Misplaced Pages

High voltage

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An induction coil or "spark coil" ( archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff ) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. To create the flux changes necessary to induce voltage in the secondary coil, the direct current in the primary coil is repeatedly interrupted by a vibrating mechanical contact called an interrupter . Invented in 1836 by the Irish-Catholic priest Nicholas Callan , also independently by American inventor Charles Grafton Page , the induction coil was the first type of transformer. It was widely used in x-ray machines , spark-gap radio transmitters , arc lighting and quack medical electrotherapy devices from the 1880s to the 1920s. Today its only common use is as the ignition coils in internal combustion engines and in physics education to demonstrate induction .

#600399

130-707: High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures . High voltage is used in electrical power distribution , in cathode-ray tubes , to generate X-rays and particle beams , to produce electrical arcs , for ignition, in photomultiplier tubes , and in high-power amplifier vacuum tubes , as well as other industrial, military and scientific applications. The numerical definition of high voltage depends on context. Two factors considered in classifying

260-455: A conductor 's surface, since otherwise there would be a force along the surface of the conductor that would move the charge carriers to even the potential across the surface. The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre,

390-461: A force on each other, an effect that was known, though not understood, in antiquity. A lightweight ball suspended by a fine thread can be charged by touching it with a glass rod that has itself been charged by rubbing with a cloth. If a similar ball is charged by the same glass rod, it is found to repel the first: the charge acts to force the two balls apart. Two balls that are charged with a rubbed amber rod also repel each other. However, if one ball

520-409: A steady state current, but instead blocks it. The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality

650-541: A 100-watt light bulb for approximately 2 months). However, an average bolt of positive lightning (from the top of a thunderstorm) may carry a current of 300 to 500 kiloamperes, transfer a charge of up to 300 coulombs, have a potential difference up to 1 gigavolt (a billion volts), and may dissipate 300 GJ of energy (72 tons TNT, or enough energy to light a 100-watt light bulb for up to 95 years). A negative lightning strike typically lasts for only tens of microseconds, but multiple strikes are common. A positive lightning stroke

780-476: A 4 inch spark. Until the development of the cathode ray oscilloscope , this was the most reliable measurement of peak voltage of such asymmetric waveforms. The relationship between spark length and voltage is linear within a wide range: Curves supplied by a 1984 reference agree closely with those values. To operate the coil continually, the DC supply current must be repeatedly connected and disconnected to create

910-497: A blast of high pressure air, a special dielectric gas (such as SF 6 under pressure), or immersion in mineral oil to quench the arc when the high voltage circuit is broken. Wiring in equipment such as X-ray machines and lasers requires care. The high voltage section is kept physically distant from the low voltage side to reduce the possibility of an arc forming between the two. To avoid coronal losses, conductors are kept as short as possible and free of sharp points. If insulated,

1040-456: A central role in many modern technologies, serving in electric power where electric current is used to energise equipment, and in electronics dealing with electrical circuits involving active components such as vacuum tubes , transistors , diodes and integrated circuits , and associated passive interconnection technologies. The study of electrical phenomena dates back to antiquity, with theoretical understanding progressing slowly until

1170-432: A charge of Q coulombs every t seconds passing through an electric potential ( voltage ) difference of V is where Electric power is generally supplied to businesses and homes by the electric power industry . Electricity is usually sold by the kilowatt hour (3.6 MJ) which is the product of power in kilowatts multiplied by running time in hours. Electric utilities measure power using electricity meters , which keep

1300-400: A common iron core (M) . One coil, called the primary winding (P) , is made from relatively few (tens or hundreds) turns of coarse wire. The other coil, the secondary winding , (S) typically consists of up to a million turns of fine wire (up to 40 gauge). An electric current is passed through the primary, creating a magnetic field . Because of the common core, most of

1430-516: A common reference point to which potentials may be expressed and compared is useful. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or ground . Earth is assumed to be an infinite source of equal amounts of positive and negative charge and is therefore electrically uncharged—and unchargeable. Electric potential

SECTION 10

#1732779778601

1560-472: A current of one amp. The capacitor is a development of the Leyden jar and is a device that can store charge, and thereby storing electrical energy in the resulting field. It consists of two conducting plates separated by a thin insulating dielectric layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance . The unit of capacitance

1690-494: A dampened kite string and flown the kite in a storm-threatened sky . A succession of sparks jumping from the key to the back of his hand showed that lightning was indeed electrical in nature. He also explained the apparently paradoxical behavior of the Leyden jar as a device for storing large amounts of electrical charge in terms of electricity consisting of both positive and negative charges. In 1775, Hugh Williamson reported

1820-413: A direct strike on persons or property. However, lightning can also create dangerous voltage gradients in the earth, as well as an electromagnetic pulse , and can charge extended metal objects such as telephone cables, fences, and pipelines to dangerous voltages that can be carried many miles from the site of the strike. Although many of these objects are not normally conductive, very high voltage can cause

1950-417: A few small points of contact become the last to separate. The current becomes constricted to these small hot spots , causing them to become incandescent, so that they emit electrons (through thermionic emission ). Even a small 9 V battery can spark noticeably by this mechanism in a darkened room. The ionized air and metal vapour (from the contacts) form plasma , which temporarily bridges the widening gap. If

