Misplaced Pages

Mitsubishi F-15J

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Pratt & Whitney F100 (company designation JTF22 ) is a low bypass afterburning turbofan engine. It was designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle . The engine was to be developed in tandem with the F401 which shares a similar core but with an upscaled fan for the U.S. Navy's F-14 Tomcat . The F401 was later abandoned due to costs and reliability issues. The F100 also powered the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.

#984015

116-640: The Mitsubishi F-15J/DJ Eagle is a twin-engine, all-weather air superiority fighter based on the McDonnell Douglas F-15 Eagle in use by the Japan Air Self-Defense Force (JASDF). The F-15J was produced under license by Mitsubishi Heavy Industries . The subsequent F-15DJ and F-15J J-MSIP (MSIP Configuration II Aircraft) variants were also produced. Japan is the largest customer of the F-15 Eagle outside

232-740: A thrust-to-weight ratio of 8. At the end of the IEDP, General Electric and Pratt & Whitney submitted proposals for their engine candidates for the aircraft that had been selected in the FX Competition, the McDonnell Douglas F-15. The Pratt & Whitney proposal was selected as the winner and the engine was designated the F100. The Air Force would award Pratt & Whitney a contract in 1970 to develop and produce F100-PW-100 (USAF) and F401-PW-400 (USN) engines. The Navy would use

348-491: A 10-stage compressor driven by a two-stage high-pressure turbine. The initial F100-PW-100 variant generates nearly 24,000 lbf (107 kN) of thrust in full afterburner and weighs approximately 3,000 lb (1,361 kg), achieving its target thrust-to-weight ratio of 8 and providing the F-15 with its desired thrust-to-weight ratio of greater than 1:1 at combat weight. The F100-PW-100 first flew in an F-15 Eagle in 1972 with

464-584: A by now mediocre performance. The first Eindecker victory came on 1 July 1915, when Leutnant Kurt Wintgens , of Feldflieger Abteilung 6 on the Western Front, downed a Morane-Saulnier Type L. His was one of five Fokker M.5 K/MG prototypes for the Eindecker , and was armed with a synchronized aviation version of the Parabellum MG14 machine gun. The success of the Eindecker kicked off

580-470: A cadre of exceptional pilots. In the United Kingdom, at the behest of Neville Chamberlain (more famous for his 'peace in our time' speech), the entire British aviation industry was retooled, allowing it to change quickly from fabric covered metal framed biplanes to cantilever stressed skin monoplanes in time for the war with Germany, a process that France attempted to emulate, but too late to counter

696-435: A competitive cycle of improvement among the combatants, both sides striving to build ever more capable single-seat fighters. The Albatros D.I and Sopwith Pup of 1916 set the classic pattern followed by fighters for about twenty years. Most were biplanes and only rarely monoplanes or triplanes . The strong box structure of the biplane provided a rigid wing that allowed the accurate control essential for dogfighting. They had

812-443: A difficult deflection shot. The first step in finding a real solution was to mount the weapon on the aircraft, but the propeller remained a problem since the best direction to shoot is straight ahead. Numerous solutions were tried. A second crew member behind the pilot could aim and fire a swivel-mounted machine gun at enemy airplanes; however, this limited the area of coverage chiefly to the rear hemisphere, and effective coordination of

928-552: A form that would replace all others in the 1930s. As collective combat experience grew, the more successful pilots such as Oswald Boelcke , Max Immelmann , and Edward Mannock developed innovative tactical formations and maneuvers to enhance their air units' combat effectiveness. Allied and – before 1918 – German pilots of World War I were not equipped with parachutes , so in-flight fires or structural failures were often fatal. Parachutes were well-developed by 1918 having previously been used by balloonists, and were adopted by

1044-664: A great deal of ground-attack work. In World War II, the USAAF and RAF often favored fighters over dedicated light bombers or dive bombers , and types such as the Republic P-47 Thunderbolt and Hawker Hurricane that were no longer competitive as aerial combat fighters were relegated to ground attack. Several aircraft, such as the F-111 and F-117, have received fighter designations though they had no fighter capability due to political or other reasons. The F-111B variant

1160-454: A maximum continuous power rating of 12,410 lbf (55.2 kN), military power of 14,690 lbf (65.3 kN), and afterburning thrust of 23,930 lbf (106.4 kN) with 5-minute limit. Due to the advanced nature of engine stemming from ambitious performance goals, numerous problems were encountered in its early days of service including high wear, stalling and "hard" afterburner starts. These "hard" starts could be caused by failure of

1276-590: A new ejection seat; replaced IHI-220E engines; more powerful processor; uprated electrical generation and cooling capabilities to support more avionics and the Raytheon AN/APG-63(V)1 radar. which has been produced under license by Mitsubishi Electric since 1997. Raytheon expects the radar will ultimately be installed in 80 F-15Js. The new radar will support the AAM-4 missile, the Japanese answer to

SECTION 10

#1732766013985

1392-431: A number of twin-engine fighters were built; however they were found to be outmatched against single-engine fighters and were relegated to other tasks, such as night fighters equipped with radar sets. By the end of the war, turbojet engines were replacing piston engines as the means of propulsion, further increasing aircraft speed. Since the weight of the turbojet engine was far less than a piston engine, having two engines

1508-550: A part of military nomenclature, a letter is often assigned to various types of aircraft to indicate their use, along with a number to indicate the specific aircraft. The letters used to designate a fighter differ in various countries. In the English-speaking world, "F" is often now used to indicate a fighter (e.g. Lockheed Martin F-35 Lightning II or Supermarine Spitfire F.22 ), though "P" used to be used in

1624-638: A range of specialized aircraft types. Some of the most expensive fighters such as the US Grumman F-14 Tomcat , McDonnell Douglas F-15 Eagle , Lockheed Martin F-22 Raptor and Russian Sukhoi Su-27 were employed as all-weather interceptors as well as air superiority fighter aircraft, while commonly developing air-to-ground roles late in their careers. An interceptor is generally an aircraft intended to target (or intercept) bombers and so often trades maneuverability for climb rate. As

