00 i = 1 2 g i α ( g α 0 , 0 + g 0 α , 0 − g 00 , α ) . {\displaystyle \Phi _{,i}\approx \Gamma _{00}^{i}={\tfrac {1}{2}}g^{i\alpha }\left(g_{\alpha 0,0}+g_{0\alpha ,0}-g_{00,\alpha }\right)\,.} General relativity General relativity , also known as

16330-418: The metric tensor and the Einstein tensor allows the EFE to be written as a set of nonlinear partial differential equations when used in this way. The solutions of the EFE are the components of the metric tensor. The inertial trajectories of particles and radiation ( geodesics ) in the resulting geometry are then calculated using the geodesic equation . As well as implying local energy–momentum conservation,

16472-442: The more general Riemann curvature tensor as On the right-hand side, κ {\displaystyle \kappa } is a constant and T μ ν {\displaystyle T_{\mu \nu }} is the energy–momentum tensor. All tensors are written in abstract index notation . Matching the theory's prediction to observational results for planetary orbits or, equivalently, assuring that

16614-971: The name "cosmological constant". The dimension of Λ is generally understood as length . Using the values known in 2018 and Planck units for Ω Λ = 0.6889 ± 0.0056 and the Hubble constant H 0 = 67.66 ± 0.42 (km/s)/Mpc = (2.192 7664 ± 0.0136) × 10  s , Λ has the value of Λ = 3 ( H 0 c ) 2 Ω Λ = 1.1056 × 10 − 52   m − 2 = 2.888 × 10 − 122 l P − 2 {\displaystyle {\begin{aligned}\Lambda =3\,\left({\frac {\,H_{0}\,}{c}}\right)^{2}\Omega _{\Lambda }&=1.1056\times 10^{-52}\ {\text{m}}^{-2}\\&=2.888\times 10^{-122}\,l_{\text{P}}^{-2}\end{aligned}}} where l P {\textstyle l_{\text{P}}}

16756-432: The observation of binary pulsars . All results are in agreement with general relativity. However, at the current level of accuracy, these observations cannot distinguish between general relativity and other theories in which the equivalence principle is valid. General relativity predicts that the path of light will follow the curvature of spacetime as it passes near a star. This effect was initially confirmed by observing

16898-459: The ordinary Euclidean geometry . However, space time as a whole is more complicated. As can be shown using simple thought experiments following the free-fall trajectories of different test particles, the result of transporting spacetime vectors that can denote a particle's velocity (time-like vectors) will vary with the particle's trajectory; mathematically speaking, the Newtonian connection is not integrable . From this, one can deduce that spacetime

17040-502: The passage of time, the geometry of space, the motion of bodies in free fall , and the propagation of light, and include gravitational time dilation , gravitational lensing , the gravitational redshift of light, the Shapiro time delay and singularities / black holes . So far, all tests of general relativity have been shown to be in agreement with the theory. The time-dependent solutions of general relativity enable us to talk about

17182-511: The preface to Relativity: The Special and the General Theory , Einstein said "The present book is intended, as far as possible, to give an exact insight into the theory of Relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics. The work presumes a standard of education corresponding to that of

17324-430: The principle of equivalence and his sense that a proper description of gravity should be geometrical at its basis, so that there was an "element of revelation" in the manner in which Einstein arrived at his theory. Other elements of beauty associated with the general theory of relativity are its simplicity and symmetry, the manner in which it incorporates invariance and unification, and its perfect logical consistency. In

17466-477: The ratio between the energy density due to the cosmological constant and the critical density of the universe, the tipping point for a sufficient density to stop the universe from expanding forever. This ratio is usually denoted by Ω Λ and is estimated to be 0.6889 ± 0.0056 , according to results published by the Planck Collaboration in 2018. In a flat universe, Ω Λ is the fraction of

17608-446: The same premises, which include additional rules and/or constraints, leading to different field equations. Examples are Whitehead's theory , Brans–Dicke theory , teleparallelism , f ( R ) gravity and Einstein–Cartan theory . The derivation outlined in the previous section contains all the information needed to define general relativity, describe its key properties, and address a question of crucial importance in physics, namely how

17750-472: The speed of light in vacuum. When there is no matter present, so that the energy–momentum tensor vanishes, the results are the vacuum Einstein equations, In general relativity, the world line of a particle free from all external, non-gravitational force is a particular type of geodesic in curved spacetime. In other words, a freely moving or falling particle always moves along a geodesic. The geodesic equation is: where s {\displaystyle s}

17892-419: The sum of two solutions is also a solution); another example is Schrödinger's equation of quantum mechanics , which is linear in the wavefunction . The EFE reduce to Newton's law of gravity by using both the weak-field approximation and the slow-motion approximation . In fact, the constant G appearing in the EFE is determined by making these two approximations. Newtonian gravitation can be written as

18034-586: The symmetry of the bracketed term and the definition of the Einstein tensor , gives, after relabelling the indices, G α β ; β = 0 {\displaystyle {G^{\alpha \beta }}_{;\beta }=0} Using the EFE, this immediately gives, ∇ β T α β = T α β ; β = 0 {\displaystyle \nabla _{\beta }T^{\alpha \beta }={T^{\alpha \beta }}_{;\beta }=0} which expresses

18176-504: The term containing the cosmological constant Λ was absent from the version in which he originally published them. Einstein then included the term with the cosmological constant to allow for a universe that is not expanding or contracting . This effort was unsuccessful because: Einstein then abandoned Λ , remarking to George Gamow "that the introduction of the cosmological term was the biggest blunder of his life". The inclusion of this term does not create inconsistencies. For many years

