The Palomar Transient Factory ( PTF , obs. code : I41 ), was an astronomical survey using a wide-field survey camera designed to search for optical transient and variable sources such as variable stars , supernovae , asteroids and comets . The project completed commissioning in summer 2009, and continued until December 2012. It has since been succeeded by the Intermediate Palomar Transient Factory (iPTF), which itself transitioned to the Zwicky Transient Facility in 2017/18. All three surveys are registered at the MPC under the same observatory code for their astrometric observations.
99-486: The fully automated system included an automated realtime data reduction pipeline, a dedicated photometric follow-up telescope, and a full archive of all detected astronomical sources. The survey was performed with a 12K × 8K, 7.8 square degree CCD array camera re-engineered for the 1.2-meter Samuel Oschin Telescope at Palomar Observatory . The survey camera achieved first light on 13 December 2008. PTF
198-448: A binary black hole . A second gravitational wave was detected on 26 December 2015 and additional observations should continue but gravitational waves require extremely sensitive instruments. The combination of observations made using electromagnetic radiation, neutrinos or gravitational waves and other complementary information, is known as multi-messenger astronomy . One of the oldest fields in astronomy, and in all of science,
297-413: A photometric system ) are defined to allow accurate comparison of observations. A more advanced technique is spectrophotometry that is measured with a spectrophotometer and observes both the amount of radiation and its detailed spectral distribution . Photometry is also used in the observation of variable stars , by various techniques such as, differential photometry that simultaneously measures
396-413: A capital letter, such as "V" (m V ) or "B" (m B ). Other magnitudes estimated by the human eye are expressed using lower case letters, such as "v", "b" or "p", etc. E.g. Visual magnitudes as m v , while photographic magnitudes are m ph / m p or photovisual magnitudes m p or m pv . Hence, a 6th magnitude star might be stated as 6.0V, 6.0B, 6.0v or 6.0p. Because starlight is measured over
495-492: A database. Lightcurves of approximately 500 million objects had been accumulated. This database was planned to be made public after an 18-month proprietary period, subject to available resources. The Palomar Observatory 60-inch photometric follow-up telescope automatically generated colors and lightcurves for interesting transients detected using the Samuel Oschin Telescope. The PTF collaboration also used
594-599: A different range of wavelengths across the electromagnetic spectrum and are affected by different instrumental photometric sensitivities to light, they are not necessarily equivalent in numerical value. For example, apparent magnitude in the UBV system for the solar-like star 51 Pegasi is 5.46V, 6.16B or 6.39U, corresponding to magnitudes observed through each of the visual 'V', blue 'B' or ultraviolet 'U' filters. Magnitude differences between filters indicate colour differences and are related to temperature. Using B and V filters in
693-562: A few milliseconds to thousands of seconds before fading away. Only 10% of gamma-ray sources are non-transient sources. These steady gamma-ray emitters include pulsars, neutron stars , and black hole candidates such as active galactic nuclei. In addition to electromagnetic radiation, a few other events originating from great distances may be observed from the Earth. In neutrino astronomy , astronomers use heavily shielded underground facilities such as SAGE , GALLEX , and Kamioka II/III for
792-454: A further 15 telescopes for photometric and spectroscopic follow-up. PTF uses software written to assist a human in weeding out false positives when searching for small near-Earth objects. N. Law et al., PASP, 121, 1395 :"The Palomar Transient Factory: System Overview, Performance, and First Results" — This paper summarizes the PTF project, including several months of on-sky performance tests of
891-552: A model allows astronomers to select between several alternative or conflicting models. Theorists also modify existing models to take into account new observations. In some cases, a large amount of observational data that is inconsistent with a model may lead to abandoning it largely or completely, as for geocentric theory , the existence of luminiferous aether , and the steady-state model of cosmic evolution. Phenomena modeled by theoretical astronomers include: Modern theoretical astronomy reflects dramatic advances in observation since
990-671: A number of important astronomers. Richard of Wallingford (1292–1336) made major contributions to astronomy and horology , including the invention of the first astronomical clock, the Rectangulus which allowed for the measurement of angles between planets and other astronomical bodies, as well as an equatorium called the Albion which could be used for astronomical calculations such as lunar , solar and planetary longitudes and could predict eclipses . Nicole Oresme (1320–1382) and Jean Buridan (1300–1361) first discussed evidence for
1089-578: A repeating cycle known as a saros . Following the Babylonians, significant advances in astronomy were made in ancient Greece and the Hellenistic world. Greek astronomy is characterized from the start by seeking a rational, physical explanation for celestial phenomena. In the 3rd century BC, Aristarchus of Samos estimated the size and distance of the Moon and Sun , and he proposed a model of