1740-742: A result, during the early months of these campaigns, Axis air forces destroyed large numbers of Red Air Force aircraft on the ground and in one-sided dogfights. In the later stages on the Eastern Front, Soviet training and leadership improved, as did their equipment. By 1942 Soviet designs such as the Yakovlev Yak-9 and Lavochkin La-5 had performance comparable to the German Bf 109 and Focke-Wulf Fw 190 . Also, significant numbers of British, and later U.S., fighter aircraft were supplied to aid

1856-643: A separate (and vulnerable) radiator, but had increased drag. Inline engines often had a better power-to-weight ratio . Some air forces experimented with " heavy fighters " (called "destroyers" by the Germans). These were larger, usually twin-engined aircraft, sometimes adaptations of light or medium bomber types. Such designs typically had greater internal fuel capacity (thus longer range) and heavier armament than their single-engine counterparts. In combat, they proved vulnerable to more agile single-engine fighters. The primary driver of fighter innovation, right up to

1972-420: A single operator, who flew the aircraft and also controlled its armament. They were armed with one or two Maxim or Vickers machine guns, which were easier to synchronize than other types, firing through the propeller arc. Gun breeches were in front of the pilot, with obvious implications in case of accidents, but jams could be cleared in flight, while aiming was simplified. The use of metal aircraft structures

2088-403: A subsequent cruise on 15 July to Japan. Additionally, 8   F-15Js were manufactured in large components and shipped to Japan for final assembly by Komaki of Mitsubishi, the first of these (serial number 12–8803) making its maiden flight on 26 August 1981. Companies divided the remainder share and produced it under license from 1981, with final assembly of aircraft performed by Mitsubishi. In

2204-402: Is a fast, heavily armed and long-range type, able to act as an escort fighter protecting bombers , to carry out offensive sorties of its own as a penetration fighter and maintain standing patrols at significant distance from its home base. Bombers are vulnerable due to their low speed, large size and poor maneuvrability. The escort fighter was developed during World War II to come between

2320-549: Is able to defend itself while conducting attack sorties. The word "fighter" was first used to describe a two-seat aircraft carrying a machine gun (mounted on a pedestal) and its operator as well as the pilot . Although the term was coined in the United Kingdom, the first examples were the French Voisin pushers beginning in 1910, and a Voisin III would be the first to shoot down another aircraft, on 5 October 1914. However at

2436-623: Is known as an interceptor . Recognized classes of fighter include: Of these, the Fighter-bomber , reconnaissance fighter and strike fighter classes are dual-role, possessing qualities of the fighter alongside some other battlefield role. Some fighter designs may be developed in variants performing other roles entirely, such as ground attack or unarmed reconnaissance . This may be for political or national security reasons, for advertising purposes, or other reasons. The Sopwith Camel and other "fighting scouts" of World War I performed

SECTION 20

#1732766013985

2552-589: The 2009 general election , and priority was given instead to improvement of the F-15J and the Mitsubishi F-2 . The number of F-15J upgrades was increased from 26 to 48, and the MoD purchased part of the modernization for 38 fighters. However, the full budget for modernization is incomplete. 48 F-15Js would get a Link 16 datalink and helmet-mounted sight under this upgrade program. The helmet-mounted sight will support

2668-665: The AAM-5 dogfighting missile, which will replace the AAM-3. On 17 December 2010, modernization was funded for 16 F-15Js but the MoD reduced this to 10 F-15Js. In late October 2019 the US Defense Security Cooperation Agency approved a possible sale to Japan of up to 103 APG-82(V)1 Active Electronically Scanned Array (AESA) Radars, 116 Advanced Display Core Processor II Mission System Computers and 101 AN/ALQ-239 Digital Electronic Warfare Systems for

2784-655: The AMRAAM . The Ministry of Defense (MoD) requested the modernization and deployment of reconnaissance aircraft in June 2007, and it was planned to upgrade some F-15Js with synthetic aperture radar pods; these aircraft would replace the RF-4 Phantom IIs currently in service. On 17 December 2009, the reconnaissance upgrade disappeared from the budget after the Democratic Party of Japan took power following

2900-562: The Combined Bomber Offensive . Unescorted Consolidated B-24 Liberators and Boeing B-17 Flying Fortress bombers, however, proved unable to fend off German interceptors (primarily Bf 109s and Fw 190s). With the later arrival of long range fighters, particularly the North American P-51 Mustang , American fighters were able to escort far into Germany on daylight raids and by ranging ahead attrited

3016-612: The Inertial navigation system . All F-15J/DJs have two UHF radios, which are also VHF capable. The F-15J is characterized by an indigenous data link, but they do not support Link 16 FDL mounted by USAF F-15Cs. It works as a basic bidirectional link with the Japanese ground-controlled intercept network, and it is limited because it is not a true network. Mitsubishi received the F-15C/D Multistage Improvement Program (MSIP) and in 1987 began upgrading

3132-585: The Junkers D.I , made with corrugated duralumin , all based on his experience in creating the pioneering Junkers J 1 all-metal airframe technology demonstration aircraft of late 1915. While Fokker would pursue steel tube fuselages with wooden wings until the late 1930s, and Junkers would focus on corrugated sheet metal, Dornier was the first to build a fighter (the Dornier-Zeppelin D.I ) made with pre-stressed sheet aluminum and having cantilevered wings,

3248-680: The La Pérouse Strait from the Soviet fighter base on Sakhalin Island. On 24 December 2018, it was announced that Japan is considering selling their F-15s to the U.S. in order to acquire funds to purchase F-35s. The Japanese Ministry of Defense confirmed on February 4, 2022 that 68   F-15Js will be upgraded through the Japan Super Interceptor (JSI) programme under a cost of JPY646.5 billion (USD5.6 billion). Boeing

