The International Olympiad in Informatics ( IOI ) is an annual competitive programming competition and one of the International Science Olympiads for secondary school students . The first IOI was held in 1989 in Pravetz , Bulgaria.
99-582: Each country sends a team of up to four students, plus one team leader, one deputy leader, and guests. Students in each country are selected for their country's team through national computing contests . Students at the IOI compete on an individual basis. There is no official team ranking. The contest consists of two days of solving six complicated algorithmic tasks by writing computer programs in C++ . All task materials are published on each year's contest website soon after
198-595: A binary search algorithm (with cost O ( log n ) {\displaystyle O(\log n)} ) outperforms a sequential search (cost O ( n ) {\displaystyle O(n)} ) when used for table lookups on sorted lists or arrays. The analysis, and study of algorithms is a discipline of computer science . Algorithms are often studied abstractly, without referencing any specific programming language or implementation. Algorithm analysis resembles other mathematical disciplines as it focuses on
297-468: A flowchart offers a way to describe and document an algorithm (and a computer program corresponding to it). It has four primary symbols: arrows showing program flow, rectangles (SEQUENCE, GOTO), diamonds (IF-THEN-ELSE), and dots (OR-tie). Sub-structures can "nest" in rectangles, but only if a single exit occurs from the superstructure. It is often important to know how much time, storage, or other cost an algorithm may require. Methods have been developed for
396-745: A function . Starting from an initial state and initial input (perhaps empty ), the instructions describe a computation that, when executed , proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic ; some algorithms, known as randomized algorithms , incorporate random input. Around 825 AD, Persian scientist and polymath Muḥammad ibn Mūsā al-Khwārizmī wrote kitāb al-ḥisāb al-hindī ("Book of Indian computation") and kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī ("Addition and subtraction in Indian arithmetic"). In
495-435: A heuristic is an approach to solving problems that do not have well-defined correct or optimal results. For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an effective method , an algorithm can be expressed within a finite amount of space and time and in a well-defined formal language for calculating
594-591: A set whose elements are unspecified, of operations acting on the elements of the set, and rules that these operations must follow. The scope of algebra thus grew to include the study of algebraic structures. This object of algebra was called modern algebra or abstract algebra , as established by the influence and works of Emmy Noether . Some types of algebraic structures have useful and often fundamental properties, in many areas of mathematics. Their study became autonomous parts of algebra, and include: The study of types of algebraic structures as mathematical objects
693-680: A computer-executable form, but are also used to define or document algorithms. There are many possible representations and Turing machine programs can be expressed as a sequence of machine tables (see finite-state machine , state-transition table , and control table for more), as flowcharts and drakon-charts (see state diagram for more), as a form of rudimentary machine code or assembly code called "sets of quadruples", and more. Algorithm representations can also be classified into three accepted levels of Turing machine description: high-level description, implementation description, and formal description. A high-level description describes qualities of
792-719: A computing machine or a human who could only carry out specific elementary operations on symbols . Most algorithms are intended to be implemented as computer programs . However, algorithms are also implemented by other means, such as in a biological neural network (for example, the human brain performing arithmetic or an insect looking for food), in an electrical circuit , or a mechanical device. Step-by-step procedures for solving mathematical problems have been recorded since antiquity. This includes in Babylonian mathematics (around 2500 BC), Egyptian mathematics (around 1550 BC), Indian mathematics (around 800 BC and later),
891-614: A foundation for all mathematics). Mathematics involves the description and manipulation of abstract objects that consist of either abstractions from nature or—in modern mathematics—purely abstract entities that are stipulated to have certain properties, called axioms . Mathematics uses pure reason to prove properties of objects, a proof consisting of a succession of applications of deductive rules to already established results. These results include previously proved theorems , axioms, and—in case of abstraction from nature—some basic properties that are considered true starting points of
990-669: A fruitful interaction between mathematics and science , to the benefit of both. Mathematical discoveries continue to be made to this very day. According to Mikhail B. Sevryuk, in the January ;2006 issue of the Bulletin of the American Mathematical Society , "The number of papers and books included in the Mathematical Reviews (MR) database since 1940 (the first year of operation of MR)