SECTION 10
#17327733810401188-608: A substantial amount of work in the realms of theoretical and observational physics. Some areas of study for astrophysicists include their attempts to determine the properties of dark matter , dark energy , and black holes ; whether or not time travel is possible, wormholes can form, or the multiverse exists; and the origin and ultimate fate of the universe . Topics also studied by theoretical astrophysicists include Solar System formation and evolution ; stellar dynamics and evolution ; galaxy formation and evolution ; magnetohydrodynamics ; large-scale structure of matter in
1287-467: A very crowded field, such as a globular cluster , where the profiles of stars overlap significantly, one must use de-blending techniques, such as PSF fitting to determine the individual flux values of the overlapping sources. After determining the flux of an object in counts, the flux is normally converted into instrumental magnitude . Then, the measurement is calibrated in some way. Which calibrations are used will depend in part on what type of photometry
1386-471: A wide range of science aspects, including supernovae , novae , cataclysmic variables, Luminous red novae , tidal disruption flares, compact binaries (AM CVn star), active galactic nuclei, transiting Extrasolar planets , RR Lyrae variable stars, microlensing events, and small Solar System bodies of the Solar System . PTF filled the gaps in the knowledge of the optical transient phase space, extended
1485-427: Is visible light , or more generally electromagnetic radiation . Observational astronomy may be categorized according to the corresponding region of the electromagnetic spectrum on which the observations are made. Some parts of the spectrum can be observed from the Earth's surface, while other parts are only observable from either high altitudes or outside the Earth's atmosphere. Specific information on these subfields
1584-586: Is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics , physics , and chemistry in order to explain their origin and their overall evolution . Objects of interest include planets , moons , stars , nebulae , galaxies , meteoroids , asteroids , and comets . Relevant phenomena include supernova explosions, gamma ray bursts , quasars , blazars , pulsars , and cosmic microwave background radiation . More generally, astronomy studies everything that originates beyond Earth's atmosphere . Cosmology
1683-590: Is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky . These include the Egyptians , Babylonians , Greeks , Indians , Chinese , Maya , and many ancient indigenous peoples of the Americas . In the past, astronomy included disciplines as diverse as astrometry , celestial navigation , observational astronomy , and
1782-498: Is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects . This light is measured through a telescope using a photometer , often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect . When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure
1881-584: Is absorbed by the Earth's atmosphere, requiring observations at these wavelengths to be performed from the upper atmosphere or from space. Ultraviolet astronomy is best suited to the study of thermal radiation and spectral emission lines from hot blue stars ( OB stars ) that are very bright in this wave band. This includes the blue stars in other galaxies, which have been the targets of several ultraviolet surveys. Other objects commonly observed in ultraviolet light include planetary nebulae , supernova remnants , and active galactic nuclei. However, as ultraviolet light
1980-595: Is also believed that the ruins at Great Zimbabwe and Timbuktu may have housed astronomical observatories. In Post-classical West Africa , Astronomers studied the movement of stars and relation to seasons, crafting charts of the heavens as well as precise diagrams of orbits of the other planets based on complex mathematical calculations. Songhai historian Mahmud Kati documented a meteor shower in August 1583. Europeans had previously believed that there had been no astronomical observation in sub-Saharan Africa during
2079-402: Is also used to study the light variations of objects such as variable stars , minor planets , active galactic nuclei and supernovae , or to detect transiting extrasolar planets . Measurements of these variations can be used, for example, to determine the orbital period and the radii of the members of an eclipsing binary star system, the rotation period of a minor planet or a star, or
SECTION 20
#17327733810402178-583: Is an inseparable part of the discipline of astrobiology. Astrobiology concerns itself with interpretation of existing scientific data , and although speculation is entertained to give context, astrobiology concerns itself primarily with hypotheses that fit firmly into existing scientific theories . This interdisciplinary field encompasses research on the origin of planetary systems , origins of organic compounds in space , rock-water-carbon interactions, abiogenesis on Earth, planetary habitability , research on biosignatures for life detection, and studies on
2277-474: Is being done. Typically, observations are processed for relative or differential photometry. Relative photometry is the measurement of the apparent brightness of multiple objects relative to each other. Absolute photometry is the measurement of the apparent brightness of an object on a standard photometric system ; these measurements can be compared with other absolute photometric measurements obtained with different telescopes or instruments. Differential photometry