3364-510: The RAF and the USAAF against German industry intended to wear down the Luftwaffe. Axis fighter aircraft focused on defending against Allied bombers while Allied fighters' main role was as bomber escorts. The RAF raided German cities at night, and both sides developed radar-equipped night fighters for these battles. The Americans, in contrast, flew daylight bombing raids into Germany delivering

3480-588: The Sopwith Tabloid and Bristol Scout . The French and the Germans didn't have an equivalent as they used two seaters for reconnaissance, such as the Morane-Saulnier L , but would later modify pre-war racing aircraft into armed single seaters. It was quickly found that these were of little use since the pilot couldn't record what he saw while also flying, while military leaders usually ignored what

3596-792: The Stangensteuerung in German, for "pushrod control system") devised by the engineers of Anthony Fokker 's firm was the first system to enter service. It would usher in what the British called the " Fokker scourge " and a period of air superiority for the German forces, making the Fokker Eindecker monoplane a feared name over the Western Front , despite its being an adaptation of an obsolete pre-war French Morane-Saulnier racing airplane, with poor flight characteristics and

Mitsubishi F-15J - Misplaced Pages Continue

3712-465: The afterburner to start or by extinguishing after start, in either case the large jets of jet fuel were lit by the engine exhaust resulting in high pressure waves causing the engine to stall; these stagnation stalls usually occurred at high Mach and high altitude, and could seriously damage the turbine if the condition was not corrected. The problems were contributed by pilots making much more abrupt throttle changes than previous fighters and engines due to

3828-621: The "E" abbreviation from 220E is for "equivalent" and given to engines which have been upgraded as such. Data from DTIC, Florida International University, National Museum of the U.S. Air Force The F100-PW-229 and its competitor, the General Electric F110-GE-129, were the result of the USAF seeking greater power for its tactical aircraft through the Improved Performance Engine (IPE) program in

3944-576: The -200 that reduced the severity of the high pressure waves from "hard" afterburner starts. This greatly reduced the rate of stagnation stalls, and the -200 on the F-16 saw much better reliability than the -100 on the F-15, although some of the issues from the -100 remained. Similarly, these problems were eventually solved by the F100-PW-220, which the -200 could be upgraded to as well. Data from DTIC, Smithsonian National Air and Space Museum Due to

4060-806: The -220 would be Pratt & Whitney's initial offering in the AFE program, competing with the General Electric F110-GE-100. The F-16C/D Block 30/32s were the first to be built with the common engine bay, able to accept the existing F100-200/220 engine (Block 32) or the F110-100 (Block 30). A non-afterburning variant, the F100-PW-220U powers the Northrop Grumman X-47B UCAV . The -100 and -200 series engines could be upgraded to become equivalent to -220 specifications;

4176-627: The -229 fitted with a 3-dimensional axisymmetric thrust vectoring nozzle, referred by Pratt & Whitney as the Pitch/Yaw Balance Beam Nozzle (P/YBBN), was tested on the F-15 ACTIVE (Advanced Control Technology for Integrated Vehicles) in the 1990s. In 2007, the F100-PW-229EEP (Engine Enhancement Package) began development to increase reliability and number of accumulated cycles between depot overhauls. This

4292-475: The -229EEP began in 2009 and existing -229s can be upgraded to this configuration during scheduled depot maintenance. Data from Pratt & Whitney The F100-PW-232, originally called F100-PW-229A (Advanced), was a further enhanced variant that incorporated engineering advances and technology from Pratt & Whitney's F119 engine for the F-22 as well as operational experience from the -229; development began in

4408-613: The 1980s. It was developed under company designation PW1128; in addition to greater thrust, the -229 incorporates the reliability and durability improvements of the -220 as well as an enhanced DEEC. Compared to earlier variants, the -229 has a higher turbine inlet temperature, higher airflow of 248 lb/s (112 kg/s), and lower bypass ratio. The first engine was flown in 1989 and produced thrust of 17,800 lbf (79.2 kN) (dry/intermediate thrust) and 29,160 lbf (129.7 kN) with augmentation. The -229 powers late model F-16C/D Block 52s, F-16V Block 72s and F-15Es . A variant of

4524-777: The Air Force Propulsion Laboratory was employed in a support role to assist ASD Systems Engineering in evaluations of technical risks. Later upon selection of the F-15 the ASD engineering cadre became the F-15 Systems Project Office. The IEDP was created to be a competitive engine design/demonstration phase followed with a down select to one winning engine design and development program. General Electric and Pratt & Whitney were placed on contract for an approximately 18-month program with goals to improve thrust and reduce weight to achieve

4640-668: The British Royal Flying Corps and Royal Air Force referred to them as " scouts " until the early 1920s, while the U.S. Army called them "pursuit" aircraft until the late 1940s (using the designation P, as in Curtiss P-40 Warhawk , Republic P-47 Thunderbolt and Bell P-63 Kingcobra ). The UK changed to calling them fighters in the 1920s , while the US Army did so in the 1940s. A short-range fighter designed to defend against incoming enemy aircraft

4756-639: The British, the Americans, the Spanish (in the Spanish civil war) and the Germans. Given limited budgets, air forces were conservative in aircraft design, and biplanes remained popular with pilots for their agility, and remained in service long after they ceased to be competitive. Designs such as the Gloster Gladiator , Fiat CR.42 Falco , and Polikarpov I-15 were common even in the late 1930s, and many were still in service as late as 1942. Up until

Mitsubishi F-15J - Misplaced Pages Continue

4872-720: The European battlefield, played a crucial role in the eventual defeat of the Axis, which Reichmarshal Hermann Göring , commander of the German Luftwaffe summed up when he said: "When I saw Mustangs over Berlin, I knew the jig was up." Pratt %26 Whitney F100 In 1967, the United States Navy and United States Air Force issued a joint engine Request for Proposals (RFP) for the F-14 Tomcat and

