A "Hello, World!" program is generally a simple computer program that emits (or displays) to the screen (often the console ) a message similar to "Hello, World!". A small piece of code in most general-purpose programming languages , this program is used to illustrate a language's basic syntax . A "Hello, World!" program is often the first written by a student of a new programming language, but such a program can also be used as a sanity check to ensure that the computer software intended to compile or run source code is correctly installed, and that its operator understands how to use it.
101-565: While small test programs have existed since the development of programmable computers , the tradition of using the phrase "Hello, World!" as a test message was influenced by an example program in the 1978 book The C Programming Language , with likely earlier use in BCPL . The example program from the book prints "hello, world" , and was inherited from a 1974 Bell Laboratories internal memorandum by Brian Kernighan , Programming in C: A Tutorial : In
202-638: A GNU program. Variations of the "Hello, World!" program that produce a graphical output (as opposed to text output) have also been shown. Sun demonstrated a "Hello, World!" program in Java based on scalable vector graphics , and the XL programming language features a spinning Earth "Hello, World!" using 3D computer graphics . Mark Guzdial and Elliot Soloway have suggested that the "hello, world" test message may be outdated now that graphics and sound can be manipulated as easily as text. "Time to hello world" (TTHW)
303-521: A binary system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time. The Z3 was not itself a universal computer but could be extended to be Turing complete . Zuse's next computer, the Z4 , became the world's first commercial computer; after initial delay due to the Second World War, it was completed in 1950 and delivered to
404-632: A central processing unit (CPU) in the form of a microprocessor , together with some type of computer memory , typically semiconductor memory chips. The processing element carries out arithmetic and logical operations, and a sequencing and control unit can change the order of operations in response to stored information . Peripheral devices include input devices ( keyboards , mice , joysticks , etc.), output devices ( monitors , printers , etc.), and input/output devices that perform both functions (e.g. touchscreens ). Peripheral devices allow information to be retrieved from an external source, and they enable
505-419: A keyboard , and computed and printed the results, demonstrating the feasibility of an electromechanical analytical engine. During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation . However, these were not programmable and generally lacked
606-524: A mass-production basis, which limited them to a number of specialized applications. At the University of Manchester , a team under the leadership of Tom Kilburn designed and built a machine using the newly developed transistors instead of valves. Their first transistorized computer and the first in the world, was operational by 1953 , and a second version was completed there in April 1955. However,
707-429: A monolithic integrated circuit (IC) chip. Kilby's IC had external wire connections, which made it difficult to mass-produce. Noyce also came up with his own idea of an integrated circuit half a year later than Kilby. Noyce's invention was the first true monolithic IC chip. His chip solved many practical problems that Kilby's had not. Produced at Fairchild Semiconductor, it was made of silicon , whereas Kilby's chip
808-652: A 1998 retrospective, it was the first working machine to contain all of the elements essential to a modern electronic computer. As soon as the Baby had demonstrated the feasibility of its design, a project began at the university to develop it into a practically useful computer, the Manchester Mark 1 . The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1 , the world's first commercially available general-purpose computer. Built by Ferranti , it
909-512: A Chip (SoCs) are complete computers on a microchip (or chip) the size of a coin. They may or may not have integrated RAM and flash memory . If not integrated, the RAM is usually placed directly above (known as Package on package ) or below (on the opposite side of the circuit board ) the SoC, and the flash memory is usually placed right next to the SoC. This is done to improve data transfer speeds, as
1010-403: A medieval European counting house , a checkered cloth would be placed on a table, and markers moved around on it according to certain rules, as an aid to calculating sums of money. The Antikythera mechanism is believed to be the earliest known mechanical analog computer , according to Derek J. de Solla Price . It was designed to calculate astronomical positions. It was discovered in 1901 in
1111-525: A much more general design, an analytical engine , was possible. The input of programs and data was to be provided to the machine via punched cards , a method being used at the time to direct mechanical looms such as the Jacquard loom . For output, the machine would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers onto cards to be read in later. The engine would incorporate an arithmetic logic unit , control flow in
SECTION 10
#17327932818881212-603: A much more sophisticated build system, heavily inspired by Nix , which became the default with version 3.0. Clean is a close, slightly older relative of Haskell. Its biggest deviation from Haskell is in the use of uniqueness types instead of monads for input/output (I/O) and side effects. A series of languages inspired by Haskell, but with different type systems, have been developed, including: Other related languages include: Notable Haskell variants include: The Haskell community meets regularly for research and development activities. The main events are: Starting in 2006,