2376-427: Is easily absorbed by interstellar dust , an adjustment of ultraviolet measurements is necessary. X-ray astronomy uses X-ray wavelengths . Typically, X-ray radiation is produced by synchrotron emission (the result of electrons orbiting magnetic field lines), thermal emission from thin gases above 10 (10 million) kelvins , and thermal emission from thick gases above 10 Kelvin. Since X-rays are absorbed by
2475-414: Is founded on the detection and analysis of infrared radiation, wavelengths longer than red light and outside the range of our vision. The infrared spectrum is useful for studying objects that are too cold to radiate visible light, such as planets, circumstellar disks or nebulae whose light is blocked by dust. The longer wavelengths of infrared can penetrate clouds of dust that block visible light, allowing
2574-464: Is from these clouds that solar systems form. Studies in this field contribute to the understanding of the formation of the Solar System , Earth's origin and geology, abiogenesis , and the origin of climate and oceans. Astrobiology is an interdisciplinary scientific field concerned with the origins , early evolution , distribution, and future of life in the universe . Astrobiology considers
2673-416: Is given below. Radio astronomy uses radiation with wavelengths greater than approximately one millimeter, outside the visible range. Radio astronomy is different from most other forms of observational astronomy in that the observed radio waves can be treated as waves rather than as discrete photons . Hence, it is relatively easier to measure both the amplitude and phase of radio waves, whereas this
2772-415: Is its brightness per unit solid angle as seen in projection on the sky, and measurement of surface brightness is known as surface photometry. A common application would be measurement of a galaxy's surface brightness profile, meaning its surface brightness as a function of distance from the galaxy's center. For small solid angles, a useful unit of solid angle is the square arcsecond , and surface brightness
2871-645: Is not as easily done at shorter wavelengths. Although some radio waves are emitted directly by astronomical objects, a product of thermal emission , most of the radio emission that is observed is the result of synchrotron radiation , which is produced when electrons orbit magnetic fields . Additionally, a number of spectral lines produced by interstellar gas , notably the hydrogen spectral line at 21 cm, are observable at radio wavelengths. A wide variety of other objects are observable at radio wavelengths, including supernovae , interstellar gas, pulsars , and active galactic nuclei . Infrared astronomy
2970-415: Is often expressed in magnitudes per square arcsecond. The diameter of galaxies are often defined by the size of the 25th magnitude isophote in the blue B-band. In forced photometry , measurements are conducted at a specified location rather than for a specified object . It is "forced" in the sense that a measurement can be taken even if there is no object visible (in the spectral band of interest) in
3069-455: Is often in addition to correcting for their temporal variations, particularly when the objects being compared are too far apart on the sky to be observed simultaneously. When doing the calibration from an image that contains both the target and comparison objects in close proximity, and using a photometric filter that matches the catalog magnitude of the comparison object most of the measurement variations decrease to null. Differential photometry
Palomar Transient Factory - Misplaced Pages Continue
3168-475: Is one of the few sciences in which amateurs play an active role . This is especially true for the discovery and observation of transient events . Amateur astronomers have helped with many important discoveries, such as finding new comets. Astronomy (from the Greek ἀστρονομία from ἄστρον astron , "star" and -νομία -nomia from νόμος nomos , "law" or "culture") means "law of the stars" (or "culture of
3267-560: Is provided. G. Rahmer et al., SPIE, 7014, 163 : "The 12K×8K CCD mosaic camera for the Palomar Transient Factory" — This paper discusses the modifications to the CFHT 12K CCD camera, improved readout, new filter exchange mechanism, and the field flattener needed to correct for focal plane curvature. Photometry (astronomy) In astronomy , photometry , from Greek photo- ("light") and -metry ("measure"),
3366-479: Is required. Modern photometric methods define magnitudes and colours of astronomical objects using electronic photometers viewed through standard coloured bandpass filters. This differs from other expressions of apparent visual magnitude observed by the human eye or obtained by photography: that usually appear in older astronomical texts and catalogues. Magnitudes measured by photometers in some commonplace photometric systems (UBV, UBVRI or JHK) are expressed with
3465-479: Is the branch of astronomy that employs the principles of physics and chemistry "to ascertain the nature of the astronomical objects , rather than their positions or motions in space". Among the objects studied are the Sun , other stars , galaxies , extrasolar planets , the interstellar medium and the cosmic microwave background . Their emissions are examined across all parts of the electromagnetic spectrum , and