4988-522: The F-15C/D was achieved. After congressional review, the Department of Defense (DoD) withheld the aircraft's electronic warfare and engine systems from the licensing. Initially, the aircraft were produced in the U.S. and exported to Japan. This initial export production contributed to aircraft development under the defense industry of Japan while facilitating base production of aircraft, achieving

5104-605: The F-15J/DJs is the same as F-15C/Ds, but the lens of F-15J/DJ MSIPs is black rather than white for F-15C/Ds. F-15Js have been equipped with the Japanese-built AAM-3 missile, a Japanese successor to the AIM-9 Sidewinder follow-on with distinctive "barbed" forward fins. Japan has been investigating an advanced fighter to replace the F-15, meanwhile the F-15J fleet is being modernized. On 28 July 2003,

5220-587: The F-15J/DJs. Improvements included an uprated central computer, engines, armament control set and added the J/APQ-1 countermeasures set. The F100-PW-220 (IHI-220) was upgraded to the F100-PW-220E (IHI-220E) with a digital engine electronic control retrofit. Differences in appearance from earlier F-15Js include the J/ALQ-8 ICS with an ICS antenna mounted under the intake. The J/APQ-4 RWR antenna position on

5336-672: The FX, which became the parallel fighter design competition that led to the F-15 Eagle in 1970. This engine program was called the IEDP (Initial Engine Development Program) and was funded and managed out of the Aeronautical Systems Division (ASD) at Wright-Patterson AFB . Under ASD, a Systems Project Office Cadre was assigned to manage both the FX Aircraft and Engine definition phase. The Turbine Engine Division of

5452-483: The German flying services during the course of that year. The well known and feared Manfred von Richthofen , the "Red Baron", was wearing one when he was killed, but the allied command continued to oppose their use on various grounds. In April 1917, during a brief period of German aerial supremacy a British pilot's average life expectancy was calculated to average 93 flying hours, or about three weeks of active service. More than 50,000 airmen from both sides died during

5568-500: The German invasion. The period of improving the same biplane design over and over was now coming to an end, and the Hawker Hurricane and Supermarine Spitfire started to supplant the Gloster Gladiator and Hawker Fury biplanes but many biplanes remained in front-line service well past the start of World War II. While not a combatant in Spain, they too absorbed many of the lessons in time to use them. The Spanish Civil War also provided an opportunity for updating fighter tactics. One of

5684-414: The Italians developed several monoplanes such as the Fiat G.50 Freccia , but being short on funds, were forced to continue operating obsolete Fiat CR.42 Falco biplanes. From the early 1930s the Japanese were at war against both the Chinese Nationalists and the Russians in China, and used the experience to improve both training and aircraft, replacing biplanes with modern cantilever monoplanes and creating

5800-642: The Japanese Nakajima Ki-27 , Nakajima Ki-43 and Mitsubishi A6M Zero and the Italian Fiat G.50 Freccia and Macchi MC.200 . In contrast, designers in the United Kingdom, Germany, the Soviet Union, and the United States believed that the increased speed of fighter aircraft would create g -forces unbearable to pilots who attempted maneuvering dogfights typical of the First World War, and their fighters were instead optimized for speed and firepower. In practice, while light, highly maneuverable aircraft did possess some advantages in fighter-versus-fighter combat, those could usually be overcome by sound tactical doctrine, and

5916-509: The Luftwaffe to establish control of the skies over Western Europe. By the time of Operation Overlord in June 1944, the Allies had gained near complete air superiority over the Western Front. This cleared the way both for intensified strategic bombing of German cities and industries, and for the tactical bombing of battlefield targets. With the Luftwaffe largely cleared from the skies, Allied fighters increasingly served as ground attack aircraft. Allied fighters, by gaining air superiority over

SECTION 50

#1732766013985

6032-420: The Luftwaffe, and while the Luftwaffe maintained a qualitative edge over the Red Air Force for much of the war, the increasing numbers and efficacy of the Soviet Air Force were critical to the Red Army's efforts at turning back and eventually annihilating the Wehrmacht . Meanwhile, air combat on the Western Front had a much different character. Much of this combat focused on the strategic bombing campaigns of

6148-437: The McDonnell Douglas F-15 Eagle as one of the 13 candidates for the replacement of the F-104J/DJ Starfighter and F-4EJ Phantom II . A single-seat F-15C and a twin-seat F-15D were evaluated at Edwards Air Force Base , and in December 1975, the F-15 was announced the winner, with the government intending to purchase 187 F-15J/DJs. By April 1978, Mitsubishi Heavy Industries was designated as the primary contractor and licensing for

6264-419: The Soviet Polikarpov I-16 . The later German design was earlier in its design cycle, and had more room for development and the lessons learned led to greatly improved models in World War II. The Russians failed to keep up and despite newer models coming into service, I-16s remaining the most common Soviet front-line fighter into 1942 despite being outclassed by the improved Bf 109s in World War II. For their part,

6380-419: The Soviet war effort as part of Lend-Lease , with the Bell P-39 Airacobra proving particularly effective in the lower-altitude combat typical of the Eastern Front. The Soviets were also helped indirectly by the American and British bombing campaigns, which forced the Luftwaffe to shift many of its fighters away from the Eastern Front in defense against these raids. The Soviets increasingly were able to challenge

6496-451: The US for pursuit (e.g. Curtiss P-40 Warhawk ), a translation of the French "C" ( Dewoitine D.520 C.1 ) for Chasseur while in Russia "I" was used for Istrebitel , or exterminator ( Polikarpov I-16 ). As fighter types have proliferated, the air superiority fighter emerged as a specific role at the pinnacle of speed, maneuverability, and air-to-air weapon systems – able to hold its own against all other fighters and establish its dominance in

