Misplaced Pages

Intersputnik

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Intersputnik International Organization of Space Communications , commonly known as Intersputnik , is an international satellite communications services organization founded on 15 November 1971, in Moscow by the Soviet Union along with a group of seven formerly socialist states ( Poland , Czechoslovakia , East Germany , Hungary , Romania , Bulgaria , Mongolia ) and Cuba .

#899100

68-716: The objective was and continues to be the development and common use of communications satellites . It was created as the Eastern Bloc's response to the Western Intelsat organization. As of 2008 the organization has 25 member states, among them the Federal Republic of Germany as the legal successor of the GDR . Intersputnik nowadays is a commercially aligned organization. It operates 12 satellites in orbit and 41 transponders . In June 1997 Intersputnik created

136-455: A data network aiming to provide a „Lunar Internet for cis-lunar spacecraft and Installations. The Moonlight Initiative is an equivalent ESA project that is stated to be compatible and providing navigational services for the lunar surface. Both programmes are satellite constellstions of several satellites in various orbits around the Moon. Other orbits are also planned to be used. Positions in

204-518: A medium Earth orbit satellite is about 16,000 kilometres (10,000 mi) above Earth. In various patterns, these satellites make the trip around Earth in anywhere from 2 to 8 hours. To an observer on Earth, a satellite in a gestationary orbit appears motionless, in a fixed position in the sky. This is because it revolves around the Earth at Earth's own angular velocity (one revolution per sidereal day , in an equatorial orbit ). A geostationary orbit

272-586: A merger with The Radio Review , a monthly journal that had first been published in London in October 1919. With the same issue, publication frequency of Wireless World became weekly. It was also aimed at home constructors, publishing articles on building radio receivers and, after the BBC started regular 405-line TV programmes from Alexandra Palace in 1936, complete details on building your own TV set - including

340-591: A more precise match for the capabilities of geosynchronous comsats. Two satellite types are used for North American television and radio: Direct broadcast satellite (DBS), and Fixed Service Satellite (FSS). The definitions of FSS and DBS satellites outside of North America, especially in Europe, are a bit more ambiguous. Most satellites used for direct-to-home television in Europe have the same high power output as DBS-class satellites in North America, but use

408-687: A number of satellites for various purposes; for example, METSAT for meteorological satellite, EUMETSAT for the European branch of the program, and METOP for meteorological operations. These orbits are Sun synchronous, meaning that they cross the equator at the same local time each day. For example, the satellites in the NPOESS (civilian) orbit will cross the equator, going from south to north, at times 1:30 P.M., 5:30 P.M., and 9:30 P.M. There are plans and initiatives to bring dedicated communications satellite beyond geostationary orbits. NASA proposed LunaNet as

476-621: A period (time to revolve around the Earth) of about 90 minutes. Because of their low altitude, these satellites are only visible from within a radius of roughly 1,000 kilometres (620 mi) from the sub-satellite point. In addition, satellites in low Earth orbit change their position relative to the ground position quickly. So even for local applications, many satellites are needed if the mission requires uninterrupted connectivity. Low-Earth-orbiting satellites are less expensive to launch into orbit than geostationary satellites and, due to proximity to

544-545: A radio signal to a telephone system. In this example, almost any type of satellite can be used. Satellite phones connect directly to a constellation of either geostationary or low-Earth-orbit satellites. Calls are then forwarded to a satellite teleport connected to the Public Switched Telephone Network . As television became the main market, its demand for simultaneous delivery of relatively few signals of large bandwidth to many receivers being

612-504: A source transmitter and a receiver at different locations on Earth . Communications satellites are used for television , telephone , radio , internet , and military applications. Many communications satellites are in geostationary orbit 22,236 miles (35,785 km) above the equator , so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track

680-515: Is aimed at professional design engineers. It is produced monthly in print and digital formats. The editorial content of Electronics World covers the full range of electronics and RF industry activities including technology, systems, components, design, development tools, software, networking, communications tools and instrumentation. It encompasses a range of issues in the electronics and RF industry, from design through to product implementation. The features are contributed by engineers and academics in

748-553: Is also possible to offer discontinuous coverage using a low-Earth-orbit satellite capable of storing data received while passing over one part of Earth and transmitting it later while passing over another part. This will be the case with the CASCADE system of Canada's CASSIOPE communications satellite. Another system using this store and forward method is Orbcomm . A medium Earth orbit is a satellite in orbit somewhere between 2,000 and 35,786 kilometres (1,243 and 22,236 mi) above