3564-405: Is the measurement of the difference in brightness of two objects. In most cases, differential photometry can be done with the highest precision , while absolute photometry is the most difficult to do with high precision. Also, accurate photometry is usually more difficult when the apparent brightness of the object is fainter. To perform absolute photometry one must correct for differences between
3663-502: Is the measurement of the positions of celestial objects. Historically, accurate knowledge of the positions of the Sun, Moon, planets and stars has been essential in celestial navigation (the use of celestial objects to guide navigation) and in the making of calendars . Careful measurement of the positions of the planets has led to a solid understanding of gravitational perturbations , and an ability to determine past and future positions of
3762-408: Is the simplest of the calibrations and most useful for time series observations. When using CCD photometry, both the target and comparison objects are observed at the same time, with the same filters, using the same instrument, and viewed through the same optical path. Most of the observational variables drop out and the differential magnitude is simply the difference between the instrument magnitude of
3861-484: The Compton Gamma Ray Observatory or by specialized telescopes called atmospheric Cherenkov telescopes . The Cherenkov telescopes do not detect the gamma rays directly but instead detect the flashes of visible light produced when gamma rays are absorbed by the Earth's atmosphere. Most gamma-ray emitting sources are actually gamma-ray bursts , objects which only produce gamma radiation for
3960-524: The Earth's atmosphere , all X-ray observations must be performed from high-altitude balloons , rockets , or X-ray astronomy satellites . Notable X-ray sources include X-ray binaries , pulsars , supernova remnants , elliptical galaxies , clusters of galaxies , and active galactic nuclei . Gamma ray astronomy observes astronomical objects at the shortest wavelengths of the electromagnetic spectrum. Gamma rays may be observed directly by satellites such as
4059-977: The Milky Way , as its own group of stars was only proven in the 20th century, along with the existence of "external" galaxies. The observed recession of those galaxies led to the discovery of the expansion of the Universe . In 1919, when the Hooker Telescope was completed, the prevailing view was that the universe consisted entirely of the Milky Way Galaxy. Using the Hooker Telescope, Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922–1923 proved conclusively that Andromeda Nebula and Triangulum among others, were entire galaxies outside our own, thus proving that
Palomar Transient Factory - Misplaced Pages Continue
4158-794: The Muslim world by the early 9th century. In 964, the Andromeda Galaxy , the largest galaxy in the Local Group , was described by the Persian Muslim astronomer Abd al-Rahman al-Sufi in his Book of Fixed Stars . The SN 1006 supernova , the brightest apparent magnitude stellar event in recorded history, was observed by the Egyptian Arabic astronomer Ali ibn Ridwan and Chinese astronomers in 1006. Iranian scholar Al-Biruni observed that, contrary to Ptolemy ,
4257-561: The Renaissance , Nicolaus Copernicus proposed a heliocentric model of the solar system. His work was defended by Galileo Galilei and expanded upon by Johannes Kepler . Kepler was the first to devise a system that correctly described the details of the motion of the planets around the Sun. However, Kepler did not succeed in formulating a theory behind the laws he wrote down. It was Isaac Newton , with his invention of celestial dynamics and his law of gravitation , who finally explained
4356-501: The Solar System where the Earth and planets rotated around the Sun, now called the heliocentric model. In the 2nd century BC, Hipparchus discovered precession , calculated the size and distance of the Moon and invented the earliest known astronomical devices such as the astrolabe . Hipparchus also created a comprehensive catalog of 1020 stars, and most of the constellations of the northern hemisphere derive from Greek astronomy. The Antikythera mechanism ( c. 150 –80 BC)
4455-485: The Strömgren photometric system having lower case letters of 'u', 'v', 'b', 'y', and two narrow and wide 'β' ( Hydrogen-beta ) filters. Some photometric systems also have certain advantages. For example, Strömgren photometry can be used to measure the effects of reddening and interstellar extinction . Strömgren allows calculation of parameters from the b and y filters (colour index of b − y ) without
4554-484: The electromagnetic spectrum . Any adopted set of filters with known light transmission properties is called a photometric system , and allows the establishment of particular properties about stars and other types of astronomical objects. Several important systems are regularly used, such as the UBV system (or the extended UBVRI system ), near infrared JHK or the Strömgren uvbyβ system . Historically, photometry in
4653-427: The interstellar medium . The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites , is also called cosmochemistry , while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it
4752-437: The surface brightness in terms of magnitudes per square arcsecond, while integrating the total light of the extended object can then calculate brightness in terms of its total magnitude, energy output or luminosity per unit surface area. Astronomy was among the earliest applications of photometry. Modern photometers use specialised standard passband filters across the ultraviolet , visible , and infrared wavelengths of
