Misplaced Pages

First Lunar Outpost

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Total Development: US$ 12.8 billion

#453546

80-455: Total Production: $ 12.2 billion First Lunar Outpost was a proposal for a crewed lunar mission that would have launched sometime in the 2010s. It was part of George H. W. Bush 's Space Exploration Initiative . The main purpose of the proposal was to offer a much less expensive alternative to NASA's 90-day study from 1989 by a factor of US$ 30 billion. Although it did not gather much mainstream attention, NASA dedicated much time to assembling

160-602: A 35,894 kg payload to the lunar surface. This would be helpful when delivering the station-derived habitat module. Later missions would bring in-situ resource utilization ( ISRU ) equipment to test it on the lunar surface before sending the technology to Mars. The habitat module would weigh 35.9 tons and cost $ 470 million to develop. It was a modified version of the standard Space Station Freedom habitat and laboratory design. It would not need any additional setup after landing and would be able to self-deploy its 20 KW solar array and perform its own system check. It would serve as

240-415: A cabin that housed the crew and carried equipment needed for atmospheric reentry and splashdown ; and the cylindrical service module which provided propulsion, electrical power and storage for various consumables required during a mission. An umbilical connection transferred power and consumables between the two modules. Just before reentry of the command module on the return home, the umbilical connection

320-822: A campaigning trip through the American Pacific Northwest that a human mission to Mars was too expensive and instead affirmed America's commitment to a series of less expensive probes, thus removing human exploration from the national agenda. George H. W. Bush Too Many Requests If you report this error to the Wikimedia System Administrators, please include the details below. Request from 172.68.168.226 via cp1108 cp1108, Varnish XID 217858669 Upstream caches: cp1108 int Error: 429, Too Many Requests at Thu, 28 Nov 2024 07:56:37 GMT Apollo command and service module The Apollo command and service module ( CSM )

400-785: A crew of two which meant it could carry extra supplies and payload. On April 1, 1992 Dan Goldin became NASA Administrator, and during his tenure near-term human exploration beyond Earth orbit was abandoned, and the "faster, better, cheaper" strategy was applied to space science robotic exploration . When the White House National Science and Technology Council released their revision of the National Space Policy in September 1996, it specifically lacked any mention of human space exploration beyond Earth's orbit. The next day, President Clinton stated on

480-680: A detailed and thorough proposal. However, the entire Space Exploration Initiative was cancelled soon after the proposal's completion, and NASA closed the Office of Space Exploration in March 1993. The First Lunar Outpost (FLO) was the most comprehensive moonbase study under the Space Exploration Initiative (SEI). It was intended to be the flagship of the program from which other proposals such as ILREC would have to compete. The FLO concept incorporated many recommendations from

560-515: A flashing rendezvous beacon visible from 54 nautical miles (100 km) away as a navigation aid for rendezvous with the LM. The SM was connected to the CM using three tension ties and six compression pads. The tension ties were stainless steel straps bolted to the CM's aft heat shield. It remained attached to the command module throughout most of the mission, until being jettisoned just prior to re-entry into

640-538: A future mission. Mission designers decided on four major disciplines that surface teams would focus on during the mission: astronomy, geophysics, life sciences, and space and solar systems physics. The astronauts would also deploy several "set and forget" standalone science payloads. These payloads were: The heaviest of these payloads would be the In-Situ Resource Utilization (ISRU) Demonstration Package. It consisted of several experiments for

720-498: A large pressurized auxiliary orbital module where the crew would live and work for weeks at a time. They would perform space station-type activities in the module, while later versions would use the module to carry cargo to space stations. The spacecraft was to service the Project Olympus (LORL), a foldable rotating space station launched on a single Saturn V . Later versions would be used on circumlunar flights, and would be

800-401: A life science and soil analysis lab. It could be visited by crews for up to 45 days at intervals of every six months. Later expeditions could expand the base to accommodate more crew and eventually be permanently crewed or use the site as a proving ground for deep space technology. The landing site for FLO was to be Mare Smythii , near the equator on the eastern limb. This initial landing site