SECTION 10

#1732802415900

816-565: Is carried out under the auspices of the International Telecommunication Union (ITU). To facilitate frequency planning, the world is divided into three regions: Within these regions, frequency bands are allocated to various satellite services, although a given service may be allocated different frequency bands in different regions. Some of the services provided by satellites are: The first and historically most important application for communication satellites

884-492: Is highly inclined, guaranteeing good elevation over selected positions during the northern portion of the orbit. (Elevation is the extent of the satellite's position above the horizon. Thus, a satellite at the horizon has zero elevation and a satellite directly overhead has elevation of 90 degrees.) The Molniya orbit is designed so that the satellite spends the great majority of its time over the far northern latitudes, during which its ground footprint moves only slightly. Its period

952-558: Is known as a satellite constellation . Two such constellations, intended to provide satellite phone and low-speed data services, primarily to remote areas, are the Iridium and Globalstar systems. The Iridium system has 66 satellites, which orbital inclination of 86.4° and inter-satellite links provide service availability over the entire surface of Earth. Starlink is a satellite internet constellation operated by SpaceX , that aims for global satellite Internet access coverage. It

1020-576: Is one half day, so that the satellite is available for operation over the targeted region for six to nine hours every second revolution. In this way a constellation of three Molniya satellites (plus in-orbit spares) can provide uninterrupted coverage. The first satellite of the Molniya series was launched on 23 April 1965 and was used for experimental transmission of TV signals from a Moscow uplink station to downlink stations located in Siberia and

1088-410: Is that a MEO satellite's distance gives it a longer time delay and weaker signal than a LEO satellite, although these limitations are not as severe as those of a GEO satellite. Like LEOs, these satellites do not maintain a stationary distance from the Earth. This is in contrast to the geostationary orbit, where satellites are always 35,786 kilometres (22,236 mi) from Earth. Typically the orbit of

1156-485: Is useful for communications because ground antennas can be aimed at the satellite without their having to track the satellite's motion. This is relatively inexpensive. In applications that require many ground antennas, such as DirecTV distribution, the savings in ground equipment can more than outweigh the cost and complexity of placing a satellite into orbit. By 2000, Hughes Space and Communications (now Boeing Satellite Development Center ) had built nearly 40 percent of

1224-740: The Council for Mutual Economic Assistance ( Comecon ). The main system and technical developments were carried out by NIIR , radio receiving equipment was produced at the Moscow Radio Engineering Plant, antenna-feeder devices at the Podolsk Electromechanical Plant, radio transmitting and channel-forming equipment was manufactured by the Krasnoyarsk TV Plant. In the initial version, Intersputnik used highly elliptical satellites of

1292-569: The Earth-Moon-Libration points are also proposed for communication satellites covering the Moon alike communication satellites in geosynchronous orbit cover the Earth. Also, dedicated communication satellites in orbits around Mars supporting different missions on surface and other orbits are considered, such as the Mars Telecommunications Orbiter . Communications Satellites are usually composed of

1360-622: The Lockheed Martin Intersputnik (LMI) joint venture together with Lockheed Martin , which built and operated the satellites of the same name. In September 2006, Lockheed Martin Intersputnik was acquired by Asia Broadcast Satellite (ABS). Initially, the Intersputnik system was created on the basis of the Soviet Orbit-2 satellite broadcasting network and was designed to serve the countries participating in

1428-542: The Molniya-3 type, and in 1978 it began using geostationary satellites of the Gorizont type. Receiving complexes "Orbita-2" with transmitters "Gradient-K" and channel-forming equipment RS-1, RS-2 operated at the earth stations. In the process of modernization, the transmitters were replaced by more modern Helikon type with a power of 3 kW and new channel-forming equipment “Gradient-N” began to be used. Subsequently,

SECTION 20

#1732802415900

1496-607: The Research Institute for Telecommunication (TKI) in Budapest took part in the development of the equipment for Intersputnik, and factories in Hungary and Czechoslovakia were connected to production. Communications satellites A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder ; it creates a communication channel between