6612-529: The United States, Russia, India and China. The first step was to find ways to reduce the aircraft's reflectivity to radar waves by burying the engines, eliminating sharp corners and diverting any reflections away from the radar sets of opposing forces. Various materials were found to absorb the energy from radar waves, and were incorporated into special finishes that have since found widespread application. Composite structures have become widespread, including major structural components, and have helped to counterbalance

6728-405: The United States. In addition to combat, F-15DJ roles include training. The F-15J Kai is a modernized version of the F-15J. Kai was an early designation that has gradually subdivided; nowadays, Japan no longer uses 'kai' to refer to newly upgraded F-15Js. Instead, Japanese predominantly use J-MSIP or F-15MJ. In June–July   1975, the Japan Defense Agency (JDA, now Ministry of Defense) examined

6844-440: The ability to gather information by reconnaissance over the battlefield. Early fighters were very small and lightly armed by later standards, and most were biplanes built with a wooden frame covered with fabric, and a maximum airspeed of about 100 mph (160 km/h). A successful German biplane, the Albatross, however, was built with a plywood shell, rather than fabric, which created a stronger, faster airplane. As control of

6960-409: The advantages of fighting above Britain's home territory allowed the RAF to deny Germany air superiority, saving the UK from possible German invasion and dealing the Axis a major defeat early in the Second World War. On the Eastern Front , Soviet fighter forces were overwhelmed during the opening phases of Operation Barbarossa . This was a result of the tactical surprise at the outset of the campaign,

7076-534: The airspace over armies became increasingly important, all of the major powers developed fighters to support their military operations. Between the wars, wood was largely replaced in part or whole by metal tubing, and finally aluminum stressed skin structures (monocoque) began to predominate. By World War II , most fighters were all-metal monoplanes armed with batteries of machine guns or cannons and some were capable of speeds approaching 400 mph (640 km/h). Most fighters up to this point had one engine, but

SECTION 60

#1732766013985

7192-433: The basis for an effective "fighter" in the modern sense of the word. It was based on small fast aircraft developed before the war for air racing such with the Gordon Bennett Cup and Schneider Trophy . The military scout airplane was not expected to carry serious armament, but rather to rely on speed to "scout" a location, and return quickly to report, making it a flying horse. British scout aircraft, in this sense, included

7308-414: The bombers and enemy attackers as a protective shield. The primary requirement was for long range, with several heavy fighters given the role. However they too proved unwieldy and vulnerable, so as the war progressed techniques such as drop tanks were developed to extend the range of more nimble conventional fighters. The penetration fighter is typically also fitted for the ground-attack role, and so

7424-539: The defense budgets of modern armed forces. The global combat aircraft market was worth $ 45.75 billion in 2017 and is projected by Frost & Sullivan at $ 47.2 billion in 2026: 35% modernization programs and 65% aircraft purchases, dominated by the Lockheed Martin F-35 with 3,000 deliveries over 20 years. A fighter aircraft is primarily designed for air-to-air combat . A given type may be designed for specific combat conditions, and in some cases for additional roles such as air-to-ground fighting. Historically

7540-550: The design approach of the Italians and Japanese made their fighters ill-suited as interceptors or attack aircraft. During the invasion of Poland and the Battle of France , Luftwaffe fighters—primarily the Messerschmitt Bf 109 —held air superiority, and the Luftwaffe played a major role in German victories in these campaigns. During the Battle of Britain , however, British Hurricanes and Spitfires proved roughly equal to Luftwaffe fighters. Additionally Britain's radar-based Dowding system directing fighters onto German attacks and

7656-463: The early 1960s since both were believed unusable at the speeds being attained, however the Vietnam War showed that guns still had a role to play, and most fighters built since then are fitted with cannon (typically between 20 and 30 mm (0.79 and 1.18 in) in caliber) in addition to missiles. Most modern combat aircraft can carry at least a pair of air-to-air missiles. In the 1970s, turbofans replaced turbojets, improving fuel economy enough that

7772-404: The engine in the planned F-14B and the XFV-12 project but would cut back and later cancel its order after the latter's failure due to costs and reliability issues, and chose to continue to use the Pratt & Whitney TF30 engine from the F-111 in its F-14s. The F100 is a twin spool, axial flow, afterburning turbofan engine. It has a 3-stage fan driven by a two-stage low-pressure turbine and

7888-415: The excess thrust available. Early problems were eventually solved by the development of the F100-PW-220 in the early 1980s, which the -100 could be upgraded to. The F-16 Fighting Falcon entered service with the F100-PW-200; compared to the -100, the -200 has some additional redundancies for single-engine reliability and almost identical thrust ratings. In particular, a "proximate splitter" was introduced on

8004-513: The fighter. Rifle-caliber .30 and .303 in (7.62 and 7.70 mm) calibre guns remained the norm, with larger weapons either being too heavy and cumbersome or deemed unnecessary against such lightly built aircraft. It was not considered unreasonable to use World War I-style armament to counter enemy fighters as there was insufficient air-to-air combat during most of the period to disprove this notion. The rotary engine , popular during World War I, quickly disappeared, its development having reached

8120-413: The first upgraded F-15J (#928) made its first flight, and it was delivered to the JASDF Air Development Test Wing on 21 October 2003. On 10 December 2004, the Japanese Government approved a Mid-Term Defense Program (MTDP) to modernize the F-15J MSIPs over five years in accordance with new National Defense Program Guidelines. The upgrade is being implemented in phases, but ultimately the upgrade will include

8236-428: The goal of producing a fighter to Japan's requirements. The Japan Air Self-Defense Force (JASDF) acquired 203   F-15Js and 20   F-15DJs, of which 2   F-15Js and 12   F-15DJs were built by McDonnell Douglas in St. Louis , Missouri. Dubbed the "Peace Eagle" by the DoD FMS program, the first F-15J built in St. Louis was delivered to the United States Air Force for its first flight on 4 June 1980, and

