The Hwasong-12 ( Korean : 《화성-12》형 or 《화성포-12》형 ; Hancha : 火星 12型 ; lit. Mars Type 12; KN-17 under the U.S. naming convention) is a mobile intermediate-range ballistic missile developed by North Korea. The Hwasong-12 was first revealed to the international community in a military parade on 14 April 2017 celebrating the Day of the Sun which is the birth anniversary of North Korea's founding President, Kim Il Sung . North Korea tested Hwasong-12 on 30 January 2022.
47-532: Based on photos of the launch on 14 May 2017, the Hwasong-12 appears to be a single stage design, using a single main engine along with four vernier engines. The arrangement appears similar to the "high-thrust" engine test conducted in March 2017. Alternatively, it could be based on the engine used in the older Hwasong-10 with the addition of two more verniers. Initial estimates suggest the Hwasong-12 would have
94-402: A n t . {\displaystyle m_{A}v_{A}+m_{B}v_{B}+m_{C}v_{C}+...=constant.} This conservation law applies to all interactions, including collisions (both elastic and inelastic ) and separations caused by explosive forces. It can also be generalized to situations where Newton's laws do not hold, for example in the theory of relativity and in electrodynamics . Momentum
141-418: A Galilean transformation . If a particle is moving at speed d x / d t = v in the first frame of reference, in the second, it is moving at speed v ′ = d x ′ d t = v − u . {\displaystyle v'={\frac {{\text{d}}x'}{{\text{d}}t}}=v-u\,.} Since u does not change,
188-516: A momentum density can be defined as momentum per volume (a volume-specific quantity ). A continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids. Momentum is a vector quantity : it has both magnitude and direction. Since momentum has a direction, it can be used to predict
235-464: A "considerable period of time" until it could be deployed in combat. North Korea also stated that the missile was launched through "ampulization," where the liquid fuel is sealed in the launch canister. This allows the fuel to be stored for years and eliminates the need to conduct fueling before launch, reducing preparation time needed before firing, although the JCS still claimed a 'significant amount of time'
282-752: A 1 kg model airplane, traveling due north at 1 m/s in straight and level flight, has a momentum of 1 kg⋅m/s due north measured with reference to the ground. The momentum of a system of particles is the vector sum of their momenta. If two particles have respective masses m 1 and m 2 , and velocities v 1 and v 2 , the total momentum is p = p 1 + p 2 = m 1 v 1 + m 2 v 2 . {\displaystyle {\begin{aligned}p&=p_{1}+p_{2}\\&=m_{1}v_{1}+m_{2}v_{2}\,.\end{aligned}}} The momenta of more than two particles can be added more generally with
329-402: A collision. For example, suppose there are two bodies of equal mass m , one stationary and one approaching the other at a speed v (as in the figure). The center of mass is moving at speed v / 2 and both bodies are moving towards it at speed v / 2 . Because of the symmetry, after the collision both must be moving away from the center of mass at
376-401: A depressed trajectory, reaching an apogee of 30 km and a range of 200 km, although it is likely that a part of the missile's path would have been untraceable with radar due to its ability to manoeuvre. The test reportedly confirmed its navigational control and stability, as well as the guiding manoeuvrability and flight characteristics of the detached hypersonic gliding warhead. However,
423-517: A maximum range of between 3,700 kilometres (2,300 mi) with a 650 kg (1,430 lb) payload and 4,500 km (2,800 mi) with a 500 kg (1,100 lb) payload, to as much as 6,000 km (3728 mi) ( ICBM means a range of at least 5,500 km). In the April 2017 military parade the Hwasong-12 was displayed on the Hwasong-10 mobile launcher, and it may be intended to replace
470-478: A primary scale for gross measurements, and a secondary scale for fine measurements. Vernier thrusters are used when a heavy spacecraft requires a wide range of different thrust levels for attitude or velocity control, as for maneuvering during docking with other spacecraft. On space vehicles with two sizes of attitude control thrusters, the main ACS (Attitude Control System) thrusters are used for larger movements, while
517-466: Is a rocket engine used on a spacecraft or launch vehicle for fine adjustments to the attitude or velocity . Depending on the design of a craft's maneuvering and stability systems, it may simply be a smaller thruster complementing the main propulsion system , or it may complement larger attitude control thrusters, or may be a part of the reaction control system . The name is derived from vernier calipers (named after Pierre Vernier ) which have
SECTION 10
