Misplaced Pages

Eurypterina

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Order ( Latin : ordo ) is one of the eight major hierarchical taxonomic ranks in Linnaean taxonomy . It is classified between family and class . In biological classification , the order is a taxonomic rank used in the classification of organisms and recognized by the nomenclature codes . An immediately higher rank, superorder , is sometimes added directly above order, with suborder directly beneath order. An order can also be defined as a group of related families.

#575424

57-510: Eurypterina is one of two suborders of eurypterids , an extinct group of chelicerate arthropods commonly known as "sea scorpions". Eurypterine eurypterids are sometimes informally known as "swimming eurypterids". They are known from fossil deposits worldwide, though primarily in North America and Europe . Seventy-five percent of eurypterid species are eurypterines; this represents 99% of specimens. The superfamily Pterygotioidea

114-461: A cohors (plural cohortes ). Some of the plant families still retain the names of Linnaean "natural orders" or even the names of pre-Linnaean natural groups recognized by Linnaeus as orders in his natural classification (e.g. Palmae or Labiatae ). Such names are known as descriptive family names. In the field of zoology , the Linnaean orders were used more consistently. That is,

171-509: A capital letter. For some groups of organisms, their orders may follow consistent naming schemes . Orders of plants , fungi , and algae use the suffix -ales (e.g. Dictyotales ). Orders of birds and fishes use the Latin suffix -iformes meaning 'having the form of' (e.g. Passeriformes ), but orders of mammals and invertebrates are not so consistent (e.g. Artiodactyla , Actiniaria , Primates ). For some clades covered by

228-570: A distinct rank of biological classification having its own distinctive name (and not just called a higher genus ( genus summum )) was first introduced by the German botanist Augustus Quirinus Rivinus in his classification of plants that appeared in a series of treatises in the 1690s. Carl Linnaeus was the first to apply it consistently to the division of all three kingdoms of nature (then minerals , plants , and animals ) in his Systema Naturae (1735, 1st. Ed.). For plants, Linnaeus' orders in

285-411: A food web based on as-yet-undiscovered detritivores and grazers on micro-organisms. Millipedes from Cowie Formation such as Cowiedesmus and Pneumodesmus were considered as the oldest millipede from the middle Silurian at 428–430 million years ago, although the age of this formation is later reinterpreted to be from the early Devonian instead by some researchers. Regardless, Pneumodesmus

342-519: A high degree of development in relation to the age of its fossil remains. Fossils of this plant have been recorded in Australia, Canada, and China. Eohostimella heathana is an early, probably terrestrial, "plant" known from compression fossils of Early Silurian (Llandovery) age. The chemistry of its fossils is similar to that of fossilised vascular plants, rather than algae. Fossils that are considered as terrestrial animals are also known from

399-490: A large ocean occupied most of the northern half of the globe. The high sea levels of the Silurian and the relatively flat land (with few significant mountain belts) resulted in a number of island chains, and thus a rich diversity of environmental settings. During the Silurian, Gondwana continued a slow southward drift to high southern latitudes, but there is evidence that the Silurian icecaps were less extensive than those of

456-423: A minor mass extinction and associated with rapid sea-level change. Each one leaves a similar signature in the geological record, both geochemically and biologically; pelagic (free-swimming) organisms were particularly hard hit, as were brachiopods , corals , and trilobites , and extinctions rarely occur in a rapid series of fast bursts. The climate fluctuations are best explained by a sequence of glaciations, but

513-525: A second supercontinent known as Euramerica . When the proto-Europe collided with North America, the collision folded coastal sediments that had been accumulating since the Cambrian off the east coast of North America and the west coast of Europe. This event is the Caledonian orogeny , a spate of mountain building that stretched from New York State through conjoined Europe and Greenland to Norway. At

570-545: A time when most continents were widely separated, the clade is the eurypterid clade with the most cosmopolitan distribution. Like other eurypterines, they are most common in Laurentia, Baltica and Avalonia, but are also found commonly in other paleocontinents . Fossil remains have been recovered from Australia , Libya , Algeria , Morocco , Florida , Saudi Arabia , Iberia , South America , vast swaths of Gondwana , Bohemia and Siberia . The earliest pterygotoids are from

627-419: Is determined by a taxonomist , as is whether a particular order should be recognized at all. Often there is no exact agreement, with different taxonomists each taking a different position. There are no hard rules that a taxonomist needs to follow in describing or recognizing an order. Some taxa are accepted almost universally, while others are recognized only rarely. The name of an order is usually written with