880-508: A massive Saturn-derived launch vehicle known as the Comet . The Comet would have been capable of injecting 254.4 tons into low Earth orbit and 97.6 tons on a TLI making it one of the most capable vehicles ever designed. NASA's Marshall Space Flight Center looked into the Comet rocket or a possible configuration of the then-in-development National Launch System with four F-1A boosters added to

SECTION 10

#1732780597454

960-480: A pore seal, a moisture barrier (a white reflective coating), and a silver Mylar thermal coating that looks like aluminum foil. The heat shield varied in thickness from 2 inches (5.1 cm) in the aft portion (the base of the capsule, which faced forward during reentry) to 0.5 inches (1.3 cm) in the crew compartment and forward portions. The Total weight of the shield was about 3,000 pounds (1,400 kg). The 1-foot-11-inch (0.58 m)-tall forward compartment

1040-518: A scientific committee over the course of many months." Once on the surface, the crew would perform nine traverses using a 4-man unpressurized rover . Each traverse would drive out to a maximum range of 25 km and they would visit major geographical features and gathering data about the area. Each traverse was divided into segments suitable for one eight-hour EVA on the rover. Mission planners hoped five or six traverses could be completed each mission. The remaining uncompleted traverses would be left to

1120-402: A so-called 'soft dock' state and enabled the pitch and yaw movements in the two vehicles to subside. Excess movement in the vehicles during the 'hard dock' process could cause damage to the docking ring and put stress on the upper tunnel. A depressed locking trigger link at each latch allowed a spring-loaded spool to move forward, maintaining the toggle linkage in an over-center locked position. In

1200-544: A testing ground for FLO. It would use the same crew capsule but a smaller landing vehicle capable of supporting a crew of 2. The Space Shuttle would carry the Lunar Exploration Vehicle while the Ariane 5 (or Titan IV ) would carry a wide bodied Centaur G rocket stage. Both payloads would rendezvous and dock in low Earth orbit . The Centaur would fire its engine to accelerate the craft on a trajectory to

1280-441: The g -force experienced by the astronauts, permitted a reasonable amount of directional control and allowed the capsule's splashdown point to be targeted within a few miles. At 24,000 feet (7,300 m), the forward heat shield was jettisoned using four pressurized-gas compression springs. The drogue parachutes were then deployed, slowing the spacecraft to 125 miles per hour (201 kilometres per hour). At 10,700 feet (3,300 m)

1360-567: The Aerojet-General company to start developing the engine, resulting in a thrust level twice what was needed to accomplish the lunar orbit rendezvous (LOR) mission mode officially chosen in July of that year. The engine was actually used for mid-course corrections between the Earth and Moon, and to place the spacecraft into and out of lunar orbit. It also served as a retrorocket to perform

1440-466: The fuel cell gauges and controls, the electrical and battery controls, and the communications controls. Flanking the sides of the main panel were sets of smaller control panels. On the left side were a circuit breaker panel, audio controls, and the SCS power controls. On the right were additional circuit breakers and a redundant audio control panel, along with the environmental control switches. In total,

1520-452: The transposition, docking, and extraction maneuver at the beginning of the translunar coast. The docking mechanism was a non-androgynous system, consisting of a probe located in the nose of the CSM, which connected to the drogue , a truncated cone located on the lunar module. The probe was extended like a scissor jack to capture the drogue on initial contact, known as soft docking . Then

1600-540: The 1991 Stafford Synthesis report, mainly the use of a Nova class super heavy launch vehicle to minimize assembly and operations in low Earth orbit and on the surface of the Moon. FLO was a major change from previous SEI proposals as the vehicle was standalone and expendable rather than reusable and being staged off of Space Station Freedom (later known as the International Space Station). The design