1313-529: A number of successes at breaking encrypted German military communications. The German encryption machine, Enigma , was first attacked with the help of the electro-mechanical bombes which were often run by women. To crack the more sophisticated German Lorenz SZ 40/42 machine, used for high-level Army communications, Max Newman and his colleagues commissioned Flowers to build the Colossus . He spent eleven months from early February 1943 designing and building
1414-562: A sequence of sets of values. The whole machine was to be controlled by a read-only program, which was complete with provisions for conditional branching . He also introduced the idea of floating-point arithmetic . In 1920, to celebrate the 100th anniversary of the invention of the arithmometer , Torres presented in Paris the Electromechanical Arithmometer, which allowed a user to input arithmetic problems through
1515-460: A successful demonstration of its use in computing tables in 1906. In his work Essays on Automatics published in 1914, Leonardo Torres Quevedo wrote a brief history of Babbage's efforts at constructing a mechanical Difference Engine and Analytical Engine. The paper contains a design of a machine capable to calculate formulas like a x ( y − z ) 2 {\displaystyle a^{x}(y-z)^{2}} , for
1616-402: A universal Turing machine. Early computing machines had fixed programs. Changing its function required the re-wiring and re-structuring of the machine. With the proposal of the stored-program computer this changed. A stored-program computer includes by design an instruction set and can store in memory a set of instructions (a program ) that details the computation . The theoretical basis for
1717-577: A wide range of tasks. The term computer system may refer to a nominally complete computer that includes the hardware , operating system , software , and peripheral equipment needed and used for full operation; or to a group of computers that are linked and function together, such as a computer network or computer cluster . A broad range of industrial and consumer products use computers as control systems , including simple special-purpose devices like microwave ovens and remote controls , and factory devices like industrial robots . Computers are at
1818-442: Is a general-purpose , statically-typed , purely functional programming language with type inference and lazy evaluation . Designed for teaching, research, and industrial applications, Haskell has pioneered several programming language features such as type classes , which enable type-safe operator overloading , and monadic input/output (IO). It is named after logician Haskell Curry . Haskell's main implementation
1919-452: Is a purely functional programming language, which means that functions generally have no side effects . A distinct construct exists to represent side effects, orthogonal to the type of functions. A pure function can return a side effect that is subsequently executed, modeling the impure functions of other languages. Haskell has a strong , static type system based on Hindley–Milner type inference . Its principal innovation in this area
2020-433: Is either difficult (requiring added components or communication with another computer) or nonexistent. For devices such as microcontrollers , field-programmable gate arrays , and complex programmable logic devices (CPLDs), "Hello, World!" may thus be substituted with a blinking light-emitting diode (LED), which demonstrates timing and interaction between components. The Debian and Ubuntu Linux distributions provide
2121-617: Is the Glasgow Haskell Compiler (GHC). Haskell's semantics are historically based on those of the Miranda programming language, which served to focus the efforts of the initial Haskell working group. The last formal specification of the language was made in July 2010, while the development of GHC continues to expand Haskell via language extensions. Haskell is used in academia and industry. As of May 2021 , Haskell
SECTION 20
#17327932818882222-463: Is the stored program , where all the instructions for computing are stored in memory. Von Neumann acknowledged that the central concept of the modern computer was due to this paper. Turing machines are to this day a central object of study in theory of computation . Except for the limitations imposed by their finite memory stores, modern computers are said to be Turing-complete , which is to say, they have algorithm execution capability equivalent to
2323-550: Is the time it takes to author a "Hello, World!" program in a given programming language. This is one measure of a programming language's ease of use; since the program is meant as an introduction for people unfamiliar with the language, a more complex "Hello, World!" program may indicate that the programming language is less approachable. For instance, the first publicly known "Hello, World!" program in Malbolge (which actually output "HEllO WORld") took two years to be announced, and it
2424-561: Is type classes, originally conceived as a principled way to add overloading to the language, but since finding many more uses. The construct that represents side effects is an example of a monad : a general framework which can model various computations such as error handling, nondeterminism , parsing and software transactional memory . They are defined as ordinary datatypes, but Haskell provides some syntactic sugar for their use. Haskell has an open, published specification, and multiple implementations exist . Its main implementation,