SECTION 10

#1732790139576

684-561: Is still an important fossil as the oldest definitive evidence of spiracles to breath in the air. The first bony fish, the Osteichthyes , appeared, represented by the Acanthodians covered with bony scales. Fish reached considerable diversity and developed movable jaws , adapted from the supports of the front two or three gill arches. A diverse fauna of eurypterids (sea scorpions)—some of them several meters in length—prowled

741-510: Is the most species-rich clade, with 56 species, followed by the Adelophthalmoidea with 43 species; as sister taxa , they comprise the most derived eurypterines. Pterygotioidea includes the pterygotids , which are the only eurypterids known to have a cosmopolitan distribution. Though more numerous both in specimens and taxa, the eurypterines have the shorter temporal range of the two eurypterid suborders. They first appeared around

798-669: The Carboniferous and Permian , the genus gained an almost cosmopolitan distribution. The basalmost species in the entire clade are from Baltica and most of the evolution within the basal members took place in Laurussia . By the Devonian, representatives were found in both Siberia and Australia long before the formation of Pangaea. Although the Pterygotoidea only existed for a period of about 40 million years during

855-528: The International Code of Zoological Nomenclature , several additional classifications are sometimes used, although not all of these are officially recognized. In their 1997 classification of mammals , McKenna and Bell used two extra levels between superorder and order: grandorder and mirorder . Michael Novacek (1986) inserted them at the same position. Michael Benton (2005) inserted them between superorder and magnorder instead. This position

912-624: The Megalograptoidea is thought to be relatively primitive (between Onychopterella and the Eurypteroidea ) because they lack a synapomorphy of all more derived swimming forms; the modified distal margin of the sixth podomere of the swimming leg. This position is not necessarily true, since the sixth podomere in the swimming leg resembles the reduced podomere found in the Mixopteridae , and they might instead belong between

969-580: The South Pole until they almost disappeared in the middle of Silurian. Layers of broken shells (called coquina ) provide strong evidence of a climate dominated by violent storms generated then as now by warm sea surfaces. The climate and carbon cycle appear to be rather unsettled during the Silurian, which had a higher frequency of isotopic excursions (indicative of climate fluctuations) than any other period. The Ireviken event , Mulde event , and Lau event each represent isotopic excursions following

1026-815: The Systema Naturae and the Species Plantarum were strictly artificial, introduced to subdivide the artificial classes into more comprehensible smaller groups. When the word ordo was first consistently used for natural units of plants, in 19th-century works such as the Prodromus Systematis Naturalis Regni Vegetabilis of Augustin Pyramus de Candolle and the Genera Plantarum of Bentham & Hooker, it indicated taxa that are now given

1083-623: The cosmopolitan distribution of the pterygotoids , though were not as common nor as successful. Adelophthalmoids were the longest lasting clade of eurypterines, becoming extinct in the Middle Permian , this is in part due to the survival of Adelophthalmus beyond the Middle Devonian . The earliest records of the genus are from the Early Devonian of western Germany , but following the amalgamation of Pangaea during

1140-681: The Eurypteroidea and Carcinosomatoidea. In contrast to the Megalograptoidea, the Eurypteroidea is a rather well-known clade that contains around 90% of all known eurypterid specimens. They were closely related, supported by numerous similarities, to the Carcinosomatoidea. The Carcinosomatoidea have a poorly resolved internal phylogeny, though can be easily recognised by scorpion -like appearance and heavily spinose appendages. Pterygotioidea and Adelophthalmoidea are

1197-683: The Llandovery and Wenlock. Trilobites started to recover in the Rhuddanian, and they continued to enjoy success in the Silurian as they had in the Ordovician despite their reduction in clade diversity as a result of LOME. The Early Silurian was a chaotic time of turnover for crinoids as they rediversified after LOME. Members of Flexibilia, which were minimally impacted by LOME, took on an increasing ecological prominence in Silurian seas. Monobathrid camerates, like flexibles, diversified in

SECTION 20

#1732790139576

1254-490: The Llandovery, whereas cyathocrinids and dendrocrinids diversified later in the Silurian. Scyphocrinoid loboliths suddenly appeared in the terminal Silurian, shortly before the Silurian-Devonian boundary, and disappeared as abruptly as they appeared very shortly after their first appearance. Endobiotic symbionts were common in the corals and stromatoporoids. Rugose corals especially were colonised and encrusted by

