The Network Control Protocol ( NCP ) was a communication protocol for a computer network in the 1970s and early 1980s. It provided the transport layer of the protocol stack running on host computers of the ARPANET , the predecessor to the modern Internet .
106-539: NCP preceded the Transmission Control Protocol (TCP) as a transport layer protocol used during the early ARPANET. NCP was a simplex protocol that utilized two port numbers , establishing two connections for two-way communications. An odd and an even port were reserved for each application layer application or protocol. The standardization of TCP and UDP reduced the need for the use of two simplex ports per application to one duplex port. There
212-435: A retransmission timeout (RTO) that is based on the estimated round-trip time (RTT) between the sender and receiver, as well as the variance in this round-trip time. There are subtleties in the estimation of RTT. For example, senders must be careful when calculating RTT samples for retransmitted packets; typically they use Karn's Algorithm or TCP timestamps. These individual RTT samples are then averaged over time to create
318-428: A system call to perform a block I/O write operation, then the system call might execute the following instructions: While the writing takes place, the operating system will context switch to other processes as normal. When the device finishes writing, the device will interrupt the currently running process by asserting an interrupt request . The device will also place an integer onto the data bus. Upon accepting
424-473: A FIN packet, which the other end acknowledges with an ACK. Therefore, a typical tear-down requires a pair of FIN and ACK segments from each TCP endpoint. After the side that sent the first FIN has responded with the final ACK, it waits for a timeout before finally closing the connection, during which time the local port is unavailable for new connections; this state lets the TCP client resend the final acknowledgment to
530-514: A PC sends data to a smartphone that is slowly processing received data, the smartphone must be able to regulate the data flow so as not to be overwhelmed. TCP uses a sliding window flow control protocol. In each TCP segment, the receiver specifies in the receive window field the amount of additionally received data (in bytes) that it is willing to buffer for the connection. The sending host can send only up to that amount of data before it must wait for an acknowledgment and receive window update from
636-464: A TCP header creating a TCP segment. The TCP segment is then encapsulated into an Internet Protocol (IP) datagram, and exchanged with peers. The term TCP packet appears in both informal and formal usage, whereas in more precise terminology segment refers to the TCP protocol data unit (PDU), datagram to the IP PDU, and frame to the data link layer PDU: Processes transmit data by calling on
742-429: A TCP segment is retransmitted, it retains the same sequence number as the original delivery attempt. This conflation of delivery and logical data ordering means that, when acknowledgment is received after a retransmission, the sender cannot tell whether the original transmission or the retransmission is being acknowledged, the so-called retransmission ambiguity . TCP incurs complexity due to retransmission ambiguity. If
848-645: A computer even if they are not compatible with the base operating system. A library operating system (libOS) is one in which the services that a typical operating system provides, such as networking, are provided in the form of libraries and composed with a single application and configuration code to construct a unikernel : a specialized (only the absolute necessary pieces of code are extracted from libraries and bound together ), single address space , machine image that can be deployed to cloud or embedded environments. The operating system code and application code are not executed in separated protection domains (there
954-456: A connection before entering the data transfer phase. After data transfer is completed, the connection termination closes the connection and releases all allocated resources. A TCP connection is managed by an operating system through a resource that represents the local end-point for communications, the Internet socket . During the lifetime of a TCP connection, the local end-point undergoes
1060-585: A development of MULTICS for a single user. Because UNIX's source code was available, it became the basis of other, incompatible operating systems, of which the most successful were AT&T 's System V and the University of California 's Berkeley Software Distribution (BSD). To increase compatibility, the IEEE released the POSIX standard for operating system application programming interfaces (APIs), which
1166-476: A good RTT estimate will be produced—eventually—by waiting until there is an unambiguous acknowledgment before adjusting the RTO. After spurious retransmissions, however, it may take significant time before such an unambiguous acknowledgment arrives, degrading performance in the interim. TCP timestamps also resolve the retransmission ambiguity problem in setting the RTO, though they do not necessarily improve
SECTION 10
#17327807730651272-449: A half-duplex close sequence. If the host actively closes a connection, while still having unread incoming data available, the host sends the signal RST (losing any received data) instead of FIN. This assures that a TCP application is aware there was a data loss. A connection can be in a half-open state, in which case one side has terminated the connection, but the other has not. The side that has terminated can no longer send any data into
1378-418: A header that includes (among other data) the destination IP address . When the client program on the destination computer receives them, the TCP software in the transport layer re-assembles the segments and ensures they are correctly ordered and error-free as it streams the file contents to the receiving application. Transmission Control Protocol accepts data from a data stream, divides it into chunks, and adds