4851-442: The 1990s, including studies of the cosmic microwave background , distant supernovae and galaxy redshifts , which have led to the development of a standard model of cosmology . This model requires the universe to contain large amounts of dark matter and dark energy whose nature is currently not well understood, but the model gives detailed predictions that are in excellent agreement with many diverse observations. Astrophysics
4950-524: The B–V colour index. This forms the important relationships found between sets of stars in colour–magnitude diagrams , which for stars is the observed version of the Hertzsprung-Russell diagram . Typically photometric measurements of multiple objects obtained through two filters will show, for example in an open cluster , the comparative stellar evolution between the component stars or to determine
5049-403: The Earth's atmosphere and of their physical and chemical properties", while "astrophysics" refers to the branch of astronomy dealing with "the behavior, physical properties, and dynamic processes of celestial objects and phenomena". In some cases, as in the introduction of the introductory textbook The Physical Universe by Frank Shu , "astronomy" may be used to describe the qualitative study of
SECTION 50
#17327733810405148-527: The Sun's apogee (highest point in the heavens) was mobile, not fixed. Some of the prominent Islamic (mostly Persian and Arab) astronomers who made significant contributions to the science include Al-Battani , Thebit , Abd al-Rahman al-Sufi , Biruni , Abū Ishāq Ibrāhīm al-Zarqālī , Al-Birjandi , and the astronomers of the Maragheh and Samarkand observatories. Astronomers during that time introduced many Arabic names now used for individual stars . It
5247-584: The Sun, the Moon and the stars rotating around it. This is known as the geocentric model of the Universe, or the Ptolemaic system , named after Ptolemy . A particularly important early development was the beginning of mathematical and scientific astronomy, which began among the Babylonians , who laid the foundations for the later astronomical traditions that developed in many other civilizations. The Babylonians discovered that lunar eclipses recurred in
5346-427: The UBV system produces the B–V colour index. For 51 Pegasi , the B–V = 6.16 – 5.46 = +0.70, suggesting a yellow coloured star that agrees with its G2IV spectral type. Knowing the B–V results determines the star's surface temperature, finding an effective surface temperature of 5768±8 K. Another important application of colour indices is graphically plotting star's apparent magnitude against
5445-535: The age of the Universe and size of the Observable Universe. Theoretical astronomy led to speculations on the existence of objects such as black holes and neutron stars , which have been used to explain such observed phenomena as quasars , pulsars , blazars , and radio galaxies . Physical cosmology made huge advances during the 20th century. In the early 1900s the model of the Big Bang theory
5544-486: The atmosphere itself produces significant infrared emission. Consequently, infrared observatories have to be located in high, dry places on Earth or in space. Some molecules radiate strongly in the infrared. This allows the study of the chemistry of space; more specifically it can detect water in comets. Historically, optical astronomy, which has been also called visible light astronomy, is the oldest form of astronomy. Images of observations were originally drawn by hand. In
5643-427: The brightness changes. Precision photoelectric photometers can measure starlight around 0.001 magnitude. The technique of surface photometry can also be used with extended objects like planets , comets , nebulae or galaxies that measures the apparent magnitude in terms of magnitudes per square arcsecond. Knowing the area of the object and the average intensity of light across the astronomical object determines
5742-399: The brightness of a target object and nearby stars in the starfield or relative photometry by comparing the brightness of the target object to stars with known fixed magnitudes. Using multiple bandpass filters with relative photometry is termed absolute photometry . A plot of magnitude against time produces a light curve , yielding considerable information about the physical process causing
5841-404: The brightness or apparent magnitude of celestial objects. The methods used to perform photometry depend on the wavelength region under study. At its most basic, photometry is conducted by gathering light and passing it through specialized photometric optical bandpass filters , and then capturing and recording the light energy with a photosensitive instrument. Standard sets of passbands (called
5940-427: The cluster's relative age. Due to the large number of different photometric systems adopted by astronomers, there are many expressions of magnitudes and their indices. Each of these newer photometric systems, excluding UBV, UBVRI or JHK systems, assigns an upper or lower case letter to the filter used. For example, magnitudes used by Gaia are 'G' (with the blue and red photometric filters, G BP and G RP ) or
6039-703: The data was processed and archived for later retrieval at the Infrared Processing and Analysis Center (IPAC). Photometric and spectroscopic follow-up of detected objects was undertaken by the automated Palomar 1.5-meter telescope and other facilities provided by consortium members. Time-variability studies were undertaken using the photometric / astrometric pipeline implemented at the Infrared Processing and Analysis Center (IPAC). Studies included compact binaries ( AM CVn stars ), RR Lyrae , cataclysmic variables , and active galactic nuclei (AGN), and lightcurves of small Solar System bodies . PTF covered