1089-404: A mathematical problem. In turn, the axiomatic method allows for the study of various geometries obtained either by changing the axioms or by considering properties that do not change under specific transformations of the space . Today's subareas of geometry include: Algebra is the art of manipulating equations and formulas. Diophantus (3rd century) and al-Khwarizmi (9th century) were
SECTION 10
#17327986020401188-422: A mathematical statement that is taken to be true without need of proof. If a mathematical statement has yet to be proven (or disproven), it is termed a conjecture . Through a series of rigorous arguments employing deductive reasoning , a statement that is proven to be true becomes a theorem. A specialized theorem that is mainly used to prove another theorem is called a lemma . A proven instance that forms part of
1287-402: A more general finding is termed a corollary . Numerous technical terms used in mathematics are neologisms , such as polynomial and homeomorphism . Other technical terms are words of the common language that are used in an accurate meaning that may differ slightly from their common meaning. For example, in mathematics, " or " means "one, the other or both", while, in common language, it
1386-535: A population mean with a given level of confidence. Because of its use of optimization , the mathematical theory of statistics overlaps with other decision sciences , such as operations research , control theory , and mathematical economics . Computational mathematics is the study of mathematical problems that are typically too large for human, numerical capacity. Numerical analysis studies methods for problems in analysis using functional analysis and approximation theory ; numerical analysis broadly includes
1485-525: A programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language". Tausworthe augments the three Böhm-Jacopini canonical structures : SEQUENCE, IF-THEN-ELSE, and WHILE-DO, with two more: DO-WHILE and CASE. An additional benefit of a structured program is that it lends itself to proofs of correctness using mathematical induction . By themselves, algorithms are not usually patentable. In
1584-441: A secret computer library, which allows problems where the input is not fixed, but depends on the program's actions – for example in game problems (a.k.a interactive problems). Another type of problem has the inputs publicly available, for these, the contestants have to submit an output file instead of a program, and it is up to them whether they obtain the output files by writing a program (possibly exploiting special characteristics of
1683-411: A separate branch of mathematics until the seventeenth century. At the end of the 19th century, the foundational crisis in mathematics and the resulting systematization of the axiomatic method led to an explosion of new areas of mathematics. The 2020 Mathematics Subject Classification contains no less than sixty-three first-level areas. Some of these areas correspond to the older division, as
1782-477: A sequence of operations", which would include all computer programs (including programs that do not perform numeric calculations), and any prescribed bureaucratic procedure or cook-book recipe . In general, a program is an algorithm only if it stops eventually —even though infinite loops may sometimes prove desirable. Boolos, Jeffrey & 1974, 1999 define an algorithm to be an explicit set of instructions for determining an output, that can be followed by
1881-424: A single unknown , which were called algebraic equations (a term still in use, although it may be ambiguous). During the 19th century, mathematicians began to use variables to represent things other than numbers (such as matrices , modular integers , and geometric transformations ), on which generalizations of arithmetic operations are often valid. The concept of algebraic structure addresses this, consisting of
1980-418: A statistical action, such as using a procedure in, for example, parameter estimation , hypothesis testing , and selecting the best . In these traditional areas of mathematical statistics , a statistical-decision problem is formulated by minimizing an objective function , like expected loss or cost , under specific constraints. For example, designing a survey often involves minimizing the cost of estimating
2079-438: A task the contestant has to write a computer program (in C++ ) and submit it before the five-hour competition time ends. The program is graded based on secret test data. Since IOI 2010, tasks are divided into subtasks with graduated difficulty, and points are awarded only when all tests for a particular subtask yield correct results, within specific time and memory limits. In some cases, the contestant's program has to interact with
SECTION 20
#17327986020402178-477: A wide expansion of mathematical logic, with subareas such as model theory (modeling some logical theories inside other theories), proof theory , type theory , computability theory and computational complexity theory . Although these aspects of mathematical logic were introduced before the rise of computers , their use in compiler design, formal verification , program analysis , proof assistants and other aspects of computer science , contributed in turn to
2277-703: Is Fermat's Last Theorem . This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles , who used tools including scheme theory from algebraic geometry , category theory , and homological algebra . Another example is Goldbach's conjecture , which asserts that every even integer greater than 2 is the sum of two prime numbers . Stated in 1742 by Christian Goldbach , it remains unproven despite considerable effort. Number theory includes several subareas, including analytic number theory , algebraic number theory , geometry of numbers (method oriented), diophantine equations , and transcendence theory (problem oriented). Geometry