1564-619: The electronics industry . The circulation is split between electronic design engineers, senior managers, and R&D professionals within areas such as communications, manufacturing, education and training, IT, medical, power, oil and gas. The Marconi Company published the first issue of the journal The Marconigraph in April 1911. This monthly magazine was the first significant journal dedicated to wireless communication, and it circulated largely among Marconi engineers and operators. In April 1913, after two years and 24 issues, The Marconigraph

1632-580: The "editress of 2011" that would not be acceptable today. Pat Hawker MBE, also well known for the "Technical Topics" feature he authored for exactly 50 years in the Radio Society of Great Britain's "Radio Communication" or "RadCom" magazine, contributed the regular column "World of Amateur Radio" from May 1969 to April 1982. An occasional contributor, Ivor Catt , sparked controversy with an article on electromagnetism in December 1978 by challenging

1700-400: The 'Tobey-Dinsdale Amplifier' and the ' Linsley Hood ' power amplifier. In the December 1975 edition an article described “feed-forward” error correction for audio amplifiers as embodied in the legendary QUAD 405 current dumping power amplifier designed by Peter Walker and M. P. Albinson. In 1975/6 Wireless World published the design of a decoder of broadcast TV Teletext information before

1768-465: The British magazine Wireless World . The article described the fundamentals behind the deployment of artificial satellites in geostationary orbits to relay radio signals. Because of this, Arthur C. Clarke is often quoted as being the inventor of the concept of the communications satellite, and the term 'Clarke Belt' is employed as a description of the orbit. The first artificial Earth satellite

1836-482: The Earth allowing communication between widely separated geographical points. Communications satellites use a wide range of radio and microwave frequencies . To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference. In October 1945, Arthur C. Clarke published an article titled "Extraterrestrial Relays" in

1904-423: The Earth faster, they do not remain visible in the sky to a fixed point on Earth continually like a geostationary satellite, but appear to a ground observer to cross the sky and "set" when they go behind the Earth beyond the visible horizon. Therefore, to provide continuous communications capability with these lower orbits requires a larger number of satellites, so that one of these satellites will always be visible in

1972-415: The Earth's surface. MEO satellites are similar to LEO satellites in functionality. MEO satellites are visible for much longer periods of time than LEO satellites, usually between 2 and 8 hours. MEO satellites have a larger coverage area than LEO satellites. A MEO satellite's longer duration of visibility and wider footprint means fewer satellites are needed in a MEO network than a LEO network. One disadvantage

2040-448: The K u band. The Intelsat Americas 5 , Galaxy 10R and AMC 3 satellites over North America provide a quite large amount of FTA channels on their K u band transponders . Wireless World Electronics World ( Wireless World , founded in 1913, and in October 1983 renamed Electronics & Wireless World ) is a technical magazine published by Datateam Business Media Ltd that covers electronics and RF engineering and

2108-765: The Lincoln Laboratory on behalf of the United States Department of Defense . The LES-1 active communications satellite was launched on 11 February 1965 to explore the feasibility of active solid-state X band long-range military communications. A total of nine satellites were launched between 1965 and 1976 as part of this series. In the United States, 1962 saw the creation of the Communications Satellite Corporation (COMSAT) private corporation, which

Intersputnik - Misplaced Pages Continue

2176-800: The Russian Far East, in Norilsk , Khabarovsk , Magadan and Vladivostok . In November 1967 Soviet engineers created a unique system of national TV network of satellite television , called Orbita , that was based on Molniya satellites. In the United States, the National Polar-orbiting Operational Environmental Satellite System (NPOESS) was established in 1994 to consolidate the polar satellite operations of NASA (National Aeronautics and Space Administration) NOAA (National Oceanic and Atmospheric Administration). NPOESS manages

2244-403: The completion of a fully global network with Intelsat 3 in 1969–70. By the 1980s, with significant expansions in commercial satellite capacity, Intelsat was on its way to become part of the competitive private telecommunications industry, and had started to get competition from the likes of PanAmSat in the United States, which, ironically, was then bought by its archrival in 2005. When Intelsat

2312-619: The dipoles properly separated from each other, the project was able to successfully experiment and communicate using frequencies in the SHF X band spectrum. An immediate antecedent of the geostationary satellites was the Hughes Aircraft Company 's Syncom 2 , launched on 26 July 1963. Syncom 2 was the first communications satellite in a geosynchronous orbit . It revolved around the Earth once per day at constant speed, but because it still had north–south motion, special equipment