SECTION 60
#17327733810406138-408: The department is historically affiliated with a physics department, and many professional astronomers have physics rather than astronomy degrees. Some titles of the leading scientific journals in this field include The Astronomical Journal , The Astrophysical Journal , and Astronomy & Astrophysics . In early historic times, astronomy only consisted of the observation and predictions of
6237-474: The detection of neutrinos . The vast majority of the neutrinos streaming through the Earth originate from the Sun , but 24 neutrinos were also detected from supernova 1987A . Cosmic rays , which consist of very high energy particles (atomic nuclei) that can decay or be absorbed when they enter the Earth's atmosphere, result in a cascade of secondary particles which can be detected by current observatories. Some future neutrino detectors may also be sensitive to
6336-418: The effective passband through which an object is observed and the passband used to define the standard photometric system. This is often in addition to all of the other corrections discussed above. Typically this correction is done by observing the object(s) of interest through multiple filters and also observing a number of photometric standard stars . If the standard stars cannot be observed simultaneously with
6435-512: The effects of reddening, as the indices m 1 and c 1 . There are many astronomical applications used with photometric systems. Photometric measurements can be combined with the inverse-square law to determine the luminosity of an object if its distance can be determined, or its distance if its luminosity is known. Other physical properties of an object, such as its temperature or chemical composition, may also be determined via broad or narrow-band spectrophotometry. Photometry
6534-404: The extraction of the raw image magnitude of the target object, and a known comparison object. The observed signal from an object will typically cover many pixels according to the point spread function (PSF) of the system. This broadening is due to both the optics in the telescope and the astronomical seeing . When obtaining photometry from a point source , the flux is measured by summing all
6633-414: The introduction of new technology, including the spectroscope and photography . Joseph von Fraunhofer discovered about 600 bands in the spectrum of the Sun in 1814–15, which, in 1859, Gustav Kirchhoff ascribed to the presence of different elements. Stars were proven to be similar to the Earth's own Sun, but with a wide range of temperatures , masses , and sizes. The existence of the Earth's galaxy,
6732-579: The late 19th century and most of the 20th century, images were made using photographic equipment. Modern images are made using digital detectors, particularly using charge-coupled devices (CCDs) and recorded on modern medium. Although visible light itself extends from approximately 4000 Å to 7000 Å (400 nm to 700 nm), that same equipment can be used to observe some near-ultraviolet and near-infrared radiation. Ultraviolet astronomy employs ultraviolet wavelengths between approximately 100 and 3200 Å (10 to 320 nm). Light at those wavelengths
6831-492: The latter has a graphical user interface (GUI) suitable for studying individual images. DAOPHOT is recognized as the best software for PSF-fitting photometry. There are a number of organizations, from professional to amateur, that gather and share photometric data and make it available on-line. Some sites gather the data primarily as a resource for other researchers (ex. AAVSO) and some solicit contributions of data for their own research (ex. CBA): Astronomy Astronomy
6930-415: The light recorded from the object and subtracting the light due to the sky. The simplest technique, known as aperture photometry, consists of summing the pixel counts within an aperture centered on the object and subtracting the product of the nearby average sky count per pixel and the number of pixels within the aperture. This will result in the raw flux value of the target object. When doing photometry in
7029-427: The location being observed. Forced photometry allows extracting a magnitude, or an upper limit for the magnitude, at a chosen sky location. A number of free computer programs are available for synthetic aperture photometry and PSF-fitting photometry. SExtractor and Aperture Photometry Tool are popular examples for aperture photometry. The former is geared towards reduction of large scale galaxy-survey data, and
7128-576: The making of calendars . Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results. Astronomy
7227-593: The motions of objects visible to the naked eye. In some locations, early cultures assembled massive artifacts that may have had some astronomical purpose. In addition to their ceremonial uses, these observatories could be employed to determine the seasons, an important factor in knowing when to plant crops and in understanding the length of the year. As civilizations developed, most notably in Egypt , Mesopotamia , Greece , Persia , India , China , and Central America , astronomical observatories were assembled and ideas on
7326-417: The motions of the planets. Newton also developed the reflecting telescope . Improvements in the size and quality of the telescope led to further discoveries. The English astronomer John Flamsteed catalogued over 3000 stars. More extensive star catalogues were produced by Nicolas Louis de Lacaille . The astronomer William Herschel made a detailed catalog of nebulosity and clusters, and in 1781 discovered