1680-619: The Apollo 204 Review Board, it was decided to terminate the crewed Block I phase and redefine Block II to incorporate the review board's recommendations . Block II incorporated a revised CM heat shield design, which was tested on the uncrewed Apollo 4 and Apollo 6 flights, so the first all-up Block II spacecraft flew on the first crewed mission, Apollo 7 . The two blocks were essentially similar in overall dimensions, but several design improvements resulted in weight reduction in Block II. Also,

SECTION 20

#1732780597454

1760-593: The Block I service module propellant tanks were slightly larger than in Block II. The Apollo 1 spacecraft weighed approximately 45,000 pounds (20,000 kg), while the Block II Apollo 7 weighed 36,400 lb (16,500 kg). (These two Earth orbital craft were lighter than the craft which later went to the Moon, as they carried propellant in only one set of tanks, and did not carry the high-gain S-band antenna.) In

1840-521: The CM and faster break-up on re-entry. The service propulsion system ( SPS ) engine was originally designed to lift the CSM off the surface of the Moon in the direct ascent mission mode, The engine selected was the AJ10-137 , which used Aerozine 50 as fuel and nitrogen tetroxide (N 2 O 4 ) as oxidizer to produce 20,500 lbf (91 kN) of thrust. A contract was signed in April 1962 for

1920-472: The CM reaction control subsystem; water tanks; the crushable ribs of the impact attenuation system; and a number of instruments. The CM-SM umbilical, the point where wiring and plumbing ran from one module to the other, was also in the aft compartment. The panels of the heat shield covering the aft compartment were removable for maintenance of the equipment before flight. The components of the ELS were housed around

2000-533: The CSM umbilical cables . The command module was built in North American's factory in Downey, California , and consisted of two basic structures joined together: the inner structure (pressure shell) and the outer structure. The inner structure was an aluminum sandwich construction consisting of a welded aluminum inner skin, adhesively bonded aluminum honeycomb core, and outer face sheet. The thickness of

2080-506: The Earth's atmosphere. At jettison, the CM umbilical connections were cut using a pyrotechnic-activated guillotine assembly. Following jettison, the SM aft translation thrusters automatically fired continuously to distance it from the CM, until either the RCS fuel or the fuel cell power was depleted. The roll thrusters were also fired for five seconds to make sure it followed a different trajectory from

2160-542: The Space Shuttle would need the lightweight Al-Li External Tank or Advanced Solid Rocket Motors (ASRMs) to carry 25,720-kg payloads to a 300-km orbit. The new external tank was eventually manufactured but the ASRMs were cancelled in 1994. The Centaur G would be modified to last 10 days in orbit rather than a few hours. The crew capsule would be the same upscaled Apollo capsule used on FLO but would only need to support

2240-799: The Stafford Synthesis report recommended that NASA invest in nuclear propulsion technology. NASA's Lewis Research Center established a Nuclear Systems Office to develop and test a fully functional engine by 2005. This along with the military's Timberwind project revived the U.S. nuclear propulsion program for the first time since NERVA's cancellation in the 1970s. The landing vehicle was designed to be as simple and easy to operate as possible. It would weigh 93,526 kg (103 tons) and be powered by four RL-10 engines. When fully deployed its landing legs would stretch to 18.8 meters wide and would stand 14.1 meters tall. Each FLO crewed flight would only require one launch and one vehicle. The Comet would send

2320-423: The astronauts to demonstrate the use of resources on the Moon such as heating lunar regolith to extract oxygen, which would also be the main objective of the next proposed lunar mission ILREC . The main focus of this was to test the technology which would be vital for crewed missions to Mars. The second mission would focus less on exploration and more on setting up additional research equipment as well as tending to

2400-569: The base, and a height of 11 feet 5 inches (3.48 m) including the docking probe and dish-shaped aft heat shield. The forward compartment contained two reaction control system thrusters, the docking tunnel, and the Earth Landing System. The inner pressure vessel housed the crew accommodation, equipment bays, controls and displays, and many spacecraft systems. The aft compartment contained 10 reaction control engines and their related propellant tanks, freshwater tanks, and