2380-438: The direction of the receiver. With passive satellites, the reflected signal is not amplified at the satellite, and only a small amount of the transmitted energy actually reaches the receiver. Since the satellite is so far above Earth, the radio signal is attenuated due to free-space path loss , so the signal received on Earth is very weak. Active satellites, on the other hand, amplify the received signal before retransmitting it to

2448-455: The edges of Antarctica and Greenland . Other land use for satellite phones are rigs at sea, a backup for hospitals, military, and recreation. Ships at sea, as well as planes, often use satellite phones. Satellite phone systems can be accomplished by a number of means. On a large scale, often there will be a local telephone system in an isolated area with a link to the telephone system in a main land area. There are also services that will patch

2516-692: The equator and therefore appear lower on the horizon as the receiver gets farther from the equator. This will cause problems for extreme northerly latitudes, affecting connectivity and causing multipath interference (caused by signals reflecting off the ground and into the ground antenna). Thus, for areas close to the North (and South) Pole, a geostationary satellite may appear below the horizon. Therefore, Molniya orbit satellites have been launched, mainly in Russia, to alleviate this problem. Molniya orbits can be an appealing alternative in such cases. The Molniya orbit

2584-421: The equatorial plane orbit at an altitude of 36,000 km, spaced 120 degrees apart, could provide global communications. The altitude is crucial as there a satellite rotates at the same angular velocity as the surface of the Earth, and therefore remains above a particular point on its surface – that is, it is geostationary. The article is now seen as the origin of modern satellite communications, and

2652-473: The first artificial satellite used for passive relay communications in Echo 1 on 12 August 1960. Echo 1 was an aluminized balloon satellite acting as a passive reflector of microwave signals. Communication signals were bounced off the satellite from one point on Earth to another. This experiment sought to establish the feasibility of worldwide broadcasts of telephone, radio, and television signals. Telstar

2720-481: The first commercial decoder became available. Later it published regular columns of brief Circuit Ideas . In the August to December 1967 editions a series, Wireless World Digital Computer by Brian Crank, was published. It described how to build a "very" simple binary computer at home. It was constructed entirely from "reject" transistors (functional, but not meeting all specifications, consequently sold cheaply), and

2788-412: The first privately sponsored space launch. Another passive relay experiment primarily intended for military communications purposes was Project West Ford , which was led by Massachusetts Institute of Technology 's Lincoln Laboratory . After an initial failure in 1961, a launch on 9 May 1963 dispersed 350 million copper needle dipoles to create a passive reflecting belt. Even though only about half of

Intersputnik - Misplaced Pages Continue

2856-527: The first public announcement of the Baxandall tone control circuit, a design now employed in millions of hi-fi systems including amplifiers and effects for musical instruments. In 1955 it published the design of the popular Mullard 5-10 audio amplifier using two EL84 power pentodes in ultra-linear push-pull configuration. In the 1960s and 1970s there were many further articles on advances in audio and electronic design, notably all-transistor designs including

2924-479: The following subsystems: The bandwidth available from a satellite depends upon the number of transponders provided by the satellite. Each service (TV, Voice, Internet, radio) requires a different amount of bandwidth for transmission. This is typically known as link budgeting and a network simulator can be used to arrive at the exact value. Allocating frequencies to satellite services is a complicated process which requires international coordination and planning. This

2992-505: The geostationary earth orbit is sometimes referred to as Clarke's Orbit. For decades, Wireless World was a place where pioneers in audio and electronic design shared ideas. In 1947-49, it published articles on building what became the famous " Williamson amplifier " by D.T.N Williamson - using a pair of triode-connected KT66 kinkless power tetrodes (very similar to the American 6L6 ) in push-pull to give 15 watts output. In 1952 it made

3060-404: The ground, do not require as high signal strength (signal strength falls off as the square of the distance from the source, so the effect is considerable). Thus there is a trade off between the number of satellites and their cost. In addition, there are important differences in the onboard and ground equipment needed to support the two types of missions. A group of satellites working in concert

3128-515: The late 20th century. Satellite communications are still used in many applications today. Remote islands such as Ascension Island , Saint Helena , Diego Garcia , and Easter Island , where no submarine cables are in service, need satellite telephones. There are also regions of some continents and countries where landline telecommunications are rare to non existent, for example large regions of South America, Africa, Canada, China, Russia, and Australia. Satellite communications also provide connection to