2080-518: A hazard is presented to maintenance and operating personnel due to the possibility of a high-intensity electric arc . Maximum temperature of an arc can exceed 10,000 kelvins , and the radiant heat, expanding hot air, and explosive vaporization of metal and insulation material can cause severe injury to unprotected workers. Such switchgear line-ups and high-energy arc sources are commonly present in electric power utility substations and generating stations, industrial plants and large commercial buildings. In

2210-421: A high-voltage transmission line or substation may result in high currents flowing along the surface of the earth, producing an earth potential rise that also presents a danger of electric shock. For high voltage and extra-high voltage transmission lines, specially trained personnel use " live line " techniques to allow hands-on contact with energized equipment. In this case the worker is electrically connected to

2340-406: A human body will be relatively constant as long as contact is maintained, unlike with electrostatic machines which generally take longer to build up charges, and the voltage will be much higher than the break-down voltage of human skin. As a consequence, the output of a Tesla coil can be dangerous or even fatal. Depending on the prospective short-circuit current available at a switchgear line-up,

2470-425: A large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh. The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor , the sharp spike of which acts to encourage the lightning strike to develop there, rather than to

2600-486: A leg. Electricity can flow between two conductors in high voltage equipment and the body can complete the circuit. To avoid that from happening, the worker should wear insulating clothing such as rubber gloves, use insulated tools, and avoid touching the equipment with more than one hand at a time. An electrical current can also flow between the equipment and the earth ground. To prevent that, the worker should stand on an insulated surface such as on rubber mats. Safety equipment

2730-451: A lot of heat and due to this the hydrogen could explode. Mercury turbine interrupters had a centrifugal pump which sprayed a stream of liquid mercury onto rotating metal contacts. They could achieve interruption rates up to 10,000 breaks per second and were the most widely used type of interrupter in commercial wireless stations. The induction coil was the first type of electrical transformer . During its development between 1836 and

SECTION 20

#1732779778601

2860-402: A millimetre per second, the electric field that drives them itself propagates at close to the speed of light , enabling electrical signals to pass rapidly along wires. Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and Carlisle in 1800,

2990-553: A more reliable source of electrical energy than the electrostatic machines previously used. The recognition of electromagnetism , the unity of electric and magnetic phenomena, is due to Hans Christian Ørsted and André-Marie Ampère in 1819–1820. Michael Faraday invented the electric motor in 1821, and Georg Ohm mathematically analysed the electrical circuit in 1827. Electricity and magnetism (and light) were definitively linked by James Clerk Maxwell , in particular in his " On Physical Lines of Force " in 1861 and 1862. While

3120-467: A person's body provides a path for current flow, causing tissue damage and heart failure. Other injuries can include burns from the arc generated by the accidental contact. These burns can be especially dangerous if the victim's airway is affected. Injuries may also be suffered as a result of the physical forces experienced by people who fall from a great height or are thrown a considerable distance. Low-energy exposure to high voltage may be harmless, such as

3250-425: A positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current . The motion of negatively charged electrons around an electric circuit , one of the most familiar forms of current, is thus deemed positive in the opposite direction to that of

3380-420: A positive or negative electric charge produces an electric field . The motion of electric charges is an electric current and produces a magnetic field . In most applications, Coulomb's law determines the force acting on an electric charge. Electric potential is the work done to move an electric charge from one point to another within an electric field, typically measured in volts . Electricity plays

3510-891: A practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work. An electric circuit is an interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task. The components in an electric circuit can take many forms, which can include elements such as resistors , capacitors , switches , transformers and electronics . Electronic circuits contain active components , usually semiconductors , and typically exhibit non-linear behaviour, requiring complex analysis. The simplest electric components are those that are termed passive and linear : while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli. The resistor

3640-406: A process now known as electrolysis . Their work was greatly expanded upon by Michael Faraday in 1833. Current through a resistance causes localised heating, an effect James Prescott Joule studied mathematically in 1840. One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in

3770-471: A rapidly changing one. Electric power is the rate at which electric energy is transferred by an electric circuit . The SI unit of power is the watt , one joule per second . Electric power, like mechanical power , is the rate of doing work , measured in watts , and represented by the letter P . The term wattage is used colloquially to mean "electric power in watts." The electric power in watts produced by an electric current I consisting of

3900-463: A relatively few electrons move. These devices have a limited amount of stored energy, so the average current produced is low and usually for a short time, with impulses peaking in the 1 A range for a nanosecond. The discharge may involve extremely high voltage over very short periods, but to produce heart fibrillation, an electric power supply must produce a significant current in the heart muscle continuing for many milliseconds , and must deposit

4030-489: A resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The ohm , the unit of resistance, was named in honour of Georg Ohm , and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to

High voltage - Misplaced Pages Continue

4160-595: A running total of the electric energy delivered to a customer. Unlike fossil fuels , electricity is a low entropy form of energy and can be converted into motion or many other forms of energy with high efficiency. Electronics deals with electrical circuits that involve active electrical components such as vacuum tubes , transistors , diodes , sensors and integrated circuits , and associated passive interconnection technologies. The nonlinear behaviour of active components and their ability to control electron flows makes digital switching possible, and electronics