2480-402: The basic 2-stage NLS vehicle. The Saturn V derived design consisted of a standard Saturn V but with a new third stage, stretched first and second stages, and new F-1 side boosters. The engines would be updated to the newer F-1A and J-2S variants. Development costs were expected to be low since most of it would just be resurrecting manufacturing hardware from Apollo. A nuclear powered variant of

First Lunar Outpost - Misplaced Pages Continue

2560-427: The basis for a direct ascent lunar spacecraft as well as used on interplanetary missions. In late 1960, NASA called on U.S. industry to propose designs for the vehicle. On May 25, 1961 President John F. Kennedy announced the Moon landing goal before 1970, which immediately rendered NASA's Olympus Station plans obsolete. When NASA awarded the initial Apollo contract to North American Aviation on November 28, 1961, it

2640-422: The bends as a result of nitrogen bubbling in the bloodstream. This pre-breathing technique would be too time-consuming and would make things like emergency EVAs impossible. A precursor program called Early Lunar Access would have run during the early 2000s and used Ariane rockets and Space Shuttles to operate a low-cost lunar exploration infrastructure. It would be a joint NASA and ESA mission and serve as

2720-506: The center piston. In a temperature degraded condition, a single motor release operation was done manually in the lunar module by depressing the locking spool through an open hole in the probe heads, while release from the CSM was done by rotating a release handle at the back of the probe to rotate the motor torque shaft manually. When the command and lunar modules separated for the last time, the probe and forward docking ring were pyrotechnically separated, leaving all docking equipment attached to

2800-451: The command module panels included 24 instruments, 566 switches, 40 event indicators, and 71 lights. The three crew couches were constructed from hollow steel tubing and covered in a heavy, fireproof cloth known as Armalon. The leg pans of the two outer couches could be folded in a variety of positions, while the hip pan of the center couch could be disconnected and laid on the aft bulkhead. One rotation and one translation hand controller

2880-500: The conclusion of the Apollo program and during 1973–1974, three CSMs ferried astronauts to the orbital Skylab space station. Finally in 1975, the last flown CSM docked with the Soviet craft Soyuz 19 as part of the international Apollo–Soyuz Test Project . Concepts of an advanced crewed spacecraft started before the Moon landing goal was announced. The three-person vehicle was to be mainly for orbital use around Earth. It would include

2960-423: The crew capsule down a ladder to a platform before going down a stair ladder to the surface. The uncrewed cargo lander would be used to transport massive amounts of material to the lunar surface in order to construct a surface outpost. It would carry the initial habitat module before the first crewed mission and would later be used to carry rovers and other habitats to the surface. The uncrewed version could deliver

3040-460: The decision to design two versions of the CSM: Block I was to be used for uncrewed missions and a single crewed Earth orbit flight ( Apollo 1 ), while the more advanced Block II was designed for use with the lunar module. The Apollo 1 flight was cancelled after a cabin fire killed the crew and destroyed their command module during a launch rehearsal test. Corrections of the problems which caused

3120-409: The deorbit burn for Earth orbital flights. The propellants were pressure-fed to the engine by 39.2 cubic feet (1.11 m ) of gaseous helium at 3,600 pounds per square inch (25 MPa), carried in two 40-inch (1.0 m) diameter spherical tanks. The exhaust nozzle measured 152.82 inches (3.882 m) long and 98.48 inches (2.501 m) wide at the base. It was mounted on two gimbals to keep

3200-441: The drogues were jettisoned and the pilot parachutes, which pulled out the mains, were deployed. These slowed the CM to 22 miles per hour (35 kilometres per hour) for splashdown. The portion of the capsule that first contacted the water surface contained four crushable ribs to further mitigate the force of impact. The command module could safely parachute to an ocean landing with only two parachutes deployed (as occurred on Apollo 15 ),