2525-489: Is used in lazy languages to avoid excessive memory consumption; with it moving from a type class to a standard function to make refactoring more practical. The first version of Haskell ("Haskell 1.0") was defined in 1990. The committee's efforts resulted in a series of language definitions (1.0, 1.1, 1.2, 1.3, 1.4). In late 1997, the series culminated in Haskell 98 , intended to specify a stable, minimal, portable version of
2626-619: The Antikythera wreck off the Greek island of Antikythera , between Kythera and Crete , and has been dated to approximately c. 100 BCE . Devices of comparable complexity to the Antikythera mechanism would not reappear until the fourteenth century. Many mechanical aids to calculation and measurement were constructed for astronomical and navigation use. The planisphere was a star chart invented by Abū Rayhān al-Bīrūnī in
2727-507: The E6B circular slide rule used for time and distance calculations on light aircraft. In the 1770s, Pierre Jaquet-Droz , a Swiss watchmaker , built a mechanical doll ( automaton ) that could write holding a quill pen. By switching the number and order of its internal wheels different letters, and hence different messages, could be produced. In effect, it could be mechanically "programmed" to read instructions. Along with two other complex machines,
2828-641: The ETH Zurich . The computer was manufactured by Zuse's own company, Zuse KG , which was founded in 1941 as the first company with the sole purpose of developing computers in Berlin. The Z4 served as the inspiration for the construction of the ERMETH , the first Swiss computer and one of the first in Europe. Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, at
2929-454: The Glasgow Haskell Compiler (GHC) implementation representing the current de facto standard. In early 2006, the process of defining a successor to the Haskell 98 standard, informally named Haskell Prime , began. This was intended to be an ongoing incremental process to revise the language definition, producing a new revision up to once per year. The first revision, named Haskell 2010 ,
3030-427: The Glasgow Haskell Compiler (GHC), is both an interpreter and native-code compiler that runs on most platforms. GHC is noted for its rich type system incorporating recent innovations such as generalized algebraic data types and type families. The Computer Language Benchmarks Game also highlights its high-performance implementation of concurrency and parallelism . An active, growing community exists around
3131-457: The Integer type has arbitrary-precision , this code will compute values such as factorial 100000 (a 456,574-digit number), with no loss of precision. An implementation of an algorithm similar to quick sort over lists, where the first element is taken as the pivot: All listed implementations are distributed under open source licenses . Implementations that fully or nearly comply with
"Hello, World!" program - Misplaced Pages Continue
3232-497: The microcomputer revolution in the 1970s. The speed, power, and versatility of computers have been increasing dramatically ever since then, with transistor counts increasing at a rapid pace ( Moore's law noted that counts doubled every two years), leading to the Digital Revolution during the late 20th and early 21st centuries. Conventionally, a modern computer consists of at least one processing element , typically
3333-405: The "Hello, World!" program through their software package manager systems, which can be invoked with the command hello . It serves as a sanity check and a simple example of installing a software package. For developers, it provides an example of creating a .deb package, either traditionally or using debhelper , and the version of hello used, GNU Hello , serves as an example of writing
3434-504: The "second generation" of computers. Compared to vacuum tubes, transistors have many advantages: they are smaller, and require less power than vacuum tubes, so give off less heat. Junction transistors were much more reliable than vacuum tubes and had longer, indefinite, service life. Transistorized computers could contain tens of thousands of binary logic circuits in a relatively compact space. However, early junction transistors were relatively bulky devices that were difficult to manufacture on
3535-525: The 1920s, Vannevar Bush and others developed mechanical differential analyzers. In the 1890s, the Spanish engineer Leonardo Torres Quevedo began to develop a series of advanced analog machines that could solve real and complex roots of polynomials , which were published in 1901 by the Paris Academy of Sciences . Charles Babbage , an English mechanical engineer and polymath , originated
3636-515: The 1950s. "Hello, World!" programs vary in complexity between different languages. In some languages, particularly scripting languages , the "Hello, World!" program can be written as one statement, while in others (more so many low-level languages ) many more statements can be required. For example, in Python , to print the string Hello, World! followed by a newline, one only needs to write print ( "Hello, World!" ) . In contrast,
3737-619: The Cambridge EDSAC of 1949, became operational in April 1951 and ran the world's first routine office computer job . The concept of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925. John Bardeen and Walter Brattain , while working under William Shockley at Bell Labs , built the first working transistor , the point-contact transistor , in 1947, which was followed by Shockley's bipolar junction transistor in 1948. From 1955 onwards, transistors replaced vacuum tubes in computer designs, giving rise to