2376-472: Is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation . Algorithms are used as specifications for performing calculations and data processing . More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making ) and deduce valid inferences (referred to as automated reasoning ). In contrast,
2475-416: Is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as divide-and-conquer or dynamic programming within operation research . Techniques for designing and implementing algorithm designs are also called algorithm design patterns, with examples including the template method pattern and the decorator pattern. One of
2574-581: Is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following: One of the simplest algorithms finds the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be described in plain English as: High-level description: (Quasi-)formal description: Written in prose but much closer to
2673-403: Is commonly used for advanced parts. Analysis is further subdivided into real analysis , where variables represent real numbers , and complex analysis , where variables represent complex numbers . Analysis includes many subareas shared by other areas of mathematics which include: Discrete mathematics, broadly speaking, is the study of individual, countable mathematical objects. An example
2772-513: Is defined by the set of all similar objects and the properties that these objects must have. For example, in Peano arithmetic , the natural numbers are defined by "zero is a number", "each number has a unique successor", "each number but zero has a unique predecessor", and some rules of reasoning. This mathematical abstraction from reality is embodied in the modern philosophy of formalism , as founded by David Hilbert around 1910. The "nature" of
2871-407: Is either ambiguous or means "one or the other but not both" (in mathematics, the latter is called " exclusive or "). Finally, many mathematical terms are common words that are used with a completely different meaning. This may lead to sentences that are correct and true mathematical assertions, but appear to be nonsense to people who do not have the required background. For example, "every free module
2970-493: Is in Babylonian mathematics that elementary arithmetic ( addition , subtraction , multiplication , and division ) first appear in the archaeological record. The Babylonians also possessed a place-value system and used a sexagesimal numeral system which is still in use today for measuring angles and time. In the 6th century BC, Greek mathematics began to emerge as a distinct discipline and some Ancient Greeks such as
3069-586: Is mostly used for numerical calculations . Number theory dates back to ancient Babylon and probably China . Two prominent early number theorists were Euclid of ancient Greece and Diophantus of Alexandria. The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler . The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss . Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example
International Olympiad in Informatics - Misplaced Pages Continue
3168-404: Is not sufficient to verify by measurement that, say, two lengths are equal; their equality must be proven via reasoning from previously accepted results ( theorems ) and a few basic statements. The basic statements are not subject to proof because they are self-evident ( postulates ), or are part of the definition of the subject of study ( axioms ). This principle, foundational for all mathematics,
3267-1192: Is now more than 1.9 million, and more than 75 thousand items are added to the database each year. The overwhelming majority of works in this ocean contain new mathematical theorems and their proofs." Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations , unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and formulas. More precisely, numbers and other mathematical objects are represented by symbols called variables, which are generally Latin or Greek letters, and often include subscripts . Operation and relations are generally represented by specific symbols or glyphs , such as + ( plus ), × ( multiplication ), ∫ {\textstyle \int } ( integral ), = ( equal ), and < ( less than ). All these symbols are generally grouped according to specific rules to form expressions and formulas. Normally, expressions and formulas do not appear alone, but are included in sentences of
3366-547: Is often held to be Archimedes ( c. 287 – c. 212 BC ) of Syracuse . He developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series , in a manner not too dissimilar from modern calculus. Other notable achievements of Greek mathematics are conic sections ( Apollonius of Perga , 3rd century BC), trigonometry ( Hipparchus of Nicaea , 2nd century BC), and
3465-433: Is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines , angles and circles , which were developed mainly for the needs of surveying and architecture , but has since blossomed out into many other subfields. A fundamental innovation was the ancient Greeks' introduction of the concept of proofs , which require that every assertion must be proved . For example, it
3564-512: Is sometimes mistranslated as a condemnation of mathematicians. The apparent plural form in English goes back to the Latin neuter plural mathematica ( Cicero ), based on the Greek plural ta mathēmatiká ( τὰ μαθηματικά ) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after