4290-431: A scientific curiosity into an essential tool for modern life. In 1887, Heinrich Hertz discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1905, Albert Einstein published a paper that explained experimental data from the photoelectric effect as being the result of light energy being carried in discrete quantized packets, energising electrons. This discovery led to

4420-575: A series of experiments to the Royal Society on the shocks delivered by the electric eel ; that same year the surgeon and anatomist John Hunter described the structure of the fish's electric organs . In 1791, Luigi Galvani published his discovery of bioelectromagnetics , demonstrating that electricity was the medium by which neurons passed signals to the muscles. Alessandro Volta 's battery, or voltaic pile , of 1800, made from alternating layers of zinc and copper, provided scientists with

4550-515: A series of observations on static electricity around 600 BCE, from which he believed that friction rendered amber magnetic , in contrast to minerals such as magnetite , which needed no rubbing. Thales was incorrect in believing the attraction was due to a magnetic effect, but later science would prove a link between magnetism and electricity. According to a controversial theory, the Parthians may have had knowledge of electroplating , based on

4680-523: A set of equations that could unambiguously describe the interrelationship between electric field, magnetic field, electric charge, and electric current. He could moreover prove that in a vacuum such a wave would travel at the speed of light , and thus light itself was a form of electromagnetic radiation. Maxwell's equations , which unify light, fields, and charge are one of the great milestones of theoretical physics. Induction coil An induction coil consists of two coils of insulated wire wound around

4810-438: A short platinum needle anode immersed in an electrolyte of dilute sulfuric acid , with the other side of the circuit connected to a lead plate cathode . When the primary current passed through it, hydrogen gas bubbles formed on the needle which repeatedly broke the circuit. This resulted in a primary current broken randomly at rates up to 2000 breaks per second. They were preferred for powering X-ray tubes. They produced

4940-477: A solid crystal (such as a germanium crystal) to detect a radio signal by the contact junction effect. In a solid-state component, the current is confined to solid elements and compounds engineered specifically to switch and amplify it. Current flow can be understood in two forms: as negatively charged electrons , and as positively charged electron deficiencies called holes . These charges and holes are understood in terms of quantum physics. The building material

5070-617: A total energy in the range of at least millijoules or higher. Relatively high current at anything more than about fifty volts can therefore be medically significant and potentially fatal. During the discharge, these machines apply high voltage to the body for only a millionth of a second or less. So a low current is applied for a very short time, and the number of electrons involved is very small. Despite Tesla coils superficially appearing similar to Van de Graaff generators, they are not electrostatic machines and can produce significant radio frequency currents continuously. The current supplied to

5200-485: A transmitting antenna is dangerous for this reason, and a high-frequency Tesla coil can sustain a spark with only one endpoint. Protective equipment on high-voltage transmission lines normally prevents formation of an unwanted arc, or ensures that it is quenched within tens of milliseconds. Electrical apparatus that interrupts high-voltage circuits is designed to safely direct the resulting arc so that it dissipates without damage. High voltage circuit breakers often use

5330-932: A voltage as high voltage are the possibility of causing a spark in air, and the danger of electric shock by contact or proximity. The International Electrotechnical Commission and its national counterparts ( IET , IEEE , VDE , etc.) define high voltage as above 1000  V for alternating current , and at least 1500 V for direct current . In the United States, the American National Standards Institute (ANSI) establishes nominal voltage ratings for 60 Hz electric power systems over 100 V. Specifically, ANSI C84.1-2020 defines high voltage as 115 kV to 230 kV, extra-high voltage as 345 kV to 765 kV, and ultra-high voltage as 1,100 kV. British Standard BS 7671 :2008 defines high voltage as any voltage difference between conductors that

High voltage - Misplaced Pages Continue

5460-511: A wire disturbing the needle of a magnetic compass. He had discovered electromagnetism , a fundamental interaction between electricity and magnetics. The level of electromagnetic emissions generated by electric arcing is high enough to produce electromagnetic interference , which can be detrimental to the workings of adjacent equipment. In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how

5590-448: A wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained. Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as electromagnetic induction , enabled him to state

5720-402: A wire. The informal term static electricity refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other. Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope , which although still in use for classroom demonstrations, has been superseded by

5850-480: Is U+26A1, the symbol "⚡︎" . The common static electric sparks seen under low-humidity conditions always involve voltage well above 700 V. For example, sparks to car doors in winter can involve voltages as high as 20,000 V. Electrostatic generators such as Van de Graaff generators and Wimshurst machines can produce voltages approaching one million volts at several amps, but typically don't last long enough to cause damage. Induction coils operate on

5980-584: Is a scalar quantity . That is, it has only magnitude and not direction. It may be viewed as analogous to height : just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field. As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials ) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to

6110-411: Is a vector field . The study of electric fields created by stationary charges is called electrostatics . The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday, whose term ' lines of force ' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it

6240-452: Is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker. An electric field generally varies in space, and its strength at any one point

6370-401: Is charged by the glass rod, and the other by an amber rod, the two balls are found to attract each other. These phenomena were investigated in the late eighteenth century by Charles-Augustin de Coulomb , who deduced that charge manifests itself in two opposing forms. This discovery led to the well-known axiom: like-charged objects repel and opposite-charged objects attract . The force acts on