18318-518: The theory can be used for model-building. General relativity is a metric theory of gravitation. At its core are Einstein's equations , which describe the relation between the geometry of a four-dimensional pseudo-Riemannian manifold representing spacetime, and the energy–momentum contained in that spacetime. Phenomena that in classical mechanics are ascribed to the action of the force of gravity (such as free-fall , orbital motion, and spacecraft trajectories ), correspond to inertial motion within

18460-486: The theory of a scalar field, Φ , which is the gravitational potential in joules per kilogram of the gravitational field g = −∇Φ , see Gauss's law for gravity ∇ 2 Φ ( x → , t ) = 4 π G ρ ( x → , t ) {\displaystyle \nabla ^{2}\Phi \left({\vec {x}},t\right)=4\pi G\rho \left({\vec {x}},t\right)} where ρ

18602-644: The theory's predictive power, and relativistic cosmology also became amenable to direct observational tests. General relativity has acquired a reputation as a theory of extraordinary beauty. Subrahmanyan Chandrasekhar has noted that at multiple levels, general relativity exhibits what Francis Bacon has termed a "strangeness in the proportion" ( i.e . elements that excite wonderment and surprise). It juxtaposes fundamental concepts (space and time versus matter and motion) which had previously been considered as entirely independent. Chandrasekhar also noted that Einstein's only guides in his search for an exact theory were

18744-651: The trace again would restore the original EFE. The trace-reversed form may be more convenient in some cases (for example, when one is interested in weak-field limit and can replace g μ ν {\displaystyle g_{\mu \nu }} in the expression on the right with the Minkowski metric without significant loss of accuracy). In the Einstein field equations G μ ν + Λ g μ ν = κ T μ ν , {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu }\,,}

18886-487: The two become significant when dealing with speeds approaching the speed of light , and with high-energy phenomena. With Lorentz symmetry, additional structures come into play. They are defined by the set of light cones (see image). The light-cones define a causal structure: for each event A , there is a set of events that can, in principle, either influence or be influenced by A via signals or interactions that do not need to travel faster than light (such as event B in

19028-420: The universe grows but the amount of matter does not. Another ratio that is used by scientists is the equation of state , usually denoted w , which is the ratio of pressure that dark energy puts on the universe to the energy per unit volume. This ratio is w = −1 for the cosmological constant used in the Einstein equations; alternative time-varying forms of vacuum energy such as quintessence generally use

19170-489: The universe is expanding. This is readily described by the expanding cosmological solutions found by Friedmann in 1922, which do not require a cosmological constant. Lemaître used these solutions to formulate the earliest version of the Big Bang models, in which the universe has evolved from an extremely hot and dense earlier state. Einstein later declared the cosmological constant the biggest blunder of his life. During that period, general relativity remained something of

19312-667: The universe is under accelerating expansion. The cosmological constant is needed to explain such acceleration. After this discovery, the cosmological constant was put back to the equation of general relativity. The cosmological constant Λ appears in the Einstein field equations in the form R μ ν − 1 2 R g μ ν + Λ g μ ν = κ T μ ν , {\displaystyle R_{\mu \nu }-{\tfrac {1}{2}}R\,g_{\mu \nu }+\Lambda g_{\mu \nu }=\kappa T_{\mu \nu },} where

19454-474: The universes that is compatible with some form of intelligent life. Critics claim that these theories, when used as an explanation for fine-tuning, commit the inverse gambler's fallacy . In 1995, Weinberg's argument was refined by Alexander Vilenkin to predict a value for the cosmological constant that was only ten times the matter density, i.e. about three times the current value since determined. An attempt to directly observe and relate quanta or fields like

19596-411: The vacuum energy is (even in part) the potential of a scalar field such as the residual inflaton (also see Quintessence ). Another theoretical approach that deals with the issue is that of multiverse theories, which predict a large number of "parallel" universes with different laws of physics and/or values of fundamental constants. Again, the anthropic principle states that we can only live in one of

19738-432: The validation of his equations—when they had predicted the expansion of the universe in theory, before it was demonstrated in observation of the cosmological redshift —as his "biggest blunder" (according to George Gamow ). It transpired that adding the cosmological constant to Einstein's equations does not lead to a static universe at equilibrium because the equilibrium is unstable: if the universe expands slightly, then

19880-438: The weak-gravity, low-speed limit is Newtonian mechanics, the proportionality constant κ {\displaystyle \kappa } is found to be κ = 8 π G c 4 {\textstyle \kappa ={\frac {8\pi G}{c^{4}}}} , where G {\displaystyle G} is the Newtonian constant of gravitation and c {\displaystyle c}

20022-474: Was instantaneous or of electromagnetic origin, he suggested that relativity was "something due to our methods of measurement". In his theory, he showed that gravitational waves propagate at the speed of light. Soon afterwards, Einstein started thinking about how to incorporate gravity into his relativistic framework. In 1907, beginning with a simple thought experiment involving an observer in free fall (FFO), he embarked on what would be an eight-year search for

20164-456: Was originally introduced in Einstein's 1917 paper entitled “ The cosmological considerations in the General Theory of Reality ”. Einstein included the cosmological constant as a term in his field equations for general relativity because he was dissatisfied that otherwise his equations did not allow for a static universe : gravity would cause a universe that was initially non-expanding to contract. To counteract this possibility, Einstein added

#56943