3838-591: The EDVAC in 1945. The Manchester Baby was the world's first stored-program computer . It was built at the University of Manchester in England by Frederic C. Williams , Tom Kilburn and Geoff Tootill , and ran its first program on 21 June 1948. It was designed as a testbed for the Williams tube , the first random-access digital storage device. Although the computer was described as "small and primitive" by
3939-455: The ENIAC were six women, often known collectively as the "ENIAC girls". It combined the high speed of electronics with the ability to be programmed for many complex problems. It could add or subtract 5000 times a second, a thousand times faster than any other machine. It also had modules to multiply, divide, and square root. High speed memory was limited to 20 words (about 80 bytes). Built under
4040-584: The Haskell 98 standard include: Implementations no longer actively maintained include: Implementations not fully Haskell 98 compliant, and using a variant Haskell language, include: Notable web frameworks written for Haskell include: Jan-Willem Maessen, in 2002, and Simon Peyton Jones , in 2003, discussed problems associated with lazy evaluation while also acknowledging the theoretical motives for it. In addition to purely practical considerations such as improved performance, they note that lazy evaluation makes it more difficult for programmers to reason about
4141-455: The Language B , where the first known version of the program is found in an example used to illustrate external variables: The program above prints hello, world! on the terminal, including a newline character. The phrase is divided into multiple variables because in B a character constant is limited to four ASCII characters. The previous example in the tutorial printed hi! on
"Hello, World!" program - Misplaced Pages Continue
4242-531: The MOS transistor, was invented at Bell Labs between 1955 and 1960 and was the first truly compact transistor that could be miniaturized and mass-produced for a wide range of uses. With its high scalability , and much lower power consumption and higher density than bipolar junction transistors, the MOSFET made it possible to build high-density integrated circuits . In addition to data processing, it also enabled
4343-455: The Scottish scientist Sir William Thomson in 1872 was of great utility to navigation in shallow waters. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location. The differential analyser , a mechanical analog computer designed to solve differential equations by integration , used wheel-and-disc mechanisms to perform
4444-493: The U.S. Although the ENIAC was similar to the Colossus, it was much faster, more flexible, and it was Turing-complete. Like the Colossus, a "program" on the ENIAC was defined by the states of its patch cables and switches, a far cry from the stored program electronic machines that came later. Once a program was written, it had to be mechanically set into the machine with manual resetting of plugs and switches. The programmers of
4545-586: The US, John Vincent Atanasoff and Clifford E. Berry of Iowa State University developed and tested the Atanasoff–Berry Computer (ABC) in 1942, the first "automatic electronic digital computer". This design was also all-electronic and used about 300 vacuum tubes, with capacitors fixed in a mechanically rotating drum for memory. During World War II, the British code-breakers at Bletchley Park achieved
4646-433: The above example, the main( ) function defines where the program should start executing . The function body consists of a single statement , a call to the printf() function, which stands for " print f ormatted"; it outputs to the console whatever is passed to it as the parameter , in this case the string "hello, world" . The C-language version was preceded by Kernighan's own 1972 A Tutorial Introduction to
4747-898: The advent of the integrated circuit (IC). The idea of the integrated circuit was first conceived by a radar scientist working for the Royal Radar Establishment of the Ministry of Defence , Geoffrey W.A. Dummer . Dummer presented the first public description of an integrated circuit at the Symposium on Progress in Quality Electronic Components in Washington, D.C. , on 7 May 1952. The first working ICs were invented by Jack Kilby at Texas Instruments and Robert Noyce at Fairchild Semiconductor . Kilby recorded his initial ideas concerning
4848-647: The basic concept which underlies all electronic digital computers. By 1938, the United States Navy had developed an electromechanical analog computer small enough to use aboard a submarine . This was the Torpedo Data Computer , which used trigonometry to solve the problem of firing a torpedo at a moving target. During World War II similar devices were developed in other countries as well. Early digital computers were electromechanical ; electric switches drove mechanical relays to perform
4949-530: The best Arithmetician that euer [ sic ] breathed, and he reduceth thy dayes into a short number." This usage of the term referred to a human computer , a person who carried out calculations or computations . The word continued to have the same meaning until the middle of the 20th century. During the latter part of this period, women were often hired as computers because they could be paid less than their male counterparts. By 1943, most human computers were women. The Online Etymology Dictionary gives
5050-570: The calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using vacuum tubes . The Z2 , created by German engineer Konrad Zuse in 1939 in Berlin , was one of the earliest examples of an electromechanical relay computer. In 1941, Zuse followed his earlier machine up with the Z3 , the world's first working electromechanical programmable , fully automatic digital computer. The Z3