6500-529: Is classified as voltages in the range of 345,000– 765,000 V. In electronics systems, a power supply that provides greater than 275,000 volts is called an EHV Power Supply , and is often used in experiments in physics. The accelerating voltage for a television cathode ray tube may be described as extra-high voltage or extra-high tension (EHT), compared to other voltage supplies within the equipment. This type of supply ranges from 5 kV to about 30 kV. The Unicode text character representing "high voltage"

6630-406: Is connected across the primary coil to slow the rise in the voltage after a break. The capacitor and primary winding together form a tuned circuit , so on break, a damped sinusoidal wave of current flows in the primary and likewise induces a damped wave in the secondary. As a result, the high voltage output consists of a series of damped waves (left) . To prevent the high voltages generated in

SECTION 50

#1732779778601

6760-473: Is defined as negative, and that by protons is positive. Before these particles were discovered, Benjamin Franklin had defined a positive charge as being the charge acquired by a glass rod when it is rubbed with a silk cloth. A proton by definition carries a charge of exactly 1.602 176 634 × 10  coulombs . This value is also defined as the elementary charge . No object can have a charge smaller than

6890-483: Is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point. The conceptual charge, termed a ' test charge ', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of magnetic fields . As the electric field is defined in terms of force , and force is a vector , having both magnitude and direction , it follows that an electric field

7020-503: Is extinguished every time the current goes through a zero crossing , and must reignite during the next half-cycle to maintain the arc. Unlike an ohmic conductor, the resistance of an arc decreases as the current increases. This makes unintentional arcs in an electrical apparatus dangerous since even a small arc can grow large enough to damage equipment and start fires if sufficient current is available. Intentionally produced arcs, such as used in lighting or welding , require some element in

7150-673: Is higher than 1000 VAC or 1500 V ripple-free DC, or any voltage difference between a conductor and Earth that is higher than 600 VAC or 900 V ripple-free DC. Electricians may only be licensed for particular voltage classes in some jurisdictions. For example, an electrical license for a specialized sub-trade such as installation of HVAC systems, fire alarm systems, closed-circuit-television systems may be authorized to install systems energized up to only 30 volts between conductors, and may not be permitted to work on mains-voltage circuits. The general public may consider household mains circuits (100 to 250 VAC), which carry

7280-531: Is integral to applications spanning transport , heating , lighting , communications , and computation , making it the foundation of modern industrial society. Long before any knowledge of electricity existed, people were aware of shocks from electric fish . Ancient Egyptian texts dating from 2750 BCE described them as the "protectors" of all other fish. Electric fish were again reported millennia later by ancient Greek , Roman and Arabic naturalists and physicians . Several ancient writers, such as Pliny

7410-480: Is invisible but has a sweet odor. It oxidizes to nitrogen dioxide within a few minutes, which has a yellow or reddish-brown color depending on concentration and smells of chlorine gas like a swimming pool. Ozone is invisible but has a pungent smell like that of the air after a lightning storm. It is a short-lived species and half of it breaks down into O 2 within a day at normal temperatures and atmospheric pressure. Hazards due to lightning obviously include

7540-406: Is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere . This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821. Faraday's homopolar motor consisted of a permanent magnet sitting in a pool of mercury . A current was allowed through

7670-415: Is most often a crystalline semiconductor . Solid-state electronics came into its own with the emergence of transistor technology. The first working transistor, a germanium -based point-contact transistor , was invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947, followed by the bipolar junction transistor in 1948. By modern convention, the charge carried by electrons

7800-406: Is not a fixed minimum for producing spark breakdown, but it is a rule-of-thumb. For air at STP, the minimum sparkover voltage is around 327 volts, as noted by Friedrich Paschen . While lower voltages do not, in general, jump a gap that is present before the voltage is applied, interrupting an existing current flow with a gap often produces a low-voltage spark or arc . As the contacts are separated,

7930-691: Is now used in modified form in U.S. National Electrical Code and in the Canadian Electrical Code . Intrinsic safety apparatus is now approved for use in North American applications. Electrical discharges, including partial discharge and corona , can produce small quantities of toxic gases, which in a confined space can be a health hazard. These gases include oxidizers such as ozone and various oxides of nitrogen . They are readily identified by their characteristic odor or color, and thus contact time can be minimized. Nitric oxide

SECTION 60

#1732779778601

8060-403: Is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory , stating that the current passing through

8190-531: Is subjected to transients , such as when first energised. The concept of the electric field was introduced by Michael Faraday . An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses , and like it, extends towards infinity and shows an inverse square relationship with distance. However, there

8320-406: Is termed the inductance . The unit of inductance is the henry , named after Joseph Henry , a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second. The inductor's behaviour is in some regards converse to that of the capacitor: it will freely allow an unchanging current, but opposes

8450-649: Is tested regularly to ensure it is still protecting the user. Test regulations vary according to country. Testing companies can test at up 300,000 volts and offer services from glove testing to Elevated Working Platform (or EWP) testing. Contact with or close approach to line conductors presents a danger of electrocution . Contact with overhead wires can result in injury or death. Metal ladders, farm equipment, boat masts, construction machinery, aerial antennas , and similar objects are frequently involved in fatal contact with overhead wires. Unauthorized persons climbing on power pylons or electrical apparatus are also frequently