1311-596: The Order in which the Older Sedimentary Strata Succeed each other in England and Wales, which was the germ of the modern geological time scale . As it was first identified, the "Silurian" series when traced farther afield quickly came to overlap Sedgwick's "Cambrian" sequence, however, provoking furious disagreements that ended the friendship. The English geologist Charles Lapworth resolved

1368-475: The Silures show little correlation ( cf . Geologic map of Wales , Map of pre-Roman tribes of Wales ), Murchison conjectured that their territory included Caer Caradoc and Wenlock Edge exposures - and that if it did not there were plenty of Silurian rocks elsewhere 'to sanction the name proposed'. In 1835 the two men presented a joint paper, under the title On the Silurian and Cambrian Systems, Exhibiting

1425-486: The Silurian was the diversification of jawed fish , which include placoderms , acanthodians (which gave rise to cartilaginous fish ) and osteichthyan ( bony fish , further divided into lobe-finned and ray-finned fishes ), although this corresponded to sharp decline of jawless fish such as conodonts and ostracoderms . The Silurian system was first identified by the Scottish geologist Roderick Murchison , who

1482-518: The Silurian. The definitive oldest record of millipede ever known is Kampecaris obanensis and Archidesmus sp. from the late Silurian (425 million years ago) of Kerrera . There are also other millipedes, centipedes , and trigonotarbid arachnoids known from Ludlow (420 million years ago). Predatory invertebrates would indicate that simple food webs were in place that included non-predatory prey animals. Extrapolating back from Early Devonian biota, Andrew Jeram et al. in 1990 suggested

1539-650: The Tethys, the Proto-Tethys and Paleo-Tethys , the Rheic Ocean , the Iapetus Ocean (a narrow seaway between Avalonia and Laurentia), and the newly formed Ural Ocean . The Silurian period was once believed to have enjoyed relatively stable and warm temperatures, in contrast with the extreme glaciations of the Ordovician before it and the extreme heat of the ensuing Devonian; however, it is now known that

1596-416: The absolute majority of both known eurypterid species and known specimens, though the morphology of the walking stylonurines is almost as diverse in appearance, and the fossil record of the eurypterines may therefore simply be more complete than that of the stylonurines, possibly due to varying habitat preferences. The most basal eurypterines with swimming legs, the genus Onychopterella , are known from

1653-497: The conflict by defining a new Ordovician system including the contested beds. An alternative name for the Silurian was "Gotlandian" after the strata of the Baltic island of Gotland . The French geologist Joachim Barrande , building on Murchison's work, used the term Silurian in a more comprehensive sense than was justified by subsequent knowledge. He divided the Silurian rocks of Bohemia into eight stages. His interpretation

1710-556: The earliest records of the genus are from Baltica and Eurypterus was thus likely an invasive genus in Laurentia, albeit one that managed to adapt well to the new habitats. The majority of carcinosomatoid taxa are also known from Laurentia, Baltica and Avalonia. Isolated and fragmentary fossils from the Late Silurian of Vietnam and the Czech Republic show that the terranes of Annamia and Perunica were within

1767-498: The east coast of Gondwana close to the equator (a region that today is South Africa) from the Late Ordovician. It is not known whether or not the swimming forms originated here or not, but it is speculated that they migrated from Laurentia , since most stylonurines and basal swimming forms are predominantly known from Laurentia and Gondwana otherwise completely lacks basal swimming forms. The megalograptoids were likely

Eurypterina - Misplaced Pages Continue

1824-459: The edge of the continental shelf) can be identified, and the highest Silurian sea level was probably around 140 metres (459 ft) higher than the lowest level reached. During this period, the Earth entered a warm greenhouse phase, supported by high CO 2 levels of 4500 ppm, and warm shallow seas covered much of the equatorial land masses. Early in the Silurian, glaciers retreated back into

1881-461: The end of the Silurian, sea levels dropped again, leaving telltale basins of evaporites extending from Michigan to West Virginia, and the new mountain ranges were rapidly eroded. The Teays River , flowing into the shallow mid-continental sea, eroded Ordovician Period strata, forming deposits of Silurian strata in northern Ohio and Indiana. The vast ocean of Panthalassa covered most of the northern hemisphere. Other minor oceans include two phases of

1938-509: The first deep-boring bivalves are known from this period. Chitons saw a peak in diversity during the middle of the Silurian. Hederelloids enjoyed significant success in the Silurian, with some developing symbioses with the colonial rugose coral Entelophyllum . The Silurian was a heyday for tentaculitoids , which experienced an evolutionary radiation focused mainly in Baltoscandia, along with an expansion of their geographic range in