#1732776764650564-413: Is a good example of an almost totally elastic collision, due to their high rigidity , but when bodies come in contact there is always some dissipation . A head-on elastic collision between two bodies can be represented by velocities in one dimension, along a line passing through the bodies. If the velocities are v A1 and v B1 before the collision and v A2 and v B2 after,
611-603: Is a measurable quantity, and the measurement depends on the frame of reference . For example: if an aircraft of mass 1000 kg is flying through the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s. If the aircraft is flying into a headwind of 5 m/s its speed relative to the surface of the Earth is only 45 m/s and its momentum can be calculated to be 45,000 kg.m/s. Both calculations are equally correct. In both frames of reference, any change in momentum will be found to be consistent with
658-466: Is an inelastic collision . An elastic collision is one in which no kinetic energy is transformed into heat or some other form of energy. Perfectly elastic collisions can occur when the objects do not touch each other, as for example in atomic or nuclear scattering where electric repulsion keeps the objects apart. A slingshot maneuver of a satellite around a planet can also be viewed as a perfectly elastic collision. A collision between two pool balls
705-605: Is equal to the instantaneous force F acting on it, F = d p d t . {\displaystyle F={\frac {{\text{d}}p}{{\text{d}}t}}.} If the net force experienced by a particle changes as a function of time, F ( t ) , the change in momentum (or impulse J ) between times t 1 and t 2 is Δ p = J = ∫ t 1 t 2 F ( t ) d t . {\displaystyle \Delta p=J=\int _{t_{1}}^{t_{2}}F(t)\,{\text{d}}t\,.} Impulse
752-407: Is known as Euler's first law . If the net force F applied to a particle is constant, and is applied for a time interval Δ t , the momentum of the particle changes by an amount Δ p = F Δ t . {\displaystyle \Delta p=F\Delta t\,.} In differential form, this is Newton's second law ; the rate of change of the momentum of a particle
799-468: Is measured in the derived units of the newton second (1 N⋅s = 1 kg⋅m/s) or dyne second (1 dyne⋅s = 1 g⋅cm/s) Under the assumption of constant mass m , it is equivalent to write F = d ( m v ) d t = m d v d t = m a , {\displaystyle F={\frac {{\text{d}}(mv)}{{\text{d}}t}}=m{\frac {{\text{d}}v}{{\text{d}}t}}=ma,} hence
846-560: Is not affected by external forces, its total momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics , quantum mechanics , quantum field theory , and general relativity . It is an expression of one of the fundamental symmetries of space and time: translational symmetry . Advanced formulations of classical mechanics, Lagrangian and Hamiltonian mechanics , allow one to choose coordinate systems that incorporate symmetries and constraints. In these systems
893-466: Is numerically equivalent to 3 newtons. In a closed system (one that does not exchange any matter with its surroundings and is not acted on by external forces) the total momentum remains constant. This fact, known as the law of conservation of momentum , is implied by Newton's laws of motion . Suppose, for example, that two particles interact. As explained by the third law, the forces between them are equal in magnitude but opposite in direction. If
940-422: Is the center of mass frame – one that is moving with the center of mass. In this frame, the total momentum is zero. If two particles, each of known momentum, collide and coalesce, the law of conservation of momentum can be used to determine the momentum of the coalesced body. If the outcome of the collision is that the two particles separate, the law is not sufficient to determine the momentum of each particle. If
987-499: Is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is: p = m v . {\displaystyle \mathbf {p} =m\mathbf {v} .} In the International System of Units (SI),
SECTION 20
#17327767646501034-409: Is the product of the units of mass and velocity. In SI units , if the mass is in kilograms and the velocity is in meters per second then the momentum is in kilogram meters per second (kg⋅m/s). In cgs units , if the mass is in grams and the velocity in centimeters per second, then the momentum is in gram centimeters per second (g⋅cm/s). Being a vector, momentum has magnitude and direction. For example,
1081-455: Is unchanged. Forces such as Newtonian gravity, which depend only on the scalar distance between objects, satisfy this criterion. This independence of reference frame is called Newtonian relativity or Galilean invariance . A change of reference frame, can, often, simplify calculations of motion. For example, in a collision of two particles, a reference frame can be chosen, where, one particle begins at rest. Another, commonly used reference frame,