8580-415: Is the farad , named after Michael Faraday , and given the symbol F : one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit

8710-529: Is therefore 0 at all places inside the body. This is the operating principal of the Faraday cage , a conducting metal shell which isolates its interior from outside electrical effects. The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between

8840-403: Is typically a single event, but the larger peak current may flow for hundreds of milliseconds, making it considerably more energetic than negative lightning. The dielectric breakdown strength of dry air, at Standard Temperature and Pressure (STP), between spherical electrodes is approximately 33 kV/cm. This is only a rough guide, since the actual breakdown voltage is highly dependent upon

8970-409: Is usually measured in volts , and one volt is the potential for which one joule of work must be expended to bring a charge of one coulomb from infinity. This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference , and is the energy required to move a unit charge between two specified points. An electric field has

9100-536: Is widely used in information processing , telecommunications , and signal processing . Interconnection technologies such as circuit boards , electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a regular working system . Today, most electronic devices use semiconductor components to perform electron control. The underlying principles that explain how semiconductors work are studied in solid state physics , whereas

9230-721: The Neo-Latin word electricus ("of amber" or "like amber", from ἤλεκτρον, elektron , the Greek word for "amber") to refer to the property of attracting small objects after being rubbed. This association gave rise to the English words "electric" and "electricity", which made their first appearance in print in Thomas Browne 's Pseudodoxia Epidemica of 1646. Isaac Newton made early investigations into electricity, with an idea of his written down in his book Opticks arguably

9360-560: The chest area. The voltage at which there is the danger of electrocution depends on the electrical conductivity of dry human skin. Living human tissue can be protected from damage by the insulating characteristics of dry skin up to around 50 volts. If the same skin becomes wet, if there are wounds, or if the voltage is applied to electrodes that penetrate the skin, then even voltage sources below 40 V can be lethal. Accidental contact with any high voltage supplying sufficient energy may result in severe injury or death. This can occur as

9490-493: The electrical breakdown of such insulators, causing them to act as conductors. These transferred potentials are dangerous to people, livestock, and electronic apparatus. Lightning strikes also start fires and explosions, which result in fatalities, injuries, and property damage. For example, each year in North America, thousands of forest fires are started by lightning strikes. Measures to control lightning can mitigate

9620-423: The electromagnetic force , one of the four fundamental forces of nature. Experiment has shown charge to be a conserved quantity , that is, the net charge within an electrically isolated system will always remain constant regardless of any changes taking place within that system. Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as

9750-553: The high-voltage line but thoroughly insulated from the earth so that he is at the same electrical potential as that of the line. Since training for such operations is lengthy, and still presents a danger to personnel, only very important transmission lines are subject to maintenance while live. Outside these properly engineered situations, insulation from earth does not guarantee that no current flows to earth—as grounding or arcing to ground can occur in unexpected ways, and high-frequency currents can burn even an ungrounded person. Touching

9880-522: The quantum revolution. Einstein was awarded the Nobel Prize in Physics in 1921 for "his discovery of the law of the photoelectric effect". The photoelectric effect is also employed in photocells such as can be found in solar panels . The first solid-state device was the " cat's-whisker detector " first used in the 1900s in radio receivers. A whisker-like wire is placed lightly in contact with

10010-452: The strong interaction , but unlike that force it operates over all distances. In comparison with the much weaker gravitational force , the electromagnetic force pushing two electrons apart is 10 times that of the gravitational attraction pulling them together. Charge originates from certain types of subatomic particles , the most familiar carriers of which are the electron and proton . Electric charge gives rise to and interacts with

10140-541: The 17th and 18th centuries. The development of the theory of electromagnetism in the 19th century marked significant progress, leading to electricity's industrial and residential application by electrical engineers by the century's end. This rapid expansion in electrical technology at the time was the driving force behind the Second Industrial Revolution , with electricity's versatility driving transformations in both industry and society. Electricity

10270-429: The 1860s, mostly by trial and error, researchers discovered many of the principles that governed all transformers, such as the proportionality between turns and output voltage and the use of a "divided" iron core to reduce eddy current losses. Michael Faraday discovered the principle of induction, Faraday's induction law , in 1831 and did the first experiments with induction between coils of wire. The induction coil

10400-545: The 1936 discovery of the Baghdad Battery , which resembles a galvanic cell , though it is uncertain whether the artifact was electrical in nature. Electricity would remain little more than an intellectual curiosity for millennia until 1600, when the English scientist William Gilbert wrote De Magnete , in which he made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber. He coined

10530-656: The Elder and Scribonius Largus , attested to the numbing effect of electric shocks delivered by electric catfish and electric rays , and knew that such shocks could travel along conducting objects. Patients with ailments such as gout or headache were directed to touch electric fish in the hope that the powerful jolt might cure them. Ancient cultures around the Mediterranean knew that certain objects, such as rods of amber , could be rubbed with cat's fur to attract light objects like feathers. Thales of Miletus made