3280-491: The environmental control system). On the flight of Apollo 13 , the EPS was disabled by an explosive rupture of one oxygen tank, which punctured the second tank and led to the loss of all oxygen. After the accident, a third oxygen tank was added to obviate operation below 50% tank capacity. That allowed the elimination of the tank's internal stirring-fan equipment, which had contributed to the failure. Also starting with Apollo 14 ,

First Lunar Outpost - Misplaced Pages Continue

3360-457: The fire were applied to the Block II spacecraft, which was used for all crewed spaceflights. Nineteen CSMs were launched into space. Of these, nine flew humans to the Moon between 1968 and 1972, and another two performed crewed test flights in low Earth orbit , all as part of the Apollo program. Before these, another four CSMs had flown as uncrewed Apollo tests, of which two were suborbital flights and another two were orbital flights . Following

3440-431: The forward docking tunnel. The forward compartment was separated from the central by a bulkhead and was divided into four 90-degree wedges. The ELS consisted of two drogue parachutes with mortars , three main parachutes , three pilot parachutes to deploy the mains, three inflation bags for uprighting the capsule if necessary, a sea recovery cable, a dye marker, and a swimmer umbilical. The command module's center of mass

3520-415: The forward heat shield was jettisoned to expose the Earth landing equipment and permit deployment of the parachutes. The 1-foot-8-inch (0.51 m)-tall aft compartment was located around the periphery of the command module at its widest part, just forward of (above) the aft heat shield. The compartment was divided into 24 bays containing 10 reaction control engines; the fuel, oxidizer, and helium tanks for

3600-404: The honeycomb varied from about 1.5 inches (3.8 cm) at the base to about 0.25 inches (0.64 cm) at the forward access tunnel. This inner structure was the pressurized crew compartment. The outer structure was made of stainless steel brazed-honeycomb brazed between steel alloy face sheets. It varied in thickness from 0.5 inch to 2.5 inches. Part of the area between the inner and outer shells

3680-452: The inside of an 8-by-2.75-foot (2.44 by 0.84 m) skin panel. The primary fuel (MMH) tank contained 69.1 pounds (31.3 kg); the secondary fuel tank contained 45.2 pounds (20.5 kg); the primary oxidizer tank contained 137.0 pounds (62.1 kg), and the secondary oxidizer tank contained 89.2 pounds (40.5 kg). The propellant tanks were pressurized from a single tank containing 1.35 pounds (0.61 kg) of liquid helium. Back flow

3760-494: The lander on a trajectory to the lunar surface where it would then use its engines to brake and land. From the surface, the ascent vehicle would carry the crew capsule directly back to Earth. This was similar to the early Apollo direct ascent . It weighed 12,992 kg dry and 44,151 kg wet and would be able to carry 5,000 kg of equipment and cargo along with its 18,077 kg earth return stage. The descent stage would be used to break into lunar orbit and later deorbit

3840-461: The lunar module. In the event of an abort during launch from Earth, the same system would have explosively jettisoned the docking ring and probe from the CM as it separated from the boost protective cover. The central pressure vessel of the command module was its sole habitable compartment. It had an interior volume of 210 cubic feet (5.9 m ) and housed the main control panels, crew seats, guidance and navigation systems, food and equipment lockers,

3920-519: The lunar surface. To save fuel, the LEV would make a direct landing rather than entering a parking orbit. Once the surface mission is complete, the vehicle would separate two large spherical drop tanks and ascend directly to Earth, once again skipping low lunar orbit. In order to achieve the payload capacity required for this mission, the Ariane 5 would need an additional two solid rocket boosters ( SRBs) and

4000-470: The module's pressure vessel. The fused silica outer pane served as both a debris shield and as part of the heat shield. Each pane had an anti-reflective coating and a blue-red reflective coating on the inner surface. Sources: The service module was an unpressurized cylindrical structure with a diameter of 12 feet 10 inches (3.91 m) and 14 feet 10 inches (4.52 m) long. The service propulsion engine nozzle and heat shield increased