3196-566: The more than one hundred satellites in service worldwide. Other major satellite manufacturers include Space Systems/Loral , Orbital Sciences Corporation with the Star Bus series, Indian Space Research Organisation , Lockheed Martin (owns the former RCA Astro Electronics/GE Astro Space business), Northrop Grumman , Alcatel Space, now Thales Alenia Space , with the Spacebus series, and Astrium . Geostationary satellites must operate above

3264-470: The northern hemisphere. This orbit provides a long dwell time over Russian territory as well as over Canada at higher latitudes than geostationary orbits over the equator. Communications satellites usually have one of three primary types of orbit , while other orbital classifications are used to further specify orbital details. MEO and LEO are non-geostationary orbit (NGSO). As satellites in MEO and LEO orbit

3332-529: The pen name "Cathode Ray". "Free Grid" was the pseudonym of Norman Preston Vincer-Minter (1897–1964), a classicist and ex-naval wireless operator who specialised in deflating pomposity with his biting wit. Amongst the early editors was W.T. Cocking (designer of the WW television sets); the last six editors were Tom Ivall, Philip Darrington, Frank Ogden, Martin Eccles, Phil Reed and Svetlana "Stella" Josifovska, who edited

3400-424: The publication for 20 years from 2004 to August 2024. Casey Porter took over the editor role from Stella. On pages 232 and 233 of the April 1961 Golden Jubilee issue, regular contributor "Free Grid" speculates what the next 50 years might hold and predicts that "long before our centenary year ... all positions now sacred to the male will have been taken over by women." He went on to make certain remarks in jest about

3468-466: The radio transmitter was meant to study the properties of radio wave distribution throughout the ionosphere. The launch of Sputnik 1 was a major step in the exploration of space and rocket development, and marks the beginning of the Space Age . There are two major classes of communications satellites, passive and active . Passive satellites only reflect the signal coming from the source, toward

SECTION 50

#1732802415900

3536-518: The receiver on the ground. Passive satellites were the first communications satellites, but are little used now. Work that was begun in the field of electrical intelligence gathering at the United States Naval Research Laboratory in 1951 led to a project named Communication Moon Relay . Military planners had long shown considerable interest in secure and reliable communications lines as a tactical necessity, and

3604-1047: The same linear polarization as FSS-class satellites. Examples of these are the Astra , Eutelsat , and Hotbird spacecraft in orbit over the European continent. Because of this, the terms FSS and DBS are more so used throughout the North American continent, and are uncommon in Europe. Fixed Service Satellites use the C band , and the lower portions of the K u band . They are normally used for broadcast feeds to and from television networks and local affiliate stations (such as program feeds for network and syndicated programming, live shots , and backhauls ), as well as being used for distance learning by schools and universities, business television (BTV), Videoconferencing , and general commercial telecommunications. FSS satellites are also used to distribute national cable channels to cable television headends. Free-to-air satellite TV channels are also usually distributed on FSS satellites in

3672-406: The satellite. Others form satellite constellations in low Earth orbit , where antennas on the ground have to follow the position of the satellites and switch between satellites frequently. The radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of

3740-402: The sky for transmission of communication signals. However, due to their closer distance to the Earth, LEO or MEO satellites can communicate to ground with reduced latency and at lower power than would be required from a geosynchronous orbit. A low Earth orbit (LEO) typically is a circular orbit about 160 to 2,000 kilometres (99 to 1,243 mi) above the Earth's surface and, correspondingly,

3808-497: The ultimate goal of this project was the creation of the longest communications circuit in human history, with the Moon, Earth's natural satellite, acting as a passive relay. After achieving the first transoceanic communication between Washington, D.C. , and Hawaii on 23 January 1956, this system was publicly inaugurated and put into formal production in January 1960. The first satellite purpose-built to actively relay communications

3876-613: The winding of the high-voltage CRT deflector coils (not a task for the faint hearted). A similar series was published after 1945 utilising the then ubiquitous EF50 RF pentode amplifier valve (tube). With the outbreak of World War II and the expected shortages of paper and other resources, the publication reverted to being monthly, a frequency that it still retains to this day. The title was changed in September 1984 to Electronics and Wireless World , and from January 1996 (vol 102, no. 1718), to Electronics World . A sister publication