10660-1039: The United States, the National Fire Protection Association has published a guideline standard NFPA 70E for evaluating and calculating arc flash hazard , and provides standards for the protective clothing required for electrical workers exposed to such hazards in the workplace. Even voltages insufficient to break down air can supply enough energy to ignite atmospheres containing flammable gases or vapours, or suspended dust. For example, hydrogen gas, natural gas , or petrol/ gasoline vapor mixed with air can be ignited by sparks produced by electrical apparatus. Examples of industrial facilities with hazardous areas are petrochemical refineries, chemical plants , grain elevators , and coal mines . Measures taken to prevent such explosions include: In recent years, standards for explosion hazard protection have become more uniform between European and North American practice. The "zone" system of classification

10790-408: The beginning of the field theory of the electric force. Further work was conducted in the 17th and early 18th centuries by Otto von Guericke , Robert Boyle , Stephen Gray and C. F. du Fay . Later in the 18th century, Benjamin Franklin conducted extensive research in electricity, selling his possessions to fund his work. In June 1752 he is reputed to have attached a metal key to the bottom of

10920-419: The building it serves to protect. The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work . The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It

11050-426: The charged particles themselves, hence charge has a tendency to spread itself as evenly as possible over a conducting surface. The magnitude of the electromagnetic force, whether attractive or repulsive, is given by Coulomb's law , which relates the force to the product of the charges and has an inverse-square relation to the distance between them. The electromagnetic force is very strong, second only in strength to

11180-450: The charged parts. Air, for example, tends to arc across small gaps at electric field strengths which exceed 30 kV per centimetre. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre. The most visible natural occurrence of this is lightning , caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of

11310-445: The circuit to stabilize the arc's current/voltage characteristics. Electrical transmission and distribution lines for electric power typically use voltages between tens and hundreds of kilovolts. The lines may be overhead or underground. High voltage is used in power distribution to reduce ohmic losses when transporting electricity long distance. It is used in the production of semiconductors to sputter thin layers of metal films on

11440-406: The coil from breaking down the thin insulation and arcing between the secondary wires, the secondary coil uses special construction so as to avoid having wires carrying large voltage differences lying next to each other. In one widely used technique, the secondary coil is wound in many thin flat pancake-shaped sections (called "pies"), connected in series . The primary coil is first wound on

11570-467: The collapsed field no longer attracts the armature, so the spring force accelerates the armature toward its initial position. A short time later the contacts reconnect, and the current starts building the magnetic field again. The whole process starts over and repeats many times per second. The secondary voltage v 2 ( red , left), is roughly proportional to the rate of change of primary current i 1 ( blue ). Opposite potentials are induced in

11700-426: The core perpendicular to the magnetic axis, are blocked by the layers of insulation. The ends of the insulated primary coil often protruded several inches from either end of the secondary coil, to prevent arcs from the secondary to the primary or the core. Although modern induction coils used for educational purposes all use the vibrating arm 'hammer' type interrupter described above, these were inadequate for powering

11830-411: The current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes

11960-516: The design and construction of electronic circuits to solve practical problems are part of electronics engineering . Faraday's and Ampère's work showed that a time-varying magnetic field created an electric field, and a time-varying electric field created a magnetic field. Thus, when either field is changing in time, a field of the other is always induced. These variations are an electromagnetic wave . Electromagnetic waves were analysed theoretically by James Clerk Maxwell in 1864. Maxwell developed

12090-612: The early 1850s, American inventor Edward Samuel Ritchie introduced the divided secondary construction to improve insulation. Jonathan Nash Hearder worked on induction coils. Callan's induction coil was named an IEEE Milestone in 2006. Induction coils were used to provide high voltage for early gas discharge and Crookes tubes and other high voltage research. They were also used to provide entertainment (lighting Geissler tubes , for example) and to drive small "shocking coils", Tesla coils and violet ray devices used in quack medicine . They were used by Hertz to demonstrate

12220-478: The early 19th century had seen rapid progress in electrical science, the late 19th century would see the greatest progress in electrical engineering . Through such people as Alexander Graham Bell , Ottó Bláthy , Thomas Edison , Galileo Ferraris , Oliver Heaviside , Ányos Jedlik , William Thomson, 1st Baron Kelvin , Charles Algernon Parsons , Werner von Siemens , Joseph Swan , Reginald Fessenden , Nikola Tesla and George Westinghouse , electricity turned from

12350-427: The effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by Ampère , who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart. The interaction

12480-567: The electrode shape and size. Strong electric fields (from high voltages applied to small or pointed conductors) often produce violet-colored corona discharges in air, as well as visible sparks. Voltages below about 500–700 volts cannot produce easily visible sparks or glows in air at atmospheric pressure, so by this rule these voltages are "low". However, under conditions of low atmospheric pressure (such as in high-altitude aircraft ), or in an environment of noble gas such as argon or neon , sparks appear at much lower voltages. 500 to 700 volts

12610-448: The electronic electrometer . The movement of electric charge is known as an electric current , the intensity of which is usually measured in amperes . Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current. Electric current can flow through some things, electrical conductors , but will not flow through an electrical insulator . By historical convention,

12740-416: The electrons. However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation. The process by which electric current passes through a material is termed electrical conduction , and its nature varies with that of the charged particles and