4080-433: The most efficient way to keep the program on track was to proceed with the development in two versions: By January 1964, North American started presenting Block II design details to NASA. Block I spacecraft were used for all uncrewed Saturn 1B and Saturn V test flights. Initially two crewed flights were planned, but this was reduced to one in late 1966. This mission, designated AS-204 but named Apollo 1 by its flight crew,

SECTION 50

#1732780597454

4160-519: The outpost. The main focus of the crew would be drilling on the surface using a 10-meter drill to extract resources and samples. They would also begin deploying a radio telescope array and revisit the optical telescope site and switch detectors as an operational test. The mission would require newer updated EVA suits that were more comfortable, had better mobility, and were easier to manage. The existing Shuttle EVA Suits required much maintenance and astronauts needed to pre-breathe oxygen in order to avoid

4240-419: The pressure between the tunnel and the CM so the hatch could be removed. The unified crew hatch (UCH) measured 29 inches (74 cm) high, 34 inches (86 cm) wide, and weighed 225 pounds (102 kg). It was operated by a pump handle, which drove a ratchet mechanism to open or close fifteen latches simultaneously. Apollo's mission required the LM to dock with the CSM on return from the Moon, and also in

4320-637: The primary flight controls, and the main FDAI (Flight Director Attitude Indicator). The CM pilot served as navigator, so his control panel (center) included the Guidance and Navigation computer controls, the caution and warning indicator panel, the event timer, the Service Propulsion System and RCS controls, and the environmental control system controls. The LM pilot served as systems engineer, so his control panel (right-hand side) included

4400-471: The probe cylinder body engaged and retained the probe center piston in the retracted position. Before vehicle separation in lunar orbit, manual cocking of the twelve ring latches was accomplished. The separating force from the internal pressure in the tunnel area was then transmitted from the ring latches to the probe and drogue. In undocking, the release of the capture latches was accomplished by electrically energizing tandem-mounted DC rotary solenoids located in

4480-412: The probe was retracted to pull the vehicles together and establish a firm connection, known as "hard docking". The mechanism was specified by NASA to have the following functions: The probe head located in the CSM was self-centering and gimbal-mounted to the probe piston. As the probe head engaged in the opening of the drogue socket, three spring-loaded latches depressed and engaged. These latches allowed

4560-488: The reaction control system (RCS) computer, power distribution block, ECS controller, separation controller, and components for the high-gain antenna, and included eight EPS radiators and the umbilical connection arm containing the main electrical and plumbing connections to the CM. The fairing externally contained a retractable forward-facing spotlight ; an EVA floodlight to aid the command module pilot in SIM film retrieval; and

4640-524: The specifications given below, unless otherwise noted, all weights given are for the Block II spacecraft. The total cost of the CSM for development and the units produced was $ 36.9  billion in 2016 dollars, adjusted from a nominal total of $ 3.7 billion using the NASA New Start Inflation Indices. The command module was a truncated cone ( frustum ) with a diameter of 12 feet 10 inches (3.91 m) across

4720-543: The third parachute being a safety precaution. The command module attitude control system consisted of twelve 93-pound-force (410 N) attitude control thrusters, ten of which were located in the aft compartment, plus two in the forward compartment. These were supplied by four tanks storing 270 pounds (120 kg) of monomethylhydrazine fuel and nitrogen tetroxide oxidizer, and pressurized by 1.1 pounds (0.50 kg) of helium stored at 4,150 pounds per square inch (28.6 MPa) in two tanks. The forward docking hatch

4800-454: The third stage was also considered. It would use two 222.5 KN-thrust engines and would have reduced the size and weight of the lunar injection stage and significantly reduced the size of the vehicle in general. The baseline study used the chemical engines instead due to the fact that they would cost $ 2 billion less to develop. The nuclear option would be developed later on to support crewed mars missions . Both Boeing's SEI contractor studies and