5151-419: The comma or exclamation mark. Some devices limit the format to specific variations, such as all-capitalized versions on systems that support only capital letters, while some esoteric programming languages may have to print a slightly modified string. For example, the first non-trivial Malbolge program printed "HEllO WORld", this having been determined to be good enough . Other human languages have been used as
SECTION 50
#17327932818885252-565: The concept of a programmable computer. Considered the " father of the computer ", he conceptualized and invented the first mechanical computer in the early 19th century. After working on his difference engine he announced his invention in 1822, in a paper to the Royal Astronomical Society , titled "Note on the application of machinery to the computation of astronomical and mathematical tables". He also designed to aid in navigational calculations, in 1833 he realized that
5353-704: The core of general-purpose devices such as personal computers and mobile devices such as smartphones . Computers power the Internet , which links billions of computers and users. Early computers were meant to be used only for calculations. Simple manual instruments like the abacus have aided people in doing calculations since ancient times. Early in the Industrial Revolution , some mechanical devices were built to automate long, tedious tasks, such as guiding patterns for looms . More sophisticated electrical machines did specialized analog calculations in
5454-499: The data signals do not have to travel long distances. Since ENIAC in 1945, computers have advanced enormously, with modern SoCs (such as the Snapdragon 865) being the size of a coin while also being hundreds of thousands of times more powerful than ENIAC, integrating billions of transistors, and consuming only a few watts of power. The first mobile computers were heavy and ran from mains power. The 50 lb (23 kg) IBM 5100
5555-515: The decision of the British Government to cease funding. Babbage's failure to complete the analytical engine can be chiefly attributed to political and financial difficulties as well as his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow. Nevertheless, his son, Henry Babbage , completed a simplified version of the analytical engine's computing unit (the mill ) in 1888. He gave
5656-514: The difficulty of reasoning about resource use with non-strict evaluation, that lazy evaluation complicates the definition of datatypes and inductive reasoning, and the "inferiority" of Haskell's (old) class system compared to ML's module system. Haskell's build tool, Cabal , has historically been criticized for poorly handling multiple versions of the same library, a problem known as "Cabal hell". The Stackage server and Stack build tool were made in response to these criticisms. Cabal itself now has
5757-460: The direction of John Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC's development and construction lasted from 1943 to full operation at the end of 1945. The machine was huge, weighing 30 tons, using 200 kilowatts of electric power and contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands of resistors, capacitors, and inductors. The principle of
5858-483: The doll is at the Musée d'Art et d'Histoire of Neuchâtel , Switzerland , and still operates. In 1831–1835, mathematician and engineer Giovanni Plana devised a Perpetual Calendar machine , which through a system of pulleys and cylinders could predict the perpetual calendar for every year from 0 CE (that is, 1 BCE) to 4000 CE, keeping track of leap years and varying day length. The tide-predicting machine invented by
5959-481: The early 11th century. The astrolabe was invented in the Hellenistic world in either the 1st or 2nd centuries BCE and is often attributed to Hipparchus . A combination of the planisphere and dioptra , the astrolabe was effectively an analog computer capable of working out several different kinds of problems in spherical astronomy . An astrolabe incorporating a mechanical calendar computer and gear -wheels
6060-404: The early 2000s. These smartphones and tablets run on a variety of operating systems and recently became the dominant computing device on the market. These are powered by System on a Chip (SoCs), which are complete computers on a microchip the size of a coin. Computers can be classified in a number of different ways, including: Haskell Haskell ( / ˈ h æ s k əl / )
6161-399: The early 20th century. The first digital electronic calculating machines were developed during World War II , both electromechanical and using thermionic valves . The first semiconductor transistors in the late 1940s were followed by the silicon -based MOSFET (MOS transistor) and monolithic integrated circuit chip technologies in the late 1950s, leading to the microprocessor and
SECTION 60
#17327932818886262-445: The equivalent code in C++ requires the import of the input/output (I/O) software library , the manual declaration of an entry point , and the explicit instruction that the output string should be sent to the standard output stream. The phrase "Hello, World!" has seen various deviations in casing and punctuation, such as the capitalization of the leading H and W , and the presence of
6363-598: The error messages researchers from Utrecht University developed an advanced interpreter called Helium , which improved the user-friendliness of error messages by limiting the generality of some Haskell features. In particular it disables type classes by default. Ben Lippmeier designed Disciple as a strict-by-default (lazy by explicit annotation) dialect of Haskell with a type-and-effect system, to address Haskell's difficulties in reasoning about lazy evaluation and in using traditional data structures such as mutable arrays. He argues (p. 20) that "destructive update furnishes