3944-449: Was Wireless Engineer which was more of a learned journal than a popular magazine, featuring high quality, technical articles. In Wireless World ' s October 1945 issue, Arthur C. Clarke (then of The British Interplanetary Society ) published a now-famous article, "Extra Terrestrial Relays", which foresaw the coming of communications satellites in synchronous orbit around the Earth. Clarke pointed out that three satellites in

4012-515: Was Project SCORE , led by Advanced Research Projects Agency (ARPA) and launched on 18 December 1958, which used a tape recorder to carry a stored voice message, as well as to receive, store, and retransmit messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower . The satellite also executed several realtime transmissions before the non-rechargeable batteries failed on 30 December 1958 after eight hours of actual operation. The direct successor to SCORE

4080-559: Was Sputnik 1 , which was put into orbit by the Soviet Union on 4 October 1957. It was developed by Mikhail Tikhonravov and Sergey Korolev , building on work by Konstantin Tsiolkovsky . Sputnik 1 was equipped with an on-board radio transmitter that worked on two frequencies of 20.005 and 40.002 MHz, or 7 and 15 meters wavelength. The satellite was not placed in orbit to send data from one point on Earth to another, but

4148-429: Was another ARPA-led project called Courier. Courier 1B was launched on 4 October 1960 to explore whether it would be possible to establish a global military communications network by using "delayed repeater" satellites, which receive and store information until commanded to rebroadcast them. After 17 days, a command system failure ended communications from the satellite. NASA 's satellite applications program launched

SECTION 60

#1732802415900

4216-428: Was in intercontinental long distance telephony . The fixed Public Switched Telephone Network relays telephone calls from land line telephones to an Earth station , where they are then transmitted to a geostationary satellite. The downlink follows an analogous path. Improvements in submarine communications cables through the use of fiber-optics caused some decline in the use of satellites for fixed telephony in

4284-682: Was intended for teaching the basic principles of computer operation. In 1977 a series of articles was published based on the design of the NASCOM 1 computer. In 1979 they published a design by John Adams for a dual-processor desktop computer which included a novel high-level programming language. Entitled "A scientific computer", it was marketed as the PSI Comp 80 in kit form by the company Powertran . Contributors included M.G. Scroggie , who contributed articles of an educational nature on subjects such as applied mathematics and electronic theory using

4352-492: Was launched, the United States was the only launch source outside of the Soviet Union , who did not participate in the Intelsat agreements. The Soviet Union launched its first communications satellite on 23 April 1965 as part of the Molniya program. This program was also unique at the time for its use of what then became known as the Molniya orbit , which describes a highly elliptical orbit , with two high apogees daily over

4420-493: Was needed to track it. Its successor, Syncom 3 , launched on 19 July 1964, was the first geostationary communications satellite. Syncom 3 obtained a geosynchronous orbit, without a north–south motion, making it appear from the ground as a stationary object in the sky. A direct extension of the passive experiments of Project West Ford was the Lincoln Experimental Satellite program, also conducted by

4488-644: Was subject to instruction by the US Government on matters of national policy. Over the next two years, international negotiations led to the Intelsat Agreements, which in turn led to the launch of Intelsat 1, also known as Early Bird, on 6 April 1965, and which was the first commercial communications satellite to be placed in geosynchronous orbit. Subsequent Intelsat launches in the 1960s provided multi-destination service and video, audio, and data service to ships at sea (Intelsat 2 in 1966–67), and

4556-503: Was superseded by The Wireless World. An Illustrated Monthly Magazine for all interested in Wireless Telegraphy and Telephony as its first issue was sold on news-stands. Publication of Wireless World continued uninterrupted throughout World War I, and from 4 April 1920 (vol. 8 no. 1) publication frequency was increased to fortnightly From 1 April 1922 it became known as The Wireless World and Radio Review following

4624-591: Was the first active, direct relay communications commercial satellite and marked the first transatlantic transmission of television signals. Belonging to AT&T as part of a multi-national agreement between AT&T, Bell Telephone Laboratories , NASA, the British General Post Office , and the French National PTT (Post Office) to develop satellite communications, it was launched by NASA from Cape Canaveral on 10 July 1962, in

#899100