4880-787: The thrust vector aligned with the spacecraft's center of mass during SPS firings. The combustion chamber and pressurant tanks were housed in the central tunnel. Four clusters of four reaction control system (RCS) thrusters (known as "quads") were installed around the upper section of the SM every 90°. The sixteen-thruster arrangement provided rotation and translation control in all three spacecraft axes. Each R-4D thruster measured 12 inches (30 cm) long by 6 inches (15 cm) diameter, generated 100 pounds-force (440 N) of thrust, and used helium-fed monomethylhydrazine (MMH) as fuel and nitrogen tetroxide (NTO) as oxidizer. Each quad assembly measured 2.2 by 2.7 feet (0.67 by 0.82 m) and had its own fuel, oxidizer, and helium tanks mounted on

SECTION 60

#1732780597454

4960-575: The total height to 24 feet 7 inches (7.49 m). The interior was a simple structure consisting of a central tunnel section 44 inches (1.1 m) in diameter, surrounded by six pie-shaped sectors. The sectors were topped by a forward bulkhead and fairing, separated by six radial beams, covered on the outside by four honeycomb panels, and supported by an aft bulkhead and engine heat shield. The sectors were not all equal 60° angles, but varied according to required size. The forward fairing measured 1 foot 11 inches (58 cm) long and housed

5040-411: The upper end of the lunar module tunnel, the drogue, which was constructed of 1-inch-thick aluminum honeycomb core, bonded front and back to aluminum face sheets, was the receiving end of the probe head capture latches. After the initial capture and stabilization of the vehicles, the probe was capable of exerting a closing force of 1,000 pounds-force (4.4 kN) to draw the vehicles together. This force

5120-475: The vehicle for landing. It would be self-guided and not require crewed piloting. Astronauts would ride in a scaled-up Apollo capsule , it would be about 5% bigger. This would allow it to carry a crew of four on their four-day transit to the surface. The vehicle would land automatically because the astronauts had no view of the surface to pilot it. The earth return would use three engines and would use hypergolic fuels for safety reasons. Astronauts would descend from

5200-402: The waste management system, and the docking tunnel. Dominating the forward section of the cabin was the crescent-shaped main display panel measuring nearly 7 feet (2.1 m) wide and 3 feet (0.91 m) tall. It was arranged into three panels, each emphasizing the duties of each crew member. The mission commander's panel (left side) included the velocity , attitude, and altitude indicators,

5280-486: Was based on of massive yet simple launchers to carry massive payloads at once rather than many small and complicated launches. This was to reduce cost and development time. The program would have almost completely consisted of existing technology such as the Saturn and Space Station with only the landing vehicle needing to be developed. Based on the recommendations of the Stafford Synthesis report, FLO would have relied on

5360-451: Was filled with a layer of fiberglass insulation as additional heat protection. An ablative heat shield on the outside of the CM protected the capsule from the heat of reentry , which is sufficient to melt most metals. This heat shield was composed of phenolic formaldehyde resin . During reentry, this material charred and melted away, absorbing and carrying away the intense heat in the process. The heat shield has several outer coverings:

5440-451: Was generated by gas pressure acting on the center piston within the probe cylinder. Piston retraction compressed the probe and interface seals and actuated the 12 automatic ring latches which were located radially around the inner surface of the CSM docking ring. The latches were manually re-cocked in the docking tunnel by an astronaut after each hard docking event (lunar missions required two dockings). An automatic extension latch attached to

5520-529: Was installed on the armrests of the left-hand couch. The translation controller was used by the crew member performing the transposition, docking, and extraction maneuver with the LM, usually the CM Pilot. The center and right-hand couches had duplicate rotational controllers. The couches were supported by eight shock-attenuating struts, designed to ease the impact of touchdown on water or, in case of an emergency landing, on solid ground. The contiguous cabin space

5600-431: Was mounted at the top of the docking tunnel. It was 30 inches (76 cm) in diameter and weighed 80 pounds (36 kg), constructed from two machined rings that were weld-joined to a brazed honeycomb panel. The exterior side was covered with 0.5-inch (13 mm) of insulation and a layer of aluminum foil. It was latched in six places and operated by a pump handle. The hatch contained a valve in its center, used to equalize