7425-406: The nature of the Universe began to develop. Most early astronomy consisted of mapping the positions of the stars and planets, a science now referred to as astrometry . From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon and the Earth in the Universe were explored philosophically. The Earth was believed to be the center of the Universe with
7524-459: The near- infrared through short-wavelength ultra-violet was done with a photoelectric photometer, an instrument that measured the light intensity of a single object by directing its light onto a photosensitive cell like a photomultiplier tube . These have largely been replaced with CCD cameras that can simultaneously image multiple objects, although photoelectric photometers are still used in special situations, such as where fine time resolution
7623-477: The new survey camera, the observing plans, and the data reduction strategy. It also includes details for the first 51 PTF optical transient detections, found in commissioning data. A. Rau et al., PASP, 121, 1334 : "Exploring the Optical Transient Sky with the Palomar Transient Factory" — In this article, the scientific motivation for PTF is presented and a description of the goals and expectations
7722-494: The observation of young stars embedded in molecular clouds and the cores of galaxies. Observations from the Wide-field Infrared Survey Explorer (WISE) have been particularly effective at unveiling numerous galactic protostars and their host star clusters . With the exception of infrared wavelengths close to visible light, such radiation is heavily absorbed by the atmosphere, or masked, as
7821-553: The particles produced when cosmic rays hit the Earth's atmosphere. Gravitational-wave astronomy is an emerging field of astronomy that employs gravitational-wave detectors to collect observational data about distant massive objects. A few observatories have been constructed, such as the Laser Interferometer Gravitational Observatory LIGO . LIGO made its first detection on 14 September 2015, observing gravitational waves from
7920-497: The planet Uranus , the first new planet found. During the 18–19th centuries, the study of the three-body problem by Leonhard Euler , Alexis Claude Clairaut , and Jean le Rond d'Alembert led to more accurate predictions about the motions of the Moon and planets. This work was further refined by Joseph-Louis Lagrange and Pierre Simon Laplace , allowing the masses of the planets and moons to be estimated from their perturbations. Significant advances in astronomy came about with
8019-470: The planets with great accuracy, a field known as celestial mechanics . More recently the tracking of near-Earth objects will allow for predictions of close encounters or potential collisions of the Earth with those objects. The measurement of stellar parallax of nearby stars provides a fundamental baseline in the cosmic distance ladder that is used to measure the scale of the Universe. Parallax measurements of nearby stars provide an absolute baseline for
8118-596: The pre-colonial Middle Ages, but modern discoveries show otherwise. For over six centuries (from the recovery of ancient learning during the late Middle Ages into the Enlightenment), the Roman Catholic Church gave more financial and social support to the study of astronomy than probably all other institutions. Among the Church's motives was finding the date for Easter . Medieval Europe housed
8217-458: The properties examined include luminosity , density , temperature , and chemical composition. Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics , electromagnetism , statistical mechanics , thermodynamics , quantum mechanics , relativity , nuclear and particle physics , and atomic and molecular physics . In practice, modern astronomical research often involves
8316-473: The properties of more distant stars, as their properties can be compared. Measurements of the radial velocity and proper motion of stars allow astronomers to plot the movement of these systems through the Milky Way galaxy. Astrometric results are the basis used to calculate the distribution of speculated dark matter in the galaxy. During the 1990s, the measurement of the stellar wobble of nearby stars
8415-459: The question of whether extraterrestrial life exists, and how humans can detect it if it does. The term exobiology is similar. Astrobiology makes use of molecular biology , biophysics , biochemistry , chemistry , astronomy, physical cosmology , exoplanetology and geology to investigate the possibility of life on other worlds and help recognize biospheres that might be different from that on Earth. The origin and early evolution of life
8514-425: The rotation of the Earth, furthermore, Buridan also developed the theory of impetus (predecessor of the modern scientific theory of inertia ) which was able to show planets were capable of motion without the intervention of angels. Georg von Peuerbach (1423–1461) and Regiomontanus (1436–1476) helped make astronomical progress instrumental to Copernicus's development of the heliocentric model decades later. During
8613-436: The stars" depending on the translation). Astronomy should not be confused with astrology , the belief system which claims that human affairs are correlated with the positions of celestial objects. Although the two fields share a common origin, they are now entirely distinct. "Astronomy" and " astrophysics " are synonyms. Based on strict dictionary definitions, "astronomy" refers to "the study of objects and matter outside