12870-428: The elementary charge, and any amount of charge an object may carry is a multiple of the elementary charge. An electron has an equal negative charge, i.e. −1.602 176 634 × 10  coulombs . Charge is possessed not just by matter , but also by antimatter , each antiparticle bearing an equal and opposite charge to its corresponding particle. The presence of charge gives rise to an electrostatic force: charges exert

13000-461: The entire coil a final insulating coating, it is immersed in melted paraffin wax or rosin ; the air evacuated to ensure there are no air bubbles left inside and the paraffin allowed to solidify, so the entire coil is encased in wax. To prevent eddy currents , which cause energy losses, the iron core is made of a bundle of parallel iron wires, individually coated with shellac to insulate them electrically. The eddy currents, which flow in loops in

13130-458: The existence of electromagnetic waves, as predicted by James Clerk Maxwell and by Lodge and Marconi in the first research into radio waves. Their largest industrial use was probably in early wireless telegraphy spark-gap radio transmitters and to power early cold cathode x-ray tubes from the 1890s to the 1920s, after which they were supplanted in both these applications by AC transformers and vacuum tubes . However their largest use

13260-453: The flyback effect resulting in voltages greater than the turns ratio multiplied by the input voltage. They typically produce higher currents than electrostatic machines, but each doubling of desired output voltage roughly doubles the weight due to the amount of wire required in the secondary winding. Thus scaling them to higher voltages by adding more turns of wire can become impractical. The Cockcroft-Walton multiplier can be used to multiply

13390-495: The form of a sine wave . Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as inductance and capacitance . These properties however can become important when circuitry

13520-621: The hazard; these include lightning rods , shielding wires, and bonding of electrical and structural parts of buildings to form a continuous enclosure. Electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge . Electricity is related to magnetism , both being part of the phenomenon of electromagnetism , as described by Maxwell's equations . Common phenomena are related to electricity, including lightning , static electricity , electric heating , electric discharges and many others. The presence of either

13650-524: The highest voltages they normally encounter, to be high voltage . Voltages over approximately 50 volts can usually cause dangerous amounts of current to flow through a human being who touches two points of a circuit, so safety standards are more restrictive around such circuits. In automotive engineering , high voltage is defined as voltage in range 30 to 1000 VAC or 60 to 1500 VDC. The definition of extra-high voltage (EHV) again depends on context. In electric power transmission engineering, EHV

13780-460: The iron core and insulated from the secondary with a thick paper or rubber coating. Then each secondary subcoil is connected to the coil next to it and slid onto the iron core, insulated from adjoining coils with waxed cardboard disks. The voltage developed in each subcoil isn't large enough to jump between the wires in the subcoil. Large voltages are only developed across many subcoils in series, which are too widely separated to arc over. To give

13910-658: The isolation and discovery of the element argon from atmospheric air. Induction coils powered early X-ray tubes. Moseley used an X-ray tube to determine the atomic number of a selection of metallic elements by the spectrum emitted when used as anodes. High voltage is used for generating electron beams for microscopy . Cockcroft and Walton invented the voltage multiplier to transmutate lithium atoms in lithium oxide into helium by accelerating hydrogen atoms. Voltages greater than 50 V applied across dry unbroken human skin can cause heart fibrillation if they produce electric currents in body tissues that happen to pass through

14040-463: The large induction coils used in spark-gap radio transmitters and x-ray machines around the turn of the 20th century. In powerful coils the high primary current created arcs at the interrupter contacts which quickly destroyed the contacts. Also, since each "break" produces a pulse of voltage from the coil, the more breaks per second the greater the power output. Hammer interrupters were not capable of interruption rates over 200 breaks per second and

14170-402: The magnetic field attracts the interrupter's iron armature ( A ). After a time, the magnetic attraction overcomes the armature's spring force, and the armature begins to move. When the armature has moved far enough, the pair of contacts ( K ) in the primary circuit open and disconnect the primary current. Disconnecting the current causes the magnetic field to collapse and create the spark. Also,

14300-422: The magnetic field changes needed for induction. To do that, induction coils use a magnetically activated vibrating arm called an interrupter or break ( A ) to rapidly connect and break the current flowing into the primary coil. The interrupter is mounted on the end of the coil next to the iron core. When the power is turned on, the increasing current in the primary coil produces an increasing magnetic field,

14430-400: The material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a conductor such as metal, and electrolysis , where ions (charged atoms ) flow through liquids, or through plasmas such as electrical sparks. While the particles themselves can move quite slowly, sometimes with an average drift velocity only fractions of

14560-408: The ones used on powerful coils were limited to 20 – 40 breaks per second. Therefore much research went into improving interrupters and improved designs were used in high power coils, with the hammer interrupters only used on small coils under 8" sparks. Léon Foucault and others developed interrupters consisting of an oscillating needle dipping into and out of a container of mercury . The mercury

14690-405: The plastic coating should be free of air bubbles which result in coronal discharges within the bubbles. A high voltage is not necessarily dangerous if it cannot deliver substantial current . Despite electrostatic machines such as Van de Graaff generators and Wimshurst machines producing voltages approaching one million volts, they deliver a brief sting. That is because the current is low, i.e. only