1128-459: The Franck–Hertz experiment ); and particle accelerators in which the kinetic energy is converted into mass in the form of new particles. In a perfectly inelastic collision (such as a bug hitting a windshield), both bodies have the same motion afterwards. A head-on inelastic collision between two bodies can be represented by velocities in one dimension, along a line passing through the bodies. If
1175-560: The R-7 for vehicle maneuvering because the main engine is fixed in place. For earlier versions of the Atlas rocket family (prior to the Atlas III), in addition to maneuvering, the verniers were used for roll control, although the booster engines could also perform this function. After main engine cutoff, the verniers would execute solo mode and fire for several seconds to make fine adjustments to
1222-405: The unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second . Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference , but in any inertial frame it is a conserved quantity, meaning that if a closed system
1269-510: The booster of Hwasong-12 upon inspection of the sole image of the missile, but more images would be needed to confirm it. This was one of the five 'most important' weapons laid out in a five year plan in the 8th Congress of the Workers' Party of Korea , where the development of the missile was reported to have already been completed. State media of North Korea described it as a weapon of great strategic significance. The missile apparently flew on
1316-502: The conserved quantity is generalized momentum , and in general this is different from the kinetic momentum defined above. The concept of generalized momentum is carried over into quantum mechanics, where it becomes an operator on a wave function . The momentum and position operators are related by the Heisenberg uncertainty principle . In continuous systems such as electromagnetic fields , fluid dynamics and deformable bodies ,
1363-914: The equations expressing conservation of momentum and kinetic energy are: m A v A 1 + m B v B 1 = m A v A 2 + m B v B 2 1 2 m A v A 1 2 + 1 2 m B v B 1 2 = 1 2 m A v A 2 2 + 1 2 m B v B 2 2 . {\displaystyle {\begin{aligned}m_{A}v_{A1}+m_{B}v_{B1}&=m_{A}v_{A2}+m_{B}v_{B2}\\{\tfrac {1}{2}}m_{A}v_{A1}^{2}+{\tfrac {1}{2}}m_{B}v_{B1}^{2}&={\tfrac {1}{2}}m_{A}v_{A2}^{2}+{\tfrac {1}{2}}m_{B}v_{B2}^{2}\,.\end{aligned}}} A change of reference frame can simplify analysis of
1410-765: The following: p = ∑ i m i v i . {\displaystyle p=\sum _{i}m_{i}v_{i}.} A system of particles has a center of mass , a point determined by the weighted sum of their positions: r cm = m 1 r 1 + m 2 r 2 + ⋯ m 1 + m 2 + ⋯ = ∑ i m i r i ∑ i m i . {\displaystyle r_{\text{cm}}={\frac {m_{1}r_{1}+m_{2}r_{2}+\cdots }{m_{1}+m_{2}+\cdots }}={\frac {\sum _{i}m_{i}r_{i}}{\sum _{i}m_{i}}}.} If one or more of
1457-456: The force is between particles. Similarly, if there are several particles, the momentum exchanged between each pair of particles adds to zero, so the total change in momentum is zero. The conservation of the total momentum of a number of interacting particles can be expressed as m A v A + m B v B + m C v C + . . . = c o n s t
Hwasong-12 - Misplaced Pages Continue
1504-1047: The initial velocities are known, the final velocities are given by v A 2 = ( m A − m B m A + m B ) v A 1 + ( 2 m B m A + m B ) v B 1 v B 2 = ( m B − m A m A + m B ) v B 1 + ( 2 m A m A + m B ) v A 1 . {\displaystyle {\begin{aligned}v_{A2}&=\left({\frac {m_{A}-m_{B}}{m_{A}+m_{B}}}\right)v_{A1}+\left({\frac {2m_{B}}{m_{A}+m_{B}}}\right)v_{B1}\\v_{B2}&=\left({\frac {m_{B}-m_{A}}{m_{A}+m_{B}}}\right)v_{B1}+\left({\frac {2m_{A}}{m_{A}+m_{B}}}\right)v_{A1}\,.\end{aligned}}} If one body has much greater mass than
1551-503: The missile allegedly failed to actually achieve hypersonic flight, with South Korean intelligence determining it only reached Mach 2.5-3, whereas hypersonic weapons are considered to travel at a speed of at least Mach 5 (1.7 km/s; 6,100 km/h) although actual data on the flight was not publicly released. The South Korea Joint Chiefs of Staff (JCS) assessed that the Hwasong-8 was at an early stage of development and would take
1598-411: The momentum of one particle after the collision is known, the law can be used to determine the momentum of the other particle. Alternatively if the combined kinetic energy after the collision is known, the law can be used to determine the momentum of each particle after the collision. Kinetic energy is usually not conserved. If it is conserved, the collision is called an elastic collision ; if not, it
1645-742: The negative sign indicating that the forces oppose. Equivalently, d d t ( p 1 + p 2 ) = 0. {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\left(p_{1}+p_{2}\right)=0.} If the velocities of the particles are v A1 and v B1 before the interaction, and afterwards they are v A2 and v B2 , then m A v A 1 + m B v B 1 = m A v A 2 + m B v B 2 . {\displaystyle m_{A}v_{A1}+m_{B}v_{B1}=m_{A}v_{A2}+m_{B}v_{B2}.} This law holds no matter how complicated