1484-484: A large legal settlement was paid. In the twenty-first century, Windows continues to be popular on personal computers but has less market share of servers. UNIX operating systems, especially Linux, are the most popular on enterprise systems and servers but are also used on mobile devices and many other computer systems. On mobile devices, Symbian OS was dominant at first, being usurped by BlackBerry OS (introduced 2002) and iOS for iPhones (from 2007). Later on,
1590-442: A library with no protection between applications, such as eCos . A hypervisor is an operating system that runs a virtual machine . The virtual machine is unaware that it is an application and operates as if it had its own hardware. Virtual machines can be paused, saved, and resumed, making them useful for operating systems research, development, and debugging. They also enhance portability by enabling applications to be run on
1696-447: A malformed machine instruction . However, the most common error conditions are division by zero and accessing an invalid memory address . Users can send messages to the kernel to modify the behavior of a currently running process. For example, in the command-line environment , pressing the interrupt character (usually Control-C ) might terminate the currently running process. To generate software interrupts for x86 CPUs,
1802-455: A particular application's memory is stored, or even whether or not it has been allocated yet. In modern operating systems, memory which is accessed less frequently can be temporarily stored on a disk or other media to make that space available for use by other programs. This is called swapping , as an area of memory can be used by multiple programs, and what that memory area contains can be swapped or exchanged on demand. Virtual memory provides
1908-503: A program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel 's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If
2014-408: A program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to
2120-440: A program tries to access memory that is not accessible memory, but nonetheless has been allocated to it, the kernel is interrupted (see § Memory management ) . This kind of interrupt is typically a page fault . When the kernel detects a page fault it generally adjusts the virtual memory range of the program which triggered it, granting it access to the memory requested. This gives the kernel discretionary power over where
2226-454: A sender to assume an unacknowledged packet to be lost after sufficient time elapses (i.e., determining the RTO time). Retransmission ambiguity can lead a sender's estimate of RTT to be imprecise. In an environment with variable RTTs, spurious timeouts can occur: if the RTT is under-estimated, then the RTO fires and triggers a needless retransmit and slow-start. After a spurious retransmission, when
SECTION 20
#17327807730652332-489: A sequence number by the receiver of data to tell the sender that data has been received to the specified byte. ACKs do not imply that the data has been delivered to the application, they merely signify that it is now the receiver's responsibility to deliver the data. Reliability is achieved by the sender detecting lost data and retransmitting it. TCP uses two primary techniques to identify loss. Retransmission timeout (RTO) and duplicate cumulative acknowledgments (DupAcks). When
2438-481: A series of state changes: Before a client attempts to connect with a server, the server must first bind to and listen at a port to open it up for connections: this is called a passive open. Once the passive open is established, a client may establish a connection by initiating an active open using the three-way (or 3-step) handshake: Steps 1 and 2 establish and acknowledge the sequence number for one direction (client to server). Steps 2 and 3 establish and acknowledge
2544-470: A significant amount of CPU time. Direct memory access (DMA) is an architecture feature to allow devices to bypass the CPU and access main memory directly. (Separate from the architecture, a device may perform direct memory access to and from main memory either directly or via a bus.) When a computer user types a key on the keyboard, typically the character appears immediately on the screen. Likewise, when
2650-407: A single segment (say segment number 100) in a stream is lost, then the receiver cannot acknowledge packets above that segment number (100) because it uses cumulative ACKs. Hence the receiver acknowledges packet 99 again on the receipt of another data packet. This duplicate acknowledgement is used as a signal for packet loss. That is, if the sender receives three duplicate acknowledgments, it retransmits
2756-424: A smoothed round trip time (SRTT) using Jacobson's algorithm . This SRTT value is what is used as the round-trip time estimate. Enhancing TCP to reliably handle loss, minimize errors, manage congestion and go fast in very high-speed environments are ongoing areas of research and standards development. As a result, there are a number of TCP congestion avoidance algorithm variations. The maximum segment size (MSS)
2862-402: A specific moment in time. Hard real-time systems require exact timing and are common in manufacturing , avionics , military, and other similar uses. With soft real-time systems, the occasional missed event is acceptable; this category often includes audio or multimedia systems, as well as smartphones. In order for hard real-time systems be sufficiently exact in their timing, often they are just
2968-417: A user moves a mouse , the cursor immediately moves across the screen. Each keystroke and mouse movement generates an interrupt called Interrupt-driven I/O . An interrupt-driven I/O occurs when a process causes an interrupt for every character or word transmitted. Devices such as hard disk drives , solid-state drives , and magnetic tape drives can transfer data at a rate high enough that interrupting
3074-453: A variation of the classic reader/writer problem . The writer receives a pipe from the shell for its output to be sent to the reader's input stream. The command-line syntax is alpha | bravo . alpha will write to the pipe when its computation is ready and then sleep in the wait queue. bravo will then be moved to the ready queue and soon will read from its input stream. The kernel will generate software interrupts to coordinate