1995-860: The first major successful group of eurypterids, evidenced by a Late Ordovician radiation. All known members of the Megalograptoidea are from the Middle to Late Ordovician of Laurentia, though potential records from the Middle Silurian of Baltica are known in the form of the genus Holmipterus suecicus (though its classification as a megalograptoid is questionable). Eurypteroids are known from Laurentia and Baltica, with one known species from Avalonia . Eurypterus and other eurypteroids appear to have been unable to spread beyond Laurussian waters. The genus Eurypterus in particular dominated many Silurian eurypterid faunas of Laurentia. Despite its abundance, it appears to not have originated in Laurentia,

2052-639: The first period to see megafossils of extensive terrestrial biota in the form of moss -like miniature forests along lakes and streams and networks of large, mycorrhizal nematophytes , heralding the beginning of the Silurian-Devonian Terrestrial Revolution. However, the land fauna did not have a major impact on the Earth until it diversified in the Devonian. The first fossil records of vascular plants , that is, land plants with tissues that carry water and food, appeared in

2109-533: The geographical range of the carcinosomatoids. Only a few basal carcinosomatoids (e.g. Carcinosoma and Paracarcinosoma ) have been found in deeper waters whilst the more derived forms, such as Mixopterus and Lanarkopterus have not. Basal carcinosomatoids ( Carcinosomatidae ) are likely responsible for the fossil remains in Vietnam and the Czech Republic and may have had a distribution similar to

2166-451: The global climate underwent many drastic fluctuations throughout the Silurian, evidenced by numerous major carbon and oxygen isotope excursions during this geologic period. Sea levels rose from their Hirnantian low throughout the first half of the Silurian; they subsequently fell throughout the rest of the period, although smaller scale patterns are superimposed on this general trend; fifteen high-stands (periods when sea levels were above

2223-464: The lack of tillites in the middle to late Silurian make this explanation problematic. The Silurian period has been viewed by some palaeontologists as an extended recovery interval following the Late Ordovician mass extinction (LOME), which interrupted the cascading increase in biodiversity that had continuously gone on throughout the Cambrian and most of the Ordovician. The Silurian was

2280-402: The late-Ordovician glaciation. The southern continents remained united during this period. The melting of icecaps and glaciers contributed to a rise in sea level, recognizable from the fact that Silurian sediments overlie eroded Ordovician sediments, forming an unconformity . The continents of Avalonia , Baltica , and Laurentia drifted together near the equator , starting the formation of

2337-574: The latest Llandovery of Scotland , Laurentia and South China and this mobility makes it difficult to pinpoint the geographical origin of the clade, though it is speculated to have been close to or in Laurentia like the Adelophthalmoidea. Eurypterina contains eight superfamilies - Onychopterelloidea , Moselopteroidea , Megalograptoidea , Eurypteroidea , Carcinosomatoidea , Waeringopteroidea , Adelophthalmoidea and Pterygotioidea . The relationships between them remain somewhat unclear,

Eurypterina - Misplaced Pages Continue

2394-662: The main features used to distinguish them from the stylonurines . The cladogram presented below, simplified from a study by Tetlie, showcases the phylogenetic relationships of the Eurypterina based on this adaptation, and the enlargement of the chelicerae , which characterises the family Pterygotidae , to be used for active prey capture. Stylonurina Megalograptoidea Eurypteroidea Carcinosomatoidea Waeringopteroidea Adelophthalmoidea Hughmilleria Herefordopterus Slimonia Pterygotidae Suborders What does and does not belong to each order

2451-561: The mass extinction's aftermath, but expanded their range afterwards. The most abundant brachiopods were atrypids and pentamerides; atrypids were the first to recover and rediversify in the Rhuddanian after LOME, while pentameride recovery was delayed until the Aeronian. Bryozoans exhibited significant degrees of endemism to a particular shelf. They also developed symbiotic relationships with cnidarians and stromatolites. Many bivalve fossils have also been found in Silurian deposits, and

2508-708: The orders in the zoology part of the Systema Naturae refer to natural groups. Some of his ordinal names are still in use, e.g. Lepidoptera (moths and butterflies) and Diptera (flies, mosquitoes, midges, and gnats). In virology , the International Committee on Taxonomy of Viruses 's virus classification includes fifteen taxomomic ranks to be applied for viruses , viroids and satellite nucleic acids : realm , subrealm , kingdom , subkingdom, phylum , subphylum , class, subclass, order, suborder, family, subfamily , genus, subgenus , and species. There are currently fourteen viral orders, each ending in