1692-400: The net force is equal to the mass of the particle times its acceleration . Example : A model airplane of mass 1 kg accelerates from rest to a velocity of 6 m/s due north in 2 s. The net force required to produce this acceleration is 3 newtons due north. The change in momentum is 6 kg⋅m/s due north. The rate of change of momentum is 3 (kg⋅m/s)/s due north which
1739-447: The other, its velocity will be little affected by a collision while the other body will experience a large change. In an inelastic collision, some of the kinetic energy of the colliding bodies is converted into other forms of energy (such as heat or sound ). Examples include traffic collisions , in which the effect of loss of kinetic energy can be seen in the damage to the vehicles; electrons losing some of their energy to atoms (as in
1786-456: The particles are numbered 1 and 2, the second law states that F 1 = d p 1 / d t and F 2 = d p 2 / d t . Therefore, d p 1 d t = − d p 2 d t , {\displaystyle {\frac {{\text{d}}p_{1}}{{\text{d}}t}}=-{\frac {{\text{d}}p_{2}}{{\text{d}}t}},} with
1833-421: The particles is moving, the center of mass of the system will generally be moving as well (unless the system is in pure rotation around it). If the total mass of the particles is m {\displaystyle m} , and the center of mass is moving at velocity v cm , the momentum of the system is: p = m v cm . {\displaystyle p=mv_{\text{cm}}.} This
1880-402: The relevant laws of physics. Suppose x is a position in an inertial frame of reference. From the point of view of another frame of reference, moving at a constant speed u relative to the other, the position (represented by a primed coordinate) changes with time as x ′ = x − u t . {\displaystyle x'=x-ut\,.} This is called
1927-538: The resulting direction and speed of motion of objects after they collide. Below, the basic properties of momentum are described in one dimension. The vector equations are almost identical to the scalar equations (see multiple dimensions ). The momentum of a particle is conventionally represented by the letter p . It is the product of two quantities, the particle's mass (represented by the letter m ) and its velocity ( v ): p = m v . {\displaystyle p=mv.} The unit of momentum
Hwasong-12 - Misplaced Pages Continue
1974-644: The same speed. Adding the speed of the center of mass to both, we find that the body that was moving is now stopped and the other is moving away at speed v . The bodies have exchanged their velocities. Regardless of the velocities of the bodies, a switch to the center of mass frame leads us to the same conclusion. Therefore, the final velocities are given by v A 2 = v B 1 v B 2 = v A 1 . {\displaystyle {\begin{aligned}v_{A2}&=v_{B1}\\v_{B2}&=v_{A1}\,.\end{aligned}}} In general, when
2021-418: The second reference frame is also an inertial frame and the accelerations are the same: a ′ = d v ′ d t = a . {\displaystyle a'={\frac {{\text{d}}v'}{{\text{d}}t}}=a\,.} Thus, momentum is conserved in both reference frames. Moreover, as long as the force has the same form, in both frames, Newton's second law
2068-551: The similarly performing Hwasong-10 which has been shown unreliable during its test program. On the morning of 27 September 2021, a Hwasong-8 missile was launched in Ryongrim County , although it was reportedly fitted with a manoeuvrable reentry vehicle, which would achieve hypersonic speed . Ankit Panda, a senior fellow at the Carnegie Endowment for International Peace , stated that the new missile looked like
2115-402: The vehicle attitude. The Thor/Delta family also used verniers for roll control but were mounted on the base of the thrust section flanking the main engine. This rocketry article is a stub . You can help Misplaced Pages by expanding it . Momentum In Newtonian mechanics , momentum ( pl. : momenta or momentums ; more specifically linear momentum or translational momentum )
2162-426: The verniers are reserved for smaller adjustments. Due to their weight and the extra plumbing required for their operation, vernier rockets are seldom used in new designs. Instead, as modern rocket engines gained better control, larger thrusters could also be fired for very short pulses, resulting in the same change of momentum as a longer thrust from a smaller thruster. Vernier thrusters are used in rockets such as
2209-486: Was needed to deploy the missile. Photos showed the missile with a different engine configuration and thrust-vector control system, differently shaped and possibly shorter nosecone or reentry vehicle, and possibly slightly longer second stage, so it is unknown if the test was of a "new-type" IRBM or modified Hwasong-12. This version demonstrated the ability to deliver an almost 20% greater payload than previous Hwasong-12 missiles. Vernier thruster A vernier thruster
#649350