8352-406: The guns were subjected). Shooting with this traditional arrangement was also easier because the guns shot directly ahead in the direction of the aircraft's flight, up to the limit of the guns range; unlike wing-mounted guns which to be effective required to be harmonised , that is, preset to shoot at an angle by ground crews so that their bullets would converge on a target area a set distance ahead of

8468-433: The innovations was the development of the " finger-four " formation by the German pilot Werner Mölders . Each fighter squadron (German: Staffel ) was divided into several flights ( Schwärme ) of four aircraft. Each Schwarm was divided into two Rotten , which was a pair of aircraft. Each Rotte was composed of a leader and a wingman. This flexible formation allowed the pilots to maintain greater situational awareness, and

8584-514: The interceptor. The equipment necessary for daytime flight is inadequate when flying at night or in poor visibility. The night fighter was developed during World War I with additional equipment to aid the pilot in flying straight, navigating and finding the target. From modified variants of the Royal Aircraft Factory B.E.2c in 1915, the night fighter has evolved into the highly capable all-weather fighter. The strategic fighter

8700-420: The last piston engine support aircraft could be replaced with jets, making multi-role combat aircraft possible. Honeycomb structures began to replace milled structures, and the first composite components began to appear on components subjected to little stress. With the steady improvements in computers, defensive systems have become increasingly efficient. To counter this, stealth technologies have been pursued by

8816-852: The late 1990s. Both the -232 and its competitor, the General Electric F110-GE-132, were designed to make full use of the F-16's Modular Common Inlet Duct (MCID), or "Big Mouth" inlet introduced in the Block 30 variant. The fan module was redesigned for increased airflow of 275 lb/s (125 kg/s) and greater reliability; it incorporated stages with wide chord blades and disk formed into a single piece called an integrally-blades rotor (IBR), or blisk . The stators were also redesigned for better aerodynamics to improve stall margin. The -232 could produce 20,100 lbf (89.4 kN) of thrust in intermediate power and 32,500 lbf (144.6 kN) in afterburner; alternatively it could produce

8932-529: The latter period of 1981, the first F-15J/DJ aircraft were sent to 202nd Tactical Fighter Squadron , which was reorganized as an Eagle FTU and renamed the 23 Flying Training Squadron at Nyutabaru base on 21 December 1982. The JASDF developed a plan to form the first squadron after the KAL007 shootdown by a Soviet Su-15 on 1 September 1983. In March 1984, new F-15Js began replacing the 203rd Tactical Fighter Squadron 's F-104Js at Chitose Air Base , located across

9048-703: The leadership vacuum within the Soviet military left by the Great Purge , and the general inferiority of Soviet designs at the time, such as the obsolescent Polikarpov I-15 biplane and the I-16 . More modern Soviet designs, including the Mikoyan-Gurevich MiG-3 , LaGG-3 and Yakolev Yak-1 , had not yet arrived in numbers and in any case were still inferior to the Messerschmitt Bf 109 . As

9164-506: The mid-1930s, the majority of fighters in the US, the UK, Italy and Russia remained fabric-covered biplanes. Fighter armament eventually began to be mounted inside the wings, outside the arc of the propeller, though most designs retained two synchronized machine guns directly ahead of the pilot, where they were more accurate (that being the strongest part of the structure, reducing the vibration to which

9280-495: The most modern weapons, against an enemy in complete command of the air, fights like a savage…" Throughout the war, fighters performed their conventional role in establishing air superiority through combat with other fighters and through bomber interception, and also often performed roles such as tactical air support and reconnaissance . Fighter design varied widely among combatants. The Japanese and Italians favored lightly armed and armored but highly maneuverable designs such as

9396-483: The nose section during a ground runaway incident in 1991 (Heisei 3). After being transported to Mitsubishi Heavy Industries , it was repaired and refurbished as a J-MSIP aircraft (resulting in modernization and refurbishment), then deployed to the 303rd Squadron at Komatsu Airport . The Japan Multi-Stage Improvement Program, akin to the US MSIP, involved implementing unique capability enhancements during procurement. It

9512-607: The opposition. Subsequently, radar capabilities grew enormously and are now the primary method of target acquisition . Wings were made thinner and swept back to reduce transonic drag, which required new manufacturing methods to obtain sufficient strength. Skins were no longer sheet metal riveted to a structure, but milled from large slabs of alloy. The sound barrier was broken, and after a few false starts due to required changes in controls, speeds quickly reached Mach 2, past which aircraft cannot maneuver sufficiently to avoid attack. Air-to-air missiles largely replaced guns and rockets in

9628-488: The outbreak of World War I , front-line aircraft were mostly unarmed and used almost exclusively for reconnaissance . On 15 August 1914, Miodrag Tomić encountered an enemy airplane while on a reconnaissance flight over Austria-Hungary which fired at his aircraft with a revolver, so Tomić fired back. It was believed to be the first exchange of fire between aircraft. Within weeks, all Serbian and Austro-Hungarian aircraft were armed. Another type of military aircraft formed

9744-451: The outset for dual roles. Other fighter designs are highly specialized while still filling the main air superiority role, and these include the interceptor and, historically, the heavy fighter and night fighter . Since World War I, achieving and maintaining air superiority has been considered essential for victory in conventional warfare . Fighters continued to be developed throughout World War I, to deny enemy aircraft and dirigibles

9860-487: The period of rapid re-armament in the late 1930s, were not military budgets, but civilian aircraft racing. Aircraft designed for these races introduced innovations like streamlining and more powerful engines that would find their way into the fighters of World War II. The most significant of these was the Schneider Trophy races, where competition grew so fierce, only national governments could afford to enter. At

9976-433: The period, going from a typical 180 hp (130 kW) in the 900 kg (2,000 lb) Fokker D.VII of 1918 to 900 hp (670 kW) in the 2,500 kg (5,500 lb) Curtiss P-36 of 1936. The debate between the sleek in-line engines versus the more reliable radial models continued, with naval air forces preferring the radial engines, and land-based forces often choosing inlines. Radial designs did not require