14820-448: The power supply and load allow sufficient current to flow, a self-sustaining arc may form. Once formed, an arc may be extended to a significant length before breaking the circuit. Attempting to open an inductive circuit often forms an arc, since the inductance provides a high-voltage pulse whenever the current is interrupted. AC systems make sustained arcing somewhat less likely, since the current returns to zero twice per cycle. The arc

14950-400: The primary's magnetic field couples with the secondary winding. The primary behaves as an inductor , storing energy in the associated magnetic field. When the primary current is suddenly interrupted, the magnetic field rapidly collapses. This causes a high voltage pulse to be developed across the secondary terminals through electromagnetic induction . Because of the large number of turns in

15080-428: The principle, now known as Faraday's law of induction , that the potential difference induced in a closed circuit is proportional to the rate of change of magnetic flux through the loop. Exploitation of this discovery enabled him to invent the first electrical generator in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy. Faraday's disc was inefficient and of no use as

15210-428: The pulse of voltage induced in the secondary at 'break' is much larger than the pulse induced at 'close', it is the 'break' that generates the coil's high voltage output. An arc forms at the interrupter contacts on break which has undesirable effects: the arc consumes energy stored in the magnetic field, reduces the output voltage, and damages the contacts. To prevent this, a quenching capacitor (C) of 0.5 to 15 μF

15340-434: The secondary coil, the secondary voltage pulse is typically many thousands of volts . This voltage is often sufficient to cause an electric spark , to jump across an air gap (G) separating the secondary's output terminals. For this reason, induction coils were called spark coils. An induction coil is traditionally characterised by the length of spark it can produce; a '4 inch' (10 cm) induction coil could produce

15470-433: The secondary when the interrupter 'breaks' the circuit and 'closes' the circuit. However, the current change in the primary is much more abrupt when the interrupter 'breaks'. When the contacts close, the current builds up slowly in the primary because the supply voltage has a limited ability to force current through the coil's inductance. In contrast, when the interrupter contacts open, the current falls to zero suddenly. So

15600-410: The spark produced in a dry climate when touching a doorknob after walking across a carpeted floor. The voltage can be in the thousand-volt range, but the average current is low. The standard precautions to avoid injury include working under conditions that would avoid having electrical energy flow through the body, particularly through the heart region, such as between the arms, or between an arm and

15730-454: The special property that it is conservative , which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated. The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage. For practical purposes, defining

15860-476: The surface of the wafer . It is also used for electrostatic flocking to coat objects with small fibers that stand on edge. Spark gaps were used historically as an early form of radio transmission. Similarly, lightning discharges in the atmosphere of Jupiter are thought to be the source of the planet's powerful radio frequency emissions. High voltages have been used in landmark chemistry and particle physics experiments and discoveries. Electric arcs were used in

15990-418: The two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it. Ørsted's words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too. Ørsted did not fully understand his discovery, but he observed

16120-417: The vector direction of the field is the line of greatest slope of potential, and where the equipotentials lie closest together. Ørsted's discovery in 1821 that a magnetic field existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces,

16250-442: The victims of electrocution. At very high transmission voltages even a close approach can be hazardous, since the high voltage may arc across a significant air gap. Digging into a buried cable can also be dangerous to workers at an excavation site. Digging equipment (either hand tools or machine driven) that contacts a buried cable may energize piping or the ground in the area, resulting in electrocution of nearby workers. A fault in

16380-482: The voltage produced by an induction coil. It generates DC using diode switches to charge a ladder of capacitors. Tesla coils utilize resonance, are lightweight, and do not require semiconductors. The largest scale sparks are those produced naturally by lightning . An average bolt of negative lightning carries a current of 30 to 50 kiloamperes, transfers a charge of 5 coulombs , and dissipates 500 megajoules of energy (120 kg TNT equivalent , or enough to light

16510-437: Was covered with a layer of spirits which extinguished the arc quickly, causing faster switching. These were often driven by a separate electromagnet or motor, which allowed the interruption rate and "dwell" time to be adjusted separately from the primary current. The largest coils used either electrolytic or mercury turbine interrupters. The electrolytic or Wehnelt interrupter, invented by Arthur Wehnelt in 1899, consisted of

16640-543: Was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines. Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves. A hollow conducting body carries all its charge on its outer surface. The field

16770-421: Was invented by Rev. Prof. James William MacGauley (1838) of Dublin, Ireland, Johann Philipp Wagner (1839), and Christian Ernst Neeff (1847). Hippolyte Fizeau (1853) introduced the use of the quenching capacitor. Heinrich Ruhmkorff generated higher voltages by greatly increasing the length of the secondary, in some coils using 5 or 6 miles (10 km) of wire and produced sparks up to 16 inches. In

16900-631: Was invented by the American physician Charles Grafton Page in 1836 and independently by Irish scientist and Catholic priest Nicholas Callan in the same year at the St. Patrick's College, Maynooth and improved by William Sturgeon . George Henry Bachhoffner and Sturgeon (1837) independently discovered that a "divided" iron core of iron wires reduced power losses. The early coils had hand cranked interrupters, invented by Callan and Antoine Philibert Masson (1837). The automatic 'hammer' interrupter

#600399