8712-477: The subject, whereas "astrophysics" is used to describe the physics-oriented version of the subject. However, since most modern astronomical research deals with subjects related to physics, modern astronomy could actually be called astrophysics. Some fields, such as astrometry , are purely astronomy rather than also astrophysics. Various departments in which scientists carry out research on this subject may use "astronomy" and "astrophysics", partly depending on whether
8811-439: The target object and the comparison object (∆Mag = C Mag – T Mag). This is very useful when plotting the change in magnitude over time of a target object, and is usually compiled into a light curve . For spatially extended objects such as galaxies , it is often of interest to measure the spatial distribution of brightness within the galaxy rather than simply measuring the galaxy's total brightness. An object's surface brightness
8910-405: The target(s), this correction must be done under photometric conditions, when the sky is cloudless and the extinction is a simple function of the airmass . To perform relative photometry, one compares the instrument magnitude of the object to a known comparison object, and then corrects the measurements for spatial variations in the sensitivity of the instrument and the atmospheric extinction. This
9009-444: The total energy output of supernovae. A CCD ( charge-coupled device ) camera is essentially a grid of photometers, simultaneously measuring and recording the photons coming from all the sources in the field of view. Because each CCD image records the photometry of multiple objects at once, various forms of photometric extraction can be performed on the recorded data; typically relative, absolute, and differential. All three will require
9108-479: The understanding of known source classes, and provided the first detections or constraints on predicted, but not yet discovered, event populations. The efforts being undertaken during the five-year project include: Data taken with the camera were transferred to two automated reduction pipelines. A near-realtime image subtraction pipeline was run at LBNL and had the goal of identifying optical transients within minutes of images being taken. The output of this pipeline
9207-548: The universe consists of a multitude of galaxies. With this Hubble formulated the Hubble constant , which allowed for the first time a calculation of the age of the Universe and size of the Observable Universe, which became increasingly precise with better meassurements, starting at 2 billion years and 280 million light-years, until 2006 when data of the Hubble Space Telescope allowed a very accurate calculation of
9306-409: The universe; origin of cosmic rays ; general relativity and physical cosmology , including string cosmology and astroparticle physics . Astrochemistry is the study of the abundance and reactions of molecules in the Universe , and their interaction with radiation . The discipline is an overlap of astronomy and chemistry . The word "astrochemistry" may be applied to both the Solar System and
9405-640: Was used to detect large extrasolar planets orbiting those stars. Theoretical astronomers use several tools including analytical models and computational numerical simulations ; each has its particular advantages. Analytical models of a process are better for giving broader insight into the heart of what is going on. Numerical models reveal the existence of phenomena and effects otherwise unobserved. Theorists in astronomy endeavor to create theoretical models that are based on existing observations and known physics, and to predict observational consequences of those models. The observation of phenomena predicted by
9504-579: Was a collaboration of Caltech , LBNL , Infrared Processing and Analysis Center , Berkeley , LCOGT , Oxford , Columbia and the Weizmann Institute . The project was led by Shrinivas Kulkarni at Caltech. As of 2018, he leads the Zwicky Transient Facility . Image Subtraction for near-realtime transient detection was performed at LBNL; efforts to continue to observe interesting targets were coordinated at Caltech, and
9603-520: Was an early analog computer designed to calculate the location of the Sun , Moon , and planets for a given date. Technological artifacts of similar complexity did not reappear until the 14th century, when mechanical astronomical clocks appeared in Europe. Astronomy flourished in the Islamic world and other parts of the world. This led to the emergence of the first astronomical observatories in
9702-536: Was formulated, heavily evidenced by cosmic microwave background radiation , Hubble's law , and the cosmological abundances of elements . Space telescopes have enabled measurements in parts of the electromagnetic spectrum normally blocked or blurred by the atmosphere. In February 2016, it was revealed that the LIGO project had detected evidence of gravitational waves in the previous September. The main source of information about celestial bodies and other objects
9801-408: Was sent to UC Berkeley where a source classifier determined a set of probabilistic statements about the scientific classification of the transients based on all available time-series and context data. On few-day timescales the images were also ingested into a database at IPAC . Each incoming frame was calibrated and searched for objects (constant and variable), before the detections were merged into
#39960