3663-418: Is the purpose of universal algebra and category theory . The latter applies to every mathematical structure (not only algebraic ones). At its origin, it was introduced, together with homological algebra for allowing the algebraic study of non-algebraic objects such as topological spaces ; this particular area of application is called algebraic topology . Calculus, formerly called infinitesimal calculus,
3762-405: Is the set of all integers. Because the objects of study here are discrete, the methods of calculus and mathematical analysis do not directly apply. Algorithms —especially their implementation and computational complexity —play a major role in discrete mathematics. The four color theorem and optimal sphere packing were two major problems of discrete mathematics solved in the second half of
3861-508: Is true regarding number theory (the modern name for higher arithmetic ) and geometry. Several other first-level areas have "geometry" in their names or are otherwise commonly considered part of geometry. Algebra and calculus do not appear as first-level areas but are respectively split into several first-level areas. Other first-level areas emerged during the 20th century or had not previously been considered as mathematics, such as mathematical logic and foundations . Number theory began with
3960-453: Is useful for uncovering unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization. Empirical tests cannot replace formal analysis, though, and are non-trivial to perform fairly. To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to FFT algorithms (used heavily in
4059-1107: The Entscheidungsproblem (decision problem) posed by David Hilbert . Later formalizations were framed as attempts to define " effective calculability " or "effective method". Those formalizations included the Gödel – Herbrand – Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church 's lambda calculus of 1936, Emil Post 's Formulation 1 of 1936, and Alan Turing 's Turing machines of 1936–37 and 1939. Algorithms can be expressed in many kinds of notation, including natural languages , pseudocode , flowcharts , drakon-charts , programming languages or control tables (processed by interpreters ). Natural language expressions of algorithms tend to be verbose and ambiguous and are rarely used for complex or technical algorithms. Pseudocode, flowcharts, drakon-charts, and control tables are structured expressions of algorithms that avoid common ambiguities of natural language. Programming languages are primarily for expressing algorithms in
International Olympiad in Informatics - Misplaced Pages Continue
4158-586: The Babylonians and Egyptians began using arithmetic, algebra, and geometry for taxation and other financial calculations, for building and construction, and for astronomy. The oldest mathematical texts from Mesopotamia and Egypt are from 2000 to 1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical concept after basic arithmetic and geometry. It
4257-768: The Golden Age of Islam , especially during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics. The most notable achievement of Islamic mathematics was the development of algebra . Other achievements of the Islamic period include advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarizmi , Omar Khayyam and Sharaf al-Dīn al-Ṭūsī . The Greek and Arabic mathematical texts were in turn translated to Latin during
4356-629: The Jacquard loom , a precursor to Hollerith cards (punch cards), and "telephone switching technologies" led to the development of the first computers. By the mid-19th century, the telegraph , the precursor of the telephone, was in use throughout the world. By the late 19th century, the ticker tape ( c. 1870s ) was in use, as were Hollerith cards (c. 1890). Then came the teleprinter ( c. 1910 ) with its punched-paper use of Baudot code on tape. Telephone-switching networks of electromechanical relays were invented in 1835. These led to
4455-511: The Pythagoreans appeared to have considered it a subject in its own right. Around 300 BC, Euclid organized mathematical knowledge by way of postulates and first principles, which evolved into the axiomatic method that is used in mathematics today, consisting of definition, axiom, theorem, and proof. His book, Elements , is widely considered the most successful and influential textbook of all time. The greatest mathematician of antiquity
4554-536: The Renaissance , mathematics was divided into two main areas: arithmetic , regarding the manipulation of numbers, and geometry , regarding the study of shapes. Some types of pseudoscience , such as numerology and astrology , were not then clearly distinguished from mathematics. During the Renaissance, two more areas appeared. Mathematical notation led to algebra which, roughly speaking, consists of
4653-446: The controversy over Cantor's set theory . In the same period, various areas of mathematics concluded the former intuitive definitions of the basic mathematical objects were insufficient for ensuring mathematical rigour . This became the foundational crisis of mathematics. It was eventually solved in mainstream mathematics by systematizing the axiomatic method inside a formalized set theory . Roughly speaking, each mathematical object
4752-400: The 17th century, when René Descartes introduced what is now called Cartesian coordinates . This constituted a major change of paradigm : Instead of defining real numbers as lengths of line segments (see number line ), it allowed the representation of points using their coordinates , which are numbers. Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry
4851-405: The 19th century, mathematicians discovered non-Euclidean geometries , which do not follow the parallel postulate . By questioning that postulate's truth, this discovery has been viewed as joining Russell's paradox in revealing the foundational crisis of mathematics . This aspect of the crisis was solved by systematizing the axiomatic method, and adopting that the truth of the chosen axioms is not
4950-532: The 20th century. The P versus NP problem , which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. Discrete mathematics includes: The two subjects of mathematical logic and set theory have belonged to mathematics since the end of the 19th century. Before this period, sets were not considered to be mathematical objects, and logic , although used for mathematical proofs, belonged to philosophy and
5049-495: The Contest Management System (CMS) for developing and monitoring the contest. The scores from the two competition days and all problems are summed up separately for each contestant. Medals are awarded depending on their relative total score. The top 50% of the contestants are awarded medals, such that the relative number of gold : silver : bronze : no medal is approximately 1:2:3:6 (thus 1/12 of
SECTION 50
#17327986020405148-848: The IOI flag but not as a national delegation from IOI 2025 onwards. Over two thirds of the delegations voted in favour of the sanction in the IOI General Assembly. The following is a list of the top performers in the history of the IOI. The sign indicates a perfect score, a rare achievement in IOI history. The sign indicates an unofficial participation, where a contestant participated in a host's second team. Also, first ( I ), second ( II ) and third ( III ) places among gold medalists are indicated where appropriate. Most participating countries use feeder competitions to select their team. A number of these are listed below: Algorithm In mathematics and computer science , an algorithm ( / ˈ æ l ɡ ə r ɪ ð əm / )
5247-792: The Ifa Oracle (around 500 BC), Greek mathematics (around 240 BC), and Arabic mathematics (around 800 AD). The earliest evidence of algorithms is found in ancient Mesopotamian mathematics. A Sumerian clay tablet found in Shuruppak near Baghdad and dated to c. 2500 BC describes the earliest division algorithm . During the Hammurabi dynasty c. 1800 – c. 1600 BC , Babylonian clay tablets described algorithms for computing formulas. Algorithms were also used in Babylonian astronomy . Babylonian clay tablets describe and employ algorithmic procedures to compute
5346-637: The Middle Ages and made available in Europe. During the early modern period , mathematics began to develop at an accelerating pace in Western Europe , with innovations that revolutionized mathematics, such as the introduction of variables and symbolic notation by François Viète (1540–1603), the introduction of logarithms by John Napier in 1614, which greatly simplified numerical calculations, especially for astronomy and marine navigation ,
5445-596: The United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), so algorithms are not patentable (as in Gottschalk v. Benson ). However practical applications of algorithms are sometimes patentable. For example, in Diamond v. Diehr , the application of a simple feedback algorithm to aid in the curing of synthetic rubber
5544-454: The algorithm itself, ignoring how it is implemented on the Turing machine. An implementation description describes the general manner in which the machine moves its head and stores data in order to carry out the algorithm, but does not give exact states. In the most detail, a formal description gives the exact state table and list of transitions of the Turing machine. The graphical aid called
5643-588: The algorithm's properties, not implementation. Pseudocode is typical for analysis as it is a simple and general representation. Most algorithms are implemented on particular hardware/software platforms and their algorithmic efficiency is tested using real code. The efficiency of a particular algorithm may be insignificant for many "one-off" problems but it may be critical for algorithms designed for fast interactive, commercial or long life scientific usage. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign. Empirical testing
5742-403: The analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm that adds up the elements of a list of n numbers would have a time requirement of O ( n ) {\displaystyle O(n)} , using big O notation . The algorithm only needs to remember two values: the sum of all the elements so far, and its current position in
5841-583: The beginnings of algebra (Diophantus, 3rd century AD). The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics . Other notable developments of Indian mathematics include the modern definition and approximation of sine and cosine , and an early form of infinite series . During
5940-406: The competition ends. On each of the two competition days, the competitors are typically given three problems which they have to solve in five hours. Each student works on their own to solve the problems with no outside help, specifically no communication with other contestants, books, web access, etc. Contestants are typically allowed to bring no programable wired keyboards and mice. Usually to solve
6039-511: The concept of a proof and its associated mathematical rigour first appeared in Greek mathematics , most notably in Euclid 's Elements . Since its beginning, mathematics was primarily divided into geometry and arithmetic (the manipulation of natural numbers and fractions ), until the 16th and 17th centuries, when algebra and infinitesimal calculus were introduced as new fields. Since then,