6464-477: The exact definition of the term "microprocessor", it is largely undisputed that the first single-chip microprocessor was the Intel 4004 , designed and realized by Federico Faggin with his silicon-gate MOS IC technology, along with Ted Hoff , Masatoshi Shima and Stanley Mazor at Intel . In the early 1970s, MOS IC technology enabled the integration of more than 10,000 transistors on a single chip. System on
6565-508: The first Colossus. After a functional test in December 1943, Colossus was shipped to Bletchley Park, where it was delivered on 18 January 1944 and attacked its first message on 5 February. Colossus was the world's first electronic digital programmable computer. It used a large number of valves (vacuum tubes). It had paper-tape input and was capable of being configured to perform a variety of boolean logical operations on its data, but it
6666-725: The first attested use of computer in the 1640s, meaning 'one who calculates'; this is an "agent noun from compute (v.)". The Online Etymology Dictionary states that the use of the term to mean " 'calculating machine' (of any type) is from 1897." The Online Etymology Dictionary indicates that the "modern use" of the term, to mean 'programmable digital electronic computer' dates from "1945 under this name; [in a] theoretical [sense] from 1937, as Turing machine ". The name has remained, although modern computers are capable of many higher-level functions. Devices have been used to aid computation for thousands of years, mostly using one-to-one correspondence with fingers . The earliest counting device
6767-409: The form of conditional branching and loops , and integrated memory , making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete . The machine was about a century ahead of its time. All the parts for his machine had to be made by hand – this was a major problem for a device with thousands of parts. Eventually, the project was dissolved with
6868-415: The integrated circuit in July 1958, successfully demonstrating the first working integrated example on 12 September 1958. In his patent application of 6 February 1959, Kilby described his new device as "a body of semiconductor material ... wherein all the components of the electronic circuit are completely integrated". However, Kilby's invention was a hybrid integrated circuit (hybrid IC), rather than
6969-411: The integration. In 1876, Sir William Thomson had already discussed the possible construction of such calculators, but he had been stymied by the limited output torque of the ball-and-disk integrators . In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output. The torque amplifier was the advance that allowed these machines to work. Starting in
7070-499: The language and an accompanying standard library for teaching, and as a base for future extensions. The committee expressly welcomed creating extensions and variants of Haskell 98 via adding and incorporating experimental features. In February 1999, the Haskell 98 language standard was originally published as The Haskell 98 Report . In January 2003, a revised version was published as Haskell 98 Language and Libraries: The Revised Report . The language continues to evolve rapidly, with
7171-512: The language, and more than 5,400 third-party open-source libraries and tools are available in the online package repository Hackage . A "Hello, World!" program in Haskell (only the last line is strictly necessary): The factorial function in Haskell, defined in a few different ways (the first line is the type annotation , which is optional and is the same for each implementation): Using Haskell's Fixed-point combinator allows this function to be written without any explicit recursion. As
7272-590: The machine did make use of valves to generate its 125 kHz clock waveforms and in the circuitry to read and write on its magnetic drum memory , so it was not the first completely transistorized computer. That distinction goes to the Harwell CADET of 1955, built by the electronics division of the Atomic Energy Research Establishment at Harwell . The metal–oxide–silicon field-effect transistor (MOSFET), also known as
7373-452: The modern computer was proposed by Alan Turing in his seminal 1936 paper, On Computable Numbers . Turing proposed a simple device that he called "Universal Computing machine" and that is now known as a universal Turing machine . He proved that such a machine is capable of computing anything that is computable by executing instructions (program) stored on tape, allowing the machine to be programmable. The fundamental concept of Turing's design
7474-403: The more famous Sir William Thomson. The art of mechanical analog computing reached its zenith with the differential analyzer , built by H. L. Hazen and Vannevar Bush at MIT starting in 1927. This built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious. By the 1950s,
7575-555: The output; for example, a tutorial for the Go language emitted both English and Chinese or Japanese characters, demonstrating the language's built-in Unicode support. Another notable example is the Rust language , whose management system automatically inserts a "Hello, World" program when creating new projects. Some languages change the function of the "Hello, World!" program while maintaining
7676-447: The performance of their code (particularly its space use). Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn in 2003 also observed some stumbling blocks for Haskell learners: "The subtle syntax and sophisticated type system of Haskell are a double edged sword—highly appreciated by experienced programmers but also a source of frustration among beginners, since the generality of Haskell often leads to cryptic error messages." To address