5680-410: Was offset a foot or so from the center of pressure (along the symmetry axis). This provided a rotational moment during reentry, angling the capsule and providing some lift (a lift to drag ratio of about 0.368 ). The capsule was then steered by rotating the capsule using thrusters; when no steering was required, the capsule was spun slowly, and the lift effects cancelled out. This system greatly reduced

5760-667: Was one of two principal components of the United States Apollo spacecraft , used for the Apollo program , which landed astronauts on the Moon between 1969 and 1972. The CSM functioned as a mother ship , which carried a crew of three astronauts and the second Apollo spacecraft, the Apollo Lunar Module , to lunar orbit, and brought the astronauts back to Earth. It consisted of two parts: the conical command module,

5840-551: Was organized into six equipment bays: The CM had five windows. The two side windows measured 9 inches (23 cm) square next to the left and right-hand couches. Two forward-facing triangular rendezvous windows measured 8 by 9 inches (20 by 23 cm), used to aid in rendezvous and docking with the LM. The circular hatch window was 9 inches (23 cm) in diameter located directly over the center couch. Each window assembly consisted of three thick panes of glass. The inner two panes, which were made of aluminosilicate , made up part of

5920-409: Was planned for launch on February 21, 1967. During a dress rehearsal for the launch on January 27, all three astronauts ( Gus Grissom , Ed White and Roger Chaffee ) were killed in a cabin fire, which revealed serious design, construction and maintenance shortcomings in Block I, many of which had been carried over into Block II command modules being built at the time. After a thorough investigation by

6000-530: Was prevented by a series of check valves, and back flow and ullage requirements were resolved by containing the fuel and oxidizer in Teflon bladders which separated the propellants from the helium pressurant. The four completely independent RCS clusters provided redundancy; only two adjacent functioning units were needed to allow complete attitude control. The lunar module used a similar four-quad arrangement of R-4D thruster engines for its RCS. Electrical power

6080-552: Was produced by three fuel cells , each measuring 44 inches (1.1 m) tall by 22 inches (0.56 m) in diameter and weighing 245 pounds (111 kg). These combined hydrogen and oxygen to generate electrical power, and produced drinkable water as a byproduct. The cells were fed by two hemispherical-cylindrical 31.75-inch (0.806 m) diameter tanks, each holding 29 pounds (13 kg) of liquid hydrogen , and two spherical 26-inch (0.66 m) diameter tanks, each holding 326 pounds (148 kg) of liquid oxygen (which also supplied

6160-540: Was severed and the service module was cast off and allowed to burn up in the atmosphere. The CSM was developed and built for NASA by North American Aviation starting in November 1961. It was initially designed to land on the Moon atop a landing rocket stage and return all three astronauts on a direct-ascent mission, which would not use a separate lunar module, and thus had no provisions for docking with another spacecraft. This, plus other required design changes, led to

6240-450: Was still assumed the lunar landing would be achieved by direct ascent rather than by lunar orbit rendezvous . Therefore, design proceeded without a means of docking the command module to a lunar excursion module (LEM) . But the change to lunar orbit rendezvous, plus several technical obstacles encountered in some subsystems (such as environmental control), soon made it clear that substantial redesign would be required. In 1963, NASA decided

6320-466: Was the area outside the inner pressure shell in the nose of the capsule, located around the forward docking tunnel and covered by the forward heat shield. The compartment was divided into four 90-degree segments that contained Earth landing equipment (all the parachutes, recovery antennas and beacon light, and sea recovery sling), two reaction control thrusters, and the forward heat shield release mechanism. At about 25,000 feet (7,600 m) during reentry,

6400-477: Was used as a design reference to demonstrate what an optimal mission would look like. The team evaluated other landing sites to see how flexible the design was. They concluded that: "except for some specialized sites, such as the lunar poles, the bottoms of craters or other unusual terrain, the mission science payload and the EVA activities would not change much from site to site. The actual landing site would be decided by

#453546