SECTION 60
#17327986020406138-557: The contestants get a gold medal). Prior to IOI 2010, students who did not receive medals did not have their scores published, although the scores of students who did not receive medals are still not available in the official results, they are known from the live web scoreboard. In IOI 2012 the top 3 nations ranked by aggregate score (Russia, China and USA) were subsequently awarded during the closing ceremony. Analysis of female performance shows 77.9% of women obtain no medal, while 49.2% of men obtain no medal. "The average female participation
6237-399: The current language, where expressions play the role of noun phrases and formulas play the role of clauses . Mathematics has developed a rich terminology covering a broad range of fields that study the properties of various abstract, idealized objects and how they interact. It is based on rigorous definitions that provide a standard foundation for communication. An axiom or postulate is
6336-569: The derived expression mathēmatikḗ tékhnē ( μαθηματικὴ τέχνη ), meaning ' mathematical science ' . It entered the English language during the Late Middle English period through French and Latin. Similarly, one of the two main schools of thought in Pythagoreanism was known as the mathēmatikoi (μαθηματικοί)—which at the time meant "learners" rather than "mathematicians" in the modern sense. The Pythagoreans were likely
6435-461: The earliest codebreaking algorithm. Bolter credits the invention of the weight-driven clock as "the key invention [of Europe in the Middle Ages ]," specifically the verge escapement mechanism producing the tick and tock of a mechanical clock. "The accurate automatic machine" led immediately to "mechanical automata " in the 13th century and "computational machines"—the difference and analytical engines of Charles Babbage and Ada Lovelace in
6534-523: The early 12th century, Latin translations of said al-Khwarizmi texts involving the Hindu–Arabic numeral system and arithmetic appeared, for example Liber Alghoarismi de practica arismetrice , attributed to John of Seville , and Liber Algorismi de numero Indorum , attributed to Adelard of Bath . Hereby, alghoarismi or algorismi is the Latinization of Al-Khwarizmi's name; the text starts with
6633-428: The expansion of these logical theories. The field of statistics is a mathematical application that is employed for the collection and processing of data samples, using procedures based on mathematical methods especially probability theory . Statisticians generate data with random sampling or randomized experiments . Statistical theory studies decision problems such as minimizing the risk ( expected loss ) of
6732-427: The field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging. In general, speed improvements depend on special properties of the problem, which are very common in practical applications. Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power. Algorithm design
6831-567: The first to constrain the use of the word to just the study of arithmetic and geometry. By the time of Aristotle (384–322 BC) this meaning was fully established. In Latin and English, until around 1700, the term mathematics more commonly meant " astrology " (or sometimes " astronomy ") rather than "mathematics"; the meaning gradually changed to its present one from about 1500 to 1800. This change has resulted in several mistranslations: For example, Saint Augustine 's warning that Christians should beware of mathematici , meaning "astrologers",
6930-649: The high-level language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code : Mathematics Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), analysis (the study of continuous changes), and set theory (presently used as
7029-450: The input list. If the space required to store the input numbers is not counted, it has a space requirement of O ( 1 ) {\displaystyle O(1)} , otherwise O ( n ) {\displaystyle O(n)} is required. Different algorithms may complete the same task with a different set of instructions in less or more time, space, or ' effort ' than others. For example,
7128-457: The input), or by hand, or by a combination of these means. Pascal has been removed as an available programming language as of 2019. IOI 2010 for the first time had a live web scoreboard with real-time provisional results. Submissions will be scored as soon as possible during the contest, and the results posted. Contestants will be aware of their scores, but not others', and may resubmit to improve their scores. Starting from 2012, IOI has been using
7227-491: The interaction between mathematical innovations and scientific discoveries has led to a correlated increase in the development of both. At the end of the 19th century, the foundational crisis of mathematics led to the systematization of the axiomatic method , which heralded a dramatic increase in the number of mathematical areas and their fields of application. The contemporary Mathematics Subject Classification lists more than sixty first-level areas of mathematics. Before
7326-400: The introduction of coordinates by René Descartes (1596–1650) for reducing geometry to algebra, and the development of calculus by Isaac Newton (1643–1727) and Gottfried Leibniz (1646–1716). Leonhard Euler (1707–1783), the most notable mathematician of the 18th century, unified these innovations into a single corpus with a standardized terminology, and completed them with the discovery and