7777-486: The practical use of MOS transistors as memory cell storage elements, leading to the development of MOS semiconductor memory , which replaced earlier magnetic-core memory in computers. The MOSFET led to the microcomputer revolution , and became the driving force behind the computer revolution . The MOSFET is the most widely used transistor in computers, and is the fundamental building block of digital electronics . The next great advance in computing power came with
7878-404: The programmer with two important and powerful tools ... a set of efficient array-like data structures for managing collections of objects, and ... the ability to broadcast a new value to all parts of a program with minimal burden on the programmer." Robert Harper , one of the authors of Standard ML, has given his reasons for not using Haskell to teach introductory programming. Among these are
7979-548: The results of operations to be saved and retrieved. It was not until the mid-20th century that the word acquired its modern definition; according to the Oxford English Dictionary , the first known use of the word computer was in a different sense, in a 1613 book called The Yong Mans Gleanings by the English writer Richard Brathwait : "I haue [ sic ] read the truest computer of Times, and
8080-591: The same time that digital calculation replaced analog. The engineer Tommy Flowers , working at the Post Office Research Station in London in the 1930s, began to explore the possible use of electronics for the telephone exchange . Experimental equipment that he built in 1934 went into operation five years later, converting a portion of the telephone exchange network into an electronic data processing system, using thousands of vacuum tubes . In
8181-513: The spirit of demonstrating a simple example. Functional programming languages, such as Lisp , ML , and Haskell , tend to substitute a factorial program for "Hello, World!", as functional programming emphasizes recursive techniques, whereas the original examples emphasize I/O, which violates the spirit of pure functional programming by producing side effects . Languages otherwise able to print "Hello, World!" ( assembly language , C , VHDL ) may also be used in embedded systems , where text output
8282-490: The stored-program computer was laid out by Alan Turing in his 1936 paper. In 1945, Turing joined the National Physical Laboratory and began work on developing an electronic stored-program digital computer. His 1945 report "Proposed Electronic Calculator" was the first specification for such a device. John von Neumann at the University of Pennsylvania also circulated his First Draft of a Report on
8383-443: The success of digital electronic computers had spelled the end for most analog computing machines, but analog computers remained in use during the 1950s in some specialized applications such as education ( slide rule ) and aircraft ( control systems ). Claude Shannon 's 1937 master's thesis laid the foundations of digital computing, with his insight of applying Boolean algebra to the analysis and synthesis of switching circuits being
8484-416: The terminal, and the phrase hello, world! was introduced as a slightly longer greeting that required several character constants for its expression. The Jargon File reports that "hello, world" instead originated in 1967 with the language BCPL . Outside computing, use of the exact phrase began over a decade prior; it was the catchphrase of New York radio disc jockey William B. Williams beginning in
8585-412: The versatility and accuracy of modern digital computers. The first modern analog computer was a tide-predicting machine , invented by Sir William Thomson (later to become Lord Kelvin) in 1872. The differential analyser , a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson , the elder brother of
8686-478: Was proprietary software . At the conference on Functional Programming Languages and Computer Architecture (FPCA '87) in Portland, Oregon , there was a strong consensus that a committee be formed to define an open standard for such languages. The committee's purpose was to consolidate existing functional languages into a common one to serve as a basis for future research in functional-language design. Haskell
8787-406: Was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962. General Microelectronics later introduced the first commercial MOS IC in 1964, developed by Robert Norman. Following the development of the self-aligned gate (silicon-gate) MOS transistor by Robert Kerwin, Donald Klein and John Sarace at Bell Labs in 1967, the first silicon-gate MOS IC with self-aligned gates
8888-625: Was an early example. Later portables such as the Osborne 1 and Compaq Portable were considerably lighter but still needed to be plugged in. The first laptops, such as the Grid Compass , removed this requirement by incorporating batteries – and with the continued miniaturization of computing resources and advancements in portable battery life, portable computers grew in popularity in the 2000s. The same developments allowed manufacturers to integrate computing resources into cellular mobile phones by
8989-744: Was announced in November 2009 and published in July 2010. Haskell 2010 is an incremental update to the language, mostly incorporating several well-used and uncontroversial features previously enabled via compiler-specific flags. The next formal specification had been planned for 2020. On 29 October 2021, with GHC version 9.2.1, the GHC2021 extension was released. While this is not a formal language spec, it combines several stable, widely-used GHC extensions to Haskell 2010. Haskell features lazy evaluation , lambda expressions , pattern matching , list comprehension , type classes and type polymorphism . It