10092-878: The periodic maintenance (IRAN) of the F-15J/DJ J-MSIP aircraft. Recently, however, they have been incorporated into a modernization plan targeting J-MSIP aircraft. The upgrades include the addition of operational capabilities for both the AAM-4 and AIM-120 missiles, as well as the AAM-5 missile. The exact number of aircraft undergoing these upgrades has not been disclosed. Data from General characteristics Performance Armament Aircraft of comparable role, configuration, and era Related lists Fighter aircraft Fighter aircraft (early on also pursuit aircraft ) are military aircraft designed primarily for air-to-air combat . In military conflict,

10208-456: The pilot's maneuvering with the gunner's aiming was difficult. This option was chiefly employed as a defensive measure on two-seater reconnaissance aircraft from 1915 on. Both the SPAD S.A and the Royal Aircraft Factory B.E.9 added a second crewman ahead of the engine in a pod but this was both hazardous to the second crewman and limited performance. The Sopwith L.R.T.Tr. similarly added a pod on

10324-451: The pilots reported. Attempts were made with handheld weapons such as pistols and rifles and even light machine guns, but these were ineffective and cumbersome. The next advance came with the fixed forward-firing machine gun, so that the pilot pointed the entire aircraft at the target and fired the gun, instead of relying on a second gunner. Roland Garros bolted metal deflector plates to the propeller so that it would not shoot itself out of

10440-410: The point where rotational forces prevented more fuel and air from being delivered to the cylinders, which limited horsepower. They were replaced chiefly by the stationary radial engine though major advances led to inline engines gaining ground with several exceptional engines—including the 1,145 cu in (18,760 cm ) V-12 Curtiss D-12 . Aircraft engines increased in power several-fold over

10556-663: The program. Work on this program was set to start in 2022. Mitsubishi Heavy Industries has made multiple changes to the specifications and details of their aircraft models during the production process to accommodate their upgrade plans. These changes can be categorized into different batches, each with specific improvements and added equipment. Below are the specific changes for each batch: C1 ~ C5 lots delivered from 1981 (Showa 56) to 1984 (Showa 59) are colloquially referred to as Pre-MSIP aircraft. This includes 98 F-15J aircraft (from 02-8801 to 82-8898) and 12 F-15DJ aircraft (from 12-8051 to 52-8062). F-15J aircraft 42-8832 suffered damage to

10672-575: The propeller arc was evident even before the outbreak of war and inventors in both France and Germany devised mechanisms that could time the firing of the individual rounds to avoid hitting the propeller blades. Franz Schneider , a Swiss engineer, had patented such a device in Germany in 1913, but his original work was not followed up. French aircraft designer Raymond Saulnier patented a practical device in April 1914, but trials were unsuccessful because of

10788-461: The propeller arc. Wing guns were tried but the unreliable weapons available required frequent clearing of jammed rounds and misfires and remained impractical until after the war. Mounting the machine gun over the top wing worked well and was used long after the ideal solution was found. The Nieuport 11 of 1916 used this system with considerable success, however, this placement made aiming and reloading difficult but would continue to be used throughout

10904-458: The propeller blades were fitted with metal wedges to protect them from ricochets . Garros' modified monoplane first flew in March 1915 and he began combat operations soon after. Garros scored three victories in three weeks before he himself was downed on 18 April and his airplane, along with its synchronization gear and propeller was captured by the Germans. Meanwhile, the synchronization gear (called

11020-426: The propensity of the machine gun employed to hang fire due to unreliable ammunition. In December 1914, French aviator Roland Garros asked Saulnier to install his synchronization gear on Garros' Morane-Saulnier Type L parasol monoplane . Unfortunately the gas-operated Hotchkiss machine gun he was provided had an erratic rate of fire and it was impossible to synchronize it with the propeller. As an interim measure,

11136-421: The role of fighter aircraft is to establish air superiority of the battlespace . Domination of the airspace above a battlefield permits bombers and attack aircraft to engage in tactical and strategic bombing of enemy targets, and helps prevent the enemy from doing the same. The key performance features of a fighter include not only its firepower but also its high speed and maneuverability relative to

11252-497: The same thrust levels as the -229 but increase inspection intervals by 40%. The -232 was not pursued by the USAF, but many of the improvements were incorporated into the -229EEP to increase its reliability and inspection intervals. Data from Pratt & Whitney, Flight International The F401 was the naval development of the F100 and designed in tandem. It was intended to power the F-14B Tomcat and Rockwell XFV-12 , but

11368-532: The skies above the battlefield. The interceptor is a fighter designed specifically to intercept and engage approaching enemy aircraft. There are two general classes of interceptor: relatively lightweight aircraft in the point-defence role, built for fast reaction, high performance and with a short range, and heavier aircraft with more comprehensive avionics and designed to fly at night or in all weathers and to operate over longer ranges . Originating during World War I, by 1929 this class of fighters had become known as

11484-417: The sky and a number of Morane-Saulnier Ns were modified. The technique proved effective, however the deflected bullets were still highly dangerous. Soon after the commencement of the war, pilots armed themselves with pistols, carbines , grenades , and an assortment of improvised weapons. Many of these proved ineffective as the pilot had to fly his airplane while attempting to aim a handheld weapon and make

11600-564: The static thrust of the -100/200, but the -220 has better dynamic thrust across most of the envelope. The F100-220 was introduced in 1986 and was installed on the F-15 and F-16, gradually replacing the -100/200. Seeking a way to drive unit costs down, the USAF implemented the Alternate Fighter Engine (AFE) program in 1984 (nicknamed "The Great Engine War"), under which the engine contract would be awarded through competition;

11716-408: The steady increases in aircraft weight—most modern fighters are larger and heavier than World War II medium bombers. Because of the importance of air superiority, since the early days of aerial combat armed forces have constantly competed to develop technologically superior fighters and to deploy these fighters in greater numbers, and fielding a viable fighter fleet consumes a substantial proportion of