7425-490: The invention of the digital adding device by George Stibitz in 1937. While working in Bell Laboratories, he observed the "burdensome" use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device". In 1928, a partial formalization of the modern concept of algorithms began with attempts to solve
7524-409: The manipulation of numbers , that is, natural numbers ( N ) , {\displaystyle (\mathbb {N} ),} and later expanded to integers ( Z ) {\displaystyle (\mathbb {Z} )} and rational numbers ( Q ) . {\displaystyle (\mathbb {Q} ).} Number theory was once called arithmetic, but nowadays this term
7623-429: The mid-19th century. Lovelace designed the first algorithm intended for processing on a computer, Babbage's analytical engine, which is the first device considered a real Turing-complete computer instead of just a calculator . Although a full implementation of Babbage's second device was not realized for decades after her lifetime, Lovelace has been called "history's first programmer". Bell and Newell (1971) write that
7722-627: The most important aspects of algorithm design is resource (run-time, memory usage) efficiency; the big O notation is used to describe e.g., an algorithm's run-time growth as the size of its input increases. Per the Church–Turing thesis , any algorithm can be computed by any Turing complete model. Turing completeness only requires four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. However, Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IF-THEN GOTOs can result in " spaghetti code ",
7821-400: The natural numbers, there are theorems that are true (that is provable in a stronger system), but not provable inside the system. This approach to the foundations of mathematics was challenged during the first half of the 20th century by mathematicians led by Brouwer , who promoted intuitionistic logic , which explicitly lacks the law of excluded middle . These problems and debates led to
7920-536: The objects defined this way is a philosophical problem that mathematicians leave to philosophers, even if many mathematicians have opinions on this nature, and use their opinion—sometimes called "intuition"—to guide their study and proofs. The approach allows considering "logics" (that is, sets of allowed deducing rules), theorems, proofs, etc. as mathematical objects, and to prove theorems about them. For example, Gödel's incompleteness theorems assert, roughly speaking that, in every consistent formal system that contains
8019-521: The pattern of physics and metaphysics , inherited from Greek. In English, the noun mathematics takes a singular verb. It is often shortened to maths or, in North America, math . In addition to recognizing how to count physical objects, prehistoric peoples may have also known how to count abstract quantities, like time—days, seasons, or years. Evidence for more complex mathematics does not appear until around 3000 BC , when
8118-460: The phrase Dixit Algorismi , or "Thus spoke Al-Khwarizmi". Around 1230, the English word algorism is attested and then by Chaucer in 1391, English adopted the French term. In the 15th century, under the influence of the Greek word ἀριθμός ( arithmos , "number"; cf. "arithmetic"), the Latin word was altered to algorithmus . One informal definition is "a set of rules that precisely defines
8217-658: The proof of numerous theorems. Perhaps the foremost mathematician of the 19th century was the German mathematician Carl Gauss , who made numerous contributions to fields such as algebra, analysis, differential geometry , matrix theory , number theory, and statistics . In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems , which show in part that any consistent axiomatic system—if powerful enough to describe arithmetic—will contain true propositions that cannot be proved. Mathematics has since been greatly extended, and there has been
8316-675: The solution." The European Girls’ Olympiad in Informatics ( EGOI ), which was first held in 2021 was started with the goal to increscent female participants at IOI and other Informatics Olympiads. In IOI 2017 held in Iran, due to not being able to participate in Iran, the Israeli students participated in an offsite competition organized by IOI in Russia. Due to visa issues, the full USA team was unable to attend, although one contestant Zhezheng Luo
8415-657: The study and the manipulation of formulas . Calculus , consisting of the two subfields differential calculus and integral calculus , is the study of continuous functions , which model the typically nonlinear relationships between varying quantities, as represented by variables . This division into four main areas—arithmetic, geometry, algebra, and calculus —endured until the end of the 19th century. Areas such as celestial mechanics and solid mechanics were then studied by mathematicians, but now are considered as belonging to physics. The subject of combinatorics has been studied for much of recorded history, yet did not become
8514-568: The study of approximation and discretization with special focus on rounding errors . Numerical analysis and, more broadly, scientific computing also study non-analytic topics of mathematical science, especially algorithmic- matrix -and- graph theory . Other areas of computational mathematics include computer algebra and symbolic computation . The word mathematics comes from the Ancient Greek word máthēma ( μάθημα ), meaning ' something learned, knowledge, mathematics ' , and