9090-537: Was built with 2000 relays , implementing a 22 bit word length that operated at a clock frequency of about 5–10 Hz . Program code was supplied on punched film while data could be stored in 64 words of memory or supplied from the keyboard. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating-point numbers . Rather than the harder-to-implement decimal system (used in Charles Babbage 's earlier design), using
9191-511: Was delivered to the University of Manchester in February 1951. At least seven of these later machines were delivered between 1953 and 1957, one of them to Shell labs in Amsterdam . In October 1947 the directors of British catering company J. Lyons & Company decided to take an active role in promoting the commercial development of computers. Lyons's LEO I computer, modelled closely on
9292-443: Was developed by Federico Faggin at Fairchild Semiconductor in 1968. The MOSFET has since become the most critical device component in modern ICs. The development of the MOS integrated circuit led to the invention of the microprocessor , and heralded an explosion in the commercial and personal use of computers. While the subject of exactly which device was the first microprocessor is contentious, partly due to lack of agreement on
9393-577: Was developed by a committee, attempting to bring together off the shelf solutions where possible. Type classes , which enable type-safe operator overloading , were first proposed by Philip Wadler and Stephen Blott to address the ad-hoc handling of equality types and arithmetic overloading in languages at the time. In early versions of Haskell up until and including version 1.2, user interaction and input/output (IO) were handled by both streams based and continuation based mechanisms which were widely considered unsatisfactory. In version 1.3, monadic IO
9494-825: Was developed in the late 16th century and found application in gunnery, surveying and navigation. The planimeter was a manual instrument to calculate the area of a closed figure by tracing over it with a mechanical linkage. The slide rule was invented around 1620–1630, by the English clergyman William Oughtred , shortly after the publication of the concept of the logarithm . It is a hand-operated analog computer for doing multiplication and division. As slide rule development progressed, added scales provided reciprocals, squares and square roots, cubes and cube roots, as well as transcendental functions such as logarithms and exponentials, circular and hyperbolic trigonometry and other functions . Slide rules with special scales are still used for quick performance of routine calculations, such as
9595-464: Was introduced, along with the generalisation of type classes to higher kinds (type constructors). Along with "do notation", which provides syntactic sugar for the Monad type class, this gave Haskell an effect system that maintained referential transparency and was convenient. Other notable changes in early versions were the approach to the 'seq' function, which creates a data dependency between values, and
9696-449: Was invented by Abi Bakr of Isfahan , Persia in 1235. Abū Rayhān al-Bīrūnī invented the first mechanical geared lunisolar calendar astrolabe, an early fixed- wired knowledge processing machine with a gear train and gear-wheels, c. 1000 AD . The sector , a calculating instrument used for solving problems in proportion, trigonometry , multiplication and division, and for various functions, such as squares and cube roots,
9797-477: Was made of germanium . Noyce's monolithic IC was fabricated using the planar process , developed by his colleague Jean Hoerni in early 1959. In turn, the planar process was based on Carl Frosch and Lincoln Derick work on semiconductor surface passivation by silicon dioxide. Modern monolithic ICs are predominantly MOS ( metal–oxide–semiconductor ) integrated circuits, built from MOSFETs (MOS transistors). The earliest experimental MOS IC to be fabricated
9898-643: Was most likely a form of tally stick . Later record keeping aids throughout the Fertile Crescent included calculi (clay spheres, cones, etc.) which represented counts of items, likely livestock or grains, sealed in hollow unbaked clay containers. The use of counting rods is one example. The abacus was initially used for arithmetic tasks. The Roman abacus was developed from devices used in Babylonia as early as 2400 BCE. Since then, many other forms of reckoning boards or tables have been invented. In
9999-434: Was not Turing-complete. Nine Mk II Colossi were built (The Mk I was converted to a Mk II making ten machines in total). Colossus Mark I contained 1,500 thermionic valves (tubes), but Mark II with 2,400 valves, was both five times faster and simpler to operate than Mark I, greatly speeding the decoding process. The ENIAC (Electronic Numerical Integrator and Computer) was the first electronic programmable computer built in
10100-709: Was produced not by a human but by a code generator written in Common Lisp (see § Variations , above) . The concept has been extended beyond programming languages to APIs , as a measure of how simple it is for a new developer to get a basic example working; a shorter time indicates an easier API for developers to adopt. Computer A computer is a machine that can be programmed to automatically carry out sequences of arithmetic or logical operations ( computation ). Modern digital electronic computers can perform generic sets of operations known as programs . These programs enable computers to perform
10201-461: Was the 28th most popular programming language by Google searches for tutorials, and made up less than 1% of active users on the GitHub source code repository. After the release of Miranda by Research Software Ltd. in 1985, interest in lazy functional languages grew. By 1987, more than a dozen non- strict , purely functional programming languages existed. Miranda was the most widely used, but it
#887112