11832-420: The target aircraft. The success or failure of a combatant's efforts to gain air superiority hinges on several factors including the skill of its pilots, the tactical soundness of its doctrine for deploying its fighters, and the numbers and performance of those fighters. Many modern fighter aircraft also have secondary capabilities such as ground attack and some types, such as fighter-bombers , are designed from

11948-485: The top wing with no better luck. An alternative was to build a "pusher" scout such as the Airco DH.2 , with the propeller mounted behind the pilot. The main drawback was that the high drag of a pusher type's tail structure made it slower than a similar "tractor" aircraft. A better solution for a single seat scout was to mount the machine gun (rifles and pistols having been dispensed with) to fire forwards but outside

12064-464: The two Rotten could split up at any time and attack on their own. The finger-four would be widely adopted as the fundamental tactical formation during World War Two, including by the British and later the Americans. World War II featured fighter combat on a larger scale than any other conflict to date. German Field Marshal Erwin Rommel noted the effect of airpower: "Anyone who has to fight, even with

12180-659: The unsatisfactory reliability, maintenance costs, and service life of the F100-100/200, Pratt & Whitney was eventually pressured into upgrading the engine to address these issues. The Air Force also began funding the General Electric F101 Derivative Fighter Engine , which eventually became the F110, as a competitor to the F100 to coerce more urgency from Pratt & Whitney. The result of Pratt & Whitney's improvement efforts

12296-401: The upgrade of 98 F-15Js to a "Japanese Super Interceptor" (JSI) configuration for an estimated cost of $ 4.5 billion. It can also carry a large air-to-surface weapon on its centerline weapon station, such as an AGM-158B JASSM-ER or AGM-158C LRASM , giving the aircraft an air-to-ground and anti-ship capability. In July 2020, Boeing signed an agreement with MHI to provide assistance and support to

12412-603: The very end of the inter-war period in Europe came the Spanish Civil War . This was just the opportunity the German Luftwaffe , Italian Regia Aeronautica , and the Soviet Union's Voenno-Vozdushnye Sily needed to test their latest aircraft. Each party sent numerous aircraft types to support their sides in the conflict. In the dogfights over Spain, the latest Messerschmitt Bf 109 fighters did well, as did

12528-478: The war as the weapons used were lighter and had a higher rate of fire than synchronized weapons. The British Foster mounting and several French mountings were specifically designed for this kind of application, fitted with either the Hotchkiss or Lewis Machine gun , which due to their design were unsuitable for synchronizing. The need to arm a tractor scout with a forward-firing gun whose bullets passed through

12644-506: The war. Fighter development stagnated between the wars, especially in the United States and the United Kingdom, where budgets were small. In France, Italy and Russia, where large budgets continued to allow major development, both monoplanes and all metal structures were common. By the end of the 1920s, however, those countries overspent themselves and were overtaken in the 1930s by those powers that hadn't been spending heavily, namely

12760-607: Was applied to 103 aircraft delivered from the C-6 to C-17 batches since 1985 (Showa 60), including J models (serial numbers 82-8899 to 82-8965) and DJ models (serial numbers 52-8063 to 92-8098). Aircraft 42-8832, a J model, underwent refurbishment from a Pre-MSIP configuration to J-MSIP after sustaining nose damage in a ground taxi mishap in 1991 (Heisei 3). Currently, there are 101 J-MSIP aircraft in service (68 J models and 33 DJ models, excluding three lost). Key differences from Pre-MSIP include: Initially, these upgrades were performed during

12876-865: Was awarded an undefinitized contract not-to-exceed $ 24,550,000 for the F-15 Japan Super Interceptor program. F-15J/DJs are identical to F-15C/Ds aside from the ECM , radar warning system, and nuclear equipment. The AN/ALQ-135 Internal Countermeasures System is replaced by the indigenous J/ALQ-8 and the AN/ALR-56 Radar Warning Receiver is replaced by the J/APR-4. The engine is the Pratt & Whitney F100 turbofan, produced under license by IHI Corporation . Some aircraft still have an inertial measurement unit, an old type of

12992-611: Was done by applying technology from the F100-PW-232 (see below), which in turn incorporated technology and advancements from the F119 program for the F-22, as well as (for -229EEP) from the F135 program for the F-35; the -229EEP incorporates updated turbine materials, cooling management techniques, compressor aerodynamics, split cases (top and bottom) and updated DEEC software. Deliveries of

13108-420: Was no longer a handicap and one or two were used, depending on requirements. This in turn required the development of ejection seats so the pilot could escape, and G-suits to counter the much greater forces being applied to the pilot during maneuvers. In the 1950s, radar was fitted to day fighters, since due to ever increasing air-to-air weapon ranges, pilots could no longer see far enough ahead to prepare for

13224-485: Was originally intended for a fighter role with the U.S. Navy , but it was canceled. This blurring follows the use of fighters from their earliest days for "attack" or "strike" operations against ground targets by means of strafing or dropping small bombs and incendiaries. Versatile multi role fighter-bombers such as the McDonnell Douglas F/A-18 Hornet are a less expensive option than having

13340-508: Was pioneered before World War I by Breguet but would find its biggest proponent in Anthony Fokker, who used chrome-molybdenum steel tubing for the fuselage structure of all his fighter designs, while the innovative German engineer Hugo Junkers developed two all-metal, single-seat fighter monoplane designs with cantilever wings: the strictly experimental Junkers J 2 private-venture aircraft, made with steel, and some forty examples of

13456-482: Was the F100-PW-220, which eliminates almost all stall-stagnations and augmentor instability issues from the -100 as well as doubling time between depot overhauls. Reliability and maintenance costs were also drastically improved, and the engine incorporates a digital electronic engine control (DEEC). The -220 engine produces static thrust of 14,590 lbf (64.9 kN) in military (intermediate) power and 23,770 lbf (105.7 kN) afterburning, very slightly lower than

#984015