8613-672: The theory under consideration. Mathematics is essential in the natural sciences , engineering , medicine , finance , computer science , and the social sciences . Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation. Some areas of mathematics, such as statistics and game theory , are developed in close correlation with their applications and are often grouped under applied mathematics . Other areas are developed independently from any application (and are therefore called pure mathematics ) but often later find practical applications. Historically,
8712-675: The time and place of significant astronomical events. Algorithms for arithmetic are also found in ancient Egyptian mathematics , dating back to the Rhind Mathematical Papyrus c. 1550 BC . Algorithms were later used in ancient Hellenistic mathematics . Two examples are the Sieve of Eratosthenes , which was described in the Introduction to Arithmetic by Nicomachus , and the Euclidean algorithm , which
8811-487: The title of his main treatise . Algebra became an area in its own right only with François Viète (1540–1603), who introduced the use of variables for representing unknown or unspecified numbers. Variables allow mathematicians to describe the operations that have to be done on the numbers represented using mathematical formulas . Until the 19th century, algebra consisted mainly of the study of linear equations (presently linear algebra ), and polynomial equations in
8910-508: The two main precursors of algebra. Diophantus solved some equations involving unknown natural numbers by deducing new relations until he obtained the solution. Al-Khwarizmi introduced systematic methods for transforming equations, such as moving a term from one side of an equation into the other side. The term algebra is derived from the Arabic word al-jabr meaning 'the reunion of broken parts' that he used for naming one of these methods in
9009-413: Was 4.4% in 1989–1994 and 2.2% in 1996–2014." It also suggests much higher participation of women on the national level, claiming sometimes double-digit percentages in total participation on the first stage. President of the IOI (2011-2014), Richard Forster, says the competition has difficulty attracting women and that in spite of trying to solve it, "none of us have hit on quite what the problem is, let alone
9108-722: Was able to attend by traveling with the Chinese team and winning gold medal and 3rd place in standings. In IOI 2019 held in Azerbaijan, the Armenia team did not participate due to the dispute between the two countries , despite the guarantees provided and official invitation letter sent by the host Azerbaijan. Due to the COVID-19 pandemic , both the IOI 2020 and IOI 2021, originally scheduled to be hosted by Singapore , were held as online contests. The IOI 2022, hosted by Indonesia ,
9207-449: Was deemed patentable. The patenting of software is controversial, and there are criticized patents involving algorithms, especially data compression algorithms, such as Unisys 's LZW patent . Additionally, some cryptographic algorithms have export restrictions (see export of cryptography ). Another way of classifying algorithms is by their design methodology or paradigm . Some common paradigms are: For optimization problems there
9306-692: Was first described in Euclid's Elements ( c. 300 BC ). Examples of ancient Indian mathematics included the Shulba Sutras , the Kerala School , and the Brāhmasphuṭasiddhānta . The first cryptographic algorithm for deciphering encrypted code was developed by Al-Kindi , a 9th-century Arab mathematician, in A Manuscript On Deciphering Cryptographic Messages . He gave the first description of cryptanalysis by frequency analysis ,
9405-406: Was first elaborated for geometry, and was systematized by Euclid around 300 BC in his book Elements . The resulting Euclidean geometry is the study of shapes and their arrangements constructed from lines, planes and circles in the Euclidean plane ( plane geometry ) and the three-dimensional Euclidean space . Euclidean geometry was developed without change of methods or scope until
9504-551: Was held as a hybrid event, with around 25% of the contestants participating online. In response to the invasion of Ukraine, students from Russia and Belarus can only participate as individuals under the IOI flag but not as national delegations starting from IOI 2022, and they would only participate online for IOI 2022, but they may return on-site from IOI 2023 onwards. In response to the conflict and humanitarian crisis in Gaza, students from Israel can only participate as individuals under
9603-414: Was introduced independently and simultaneously by 17th-century mathematicians Newton and Leibniz . It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis"
9702-437: Was not specifically studied by mathematicians. Before Cantor 's study of infinite sets , mathematicians were reluctant to consider actually infinite collections, and considered infinity to be the result of endless enumeration . Cantor's work offended many mathematicians not only by considering actually infinite sets but by showing that this implies different sizes of infinity, per Cantor's diagonal argument . This led to
9801-571: Was split into two new subfields: synthetic geometry , which uses purely geometrical methods, and analytic geometry , which uses coordinates systemically. Analytic geometry allows the study of curves unrelated to circles and lines. Such curves can be defined as the graph of functions , the study of which led to differential geometry . They can also be defined as implicit equations , often polynomial equations (which spawned algebraic geometry ). Analytic geometry also makes it possible to consider Euclidean spaces of higher than three dimensions. In
#39960