2565-564: The precursor of the currently used International Code of Nomenclature for algae, fungi, and plants . In the first international Rules of botanical nomenclature from the International Botanical Congress of 1905, the word family ( familia ) was assigned to the rank indicated by the French famille , while order ( ordo ) was reserved for a higher rank, for what in the 19th century had often been named

2622-502: The rank of family (see ordo naturalis , ' natural order '). In French botanical publications, from Michel Adanson 's Familles naturelles des plantes (1763) and until the end of the 19th century, the word famille (plural: familles ) was used as a French equivalent for this Latin ordo . This equivalence was explicitly stated in the Alphonse Pyramus de Candolle 's Lois de la nomenclature botanique (1868),

2679-726: The same time as the Stylonurina in the Middle Ordovician . The suborder faced a slow extinction during the Middle and Late Devonian , possibly tied to the emergence of jawed vertebrates. Every Eurypterine genus and lineage went extinct before the Carboniferous save for Adelophthalmus which would go extinct in the Early Permian , millions of years before the Permian-Triassic extinction event that ended

2736-495: The second half of the Silurian Period. The earliest-known representatives of this group are Cooksonia . Most of the sediments containing Cooksonia are marine in nature. Preferred habitats were likely along rivers and streams. Baragwanathia appears to be almost as old, dating to the early Ludlow (420 million years) and has branching stems and needle-like leaves of 10–20 centimetres (3.9–7.9 in). The plant shows

2793-516: The shallow Silurian seas and lakes of North America; many of their fossils have been found in New York state . Brachiopods were abundant and diverse, with the taxonomic composition, ecology, and biodiversity of Silurian brachiopods mirroring Ordovician ones. Brachiopods that survived the LOME developed novel adaptations for environmental stress, and they tended to be endemic to a single palaeoplate in

2850-493: The stylonurines. The Stylonurina and Eurypterina are most easily distinguished by the morphology of the posteriormost prosomal appendage. In the Stylonurina, this appendage takes the form of a long and slender walking leg, lacking a modified spine (termed podomere 7a). In the Eurypterina, the leg is most usually modified and broadened into a swimming paddle and always includes a podomere 7a. Swimming eurypterines represent

2907-607: The suffix -virales . Late Silurian The Silurian ( / s ɪ ˈ lj ʊər i . ən , s aɪ -/ sih- LURE -ee-ən, sy- ) is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago ( Mya ), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the third and shortest period of the Paleozoic Era, and

SECTION 50

#1732790139576

2964-463: The third of twelve periods of the Phanerozoic Eon. As with other geologic periods , the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out. One important event in this period

3021-406: The two most derived clades as well as the most taxonomically diverse ones. Adelophthalmoidea contains 43 species, whereas Pterygotioidea contains 56. The superfamilies classified as part of Eurypterina contain the following families: Suborder Eurypterina Burmeister, 1843 Eurypterines are characterised by the transformation of the posteriormost prosomal appendage into a swimming paddle, one of

3078-418: Was adopted by Systema Naturae 2000 and others. In botany , the ranks of subclass and suborder are secondary ranks pre-defined as respectively above and below the rank of order. Any number of further ranks can be used as long as they are clearly defined. The superorder rank is commonly used, with the ending -anae that was initiated by Armen Takhtajan 's publications from 1966 onwards. The order as

3135-656: Was examining fossil-bearing sedimentary rock strata in south Wales in the early 1830s. He named the sequences for a Celtic tribe of Wales, the Silures , inspired by his friend Adam Sedgwick , who had named the period of his study the Cambrian , from a Latin name for Wales. Whilst the British rocks now identified as belonging to the Silurian System and the lands now thought to have been inhabited in antiquity by

3192-409: Was questioned in 1854 by Edward Forbes , and the later stages of Barrande; F, G and H have since been shown to be Devonian. Despite these modifications in the original groupings of the strata, it is recognized that Barrande established Bohemia as a classic ground for the study of the earliest Silurian fossils. With the supercontinent Gondwana covering the equator and much of the southern hemisphere,

3249-520: Was the initial establishment of terrestrial life in what is known as the Silurian-Devonian Terrestrial Revolution : vascular plants emerged from more primitive land plants, dikaryan fungi started expanding and diversifying along with glomeromycotan fungi, and three groups of arthropods ( myriapods , arachnids and hexapods ) became fully terrestrialized. Another significant evolutionary milestone during

#575424