3180-562: Is remote direct memory access , which enables each CPU to access memory belonging to other CPUs. Multicomputer operating systems often support remote procedure calls where a CPU can call a procedure on another CPU, or distributed shared memory , in which the operating system uses virtualization to generate shared memory that does not physically exist. A distributed system is a group of distinct, networked computers—each of which might have their own operating system and file system. Unlike multicomputers, they may be dispersed anywhere in
3286-428: Is system software that manages computer hardware and software resources, and provides common services for computer programs . Time-sharing operating systems schedule tasks for efficient use of the system and may also include accounting software for cost allocation of processor time , mass storage , peripherals, and other resources. For hardware functions such as input and output and memory allocation ,
Network Control Protocol (ARPANET) - Misplaced Pages Continue
3392-484: Is a change away from the currently running process. Similarly, both hardware and software interrupts execute an interrupt service routine . Software interrupts may be normally occurring events. It is expected that a time slice will occur, so the kernel will have to perform a context switch . A computer program may set a timer to go off after a few seconds in case too much data causes an algorithm to take too long. Software interrupts may be error conditions, such as
3498-422: Is difficult to define, but has been called "the layer of software that manages a computer's resources for its users and their applications ". Operating systems include the software that is always running, called a kernel —but can include other software as well. The two other types of programs that can run on a computer are system programs —which are associated with the operating system, but may not be part of
3604-443: Is only a single application running, at least conceptually, so there is no need to prevent interference between applications) and OS services are accessed via simple library calls (potentially inlining them based on compiler thresholds), without the usual overhead of context switches , in a way similarly to embedded and real-time OSes. Note that this overhead is not negligible: to the direct cost of mode switching it's necessary to add
3710-499: Is some confusion over the name, even among the engineers who worked with the ARPANET. Originally, there was no need for a name for the protocol stack as a whole, so none existed. When the development of TCP started, a name was required for its predecessor, and the pre-existing acronym 'NCP' (which originally referred to Network Control Program , the software that implemented this stack) was organically adopted for that use. Eventually, it
3816-499: Is supported by most UNIX systems. MINIX was a stripped-down version of UNIX, developed in 1987 for educational uses, that inspired the commercially available, free software Linux . Since 2008, MINIX is used in controllers of most Intel microchips , while Linux is widespread in data centers and Android smartphones. The invention of large scale integration enabled the production of personal computers (initially called microcomputers ) from around 1980. For around five years,
3922-473: Is that they do not load user-installed software. Consequently, they do not need protection between different applications, enabling simpler designs. Very small operating systems might run in less than 10 kilobytes , and the smallest are for smart cards . Examples include Embedded Linux , QNX , VxWorks , and the extra-small systems RIOT and TinyOS . A real-time operating system is an operating system that guarantees to process events or data by or at
4028-456: Is the largest amount of data, specified in bytes, that TCP is willing to receive in a single segment. For best performance, the MSS should be set small enough to avoid IP fragmentation , which can lead to packet loss and excessive retransmissions. To accomplish this, typically the MSS is announced by each side using the MSS option when the TCP connection is established. The option value is derived from
4134-435: Is the part of the operating system that provides protection between different applications and users. This protection is key to improving reliability by keeping errors isolated to one program, as well as security by limiting the power of malicious software and protecting private data, and ensuring that one program cannot monopolize the computer's resources. Most operating systems have two modes of operation: in user mode ,
4240-565: Is used in PPP or the Ethernet frame. However, introduction of errors in packets between CRC-protected hops is common and the 16-bit TCP checksum catches most of these. TCP uses an end-to-end flow control protocol to avoid having the sender send data too fast for the TCP receiver to receive and process it reliably. Having a mechanism for flow control is essential in an environment where machines of diverse network speeds communicate. For example, if
4346-542: The CP/M (Control Program for Microcomputers) was the most popular operating system for microcomputers. Later, IBM bought the DOS (Disk Operating System) from Microsoft . After modifications requested by IBM, the resulting system was called MS-DOS (MicroSoft Disk Operating System) and was widely used on IBM microcomputers. Later versions increased their sophistication, in part by borrowing features from UNIX. Apple 's Macintosh
Network Control Protocol (ARPANET) - Misplaced Pages Continue
4452-504: The INT assembly language instruction is available. The syntax is INT X , where X is the offset number (in hexadecimal format) to the interrupt vector table . To generate software interrupts in Unix-like operating systems, the kill(pid,signum) system call will send a signal to another process. pid is the process identifier of the receiving process. signum is
4558-532: The Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP . TCP provides reliable , ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web , email, remote administration , and file transfer rely on TCP, which is part of
4664-634: The Internet Protocol Suite . The following Internet Experiment Note (IEN) documents describe the evolution of TCP into the modern version: TCP was standardized in January 1980 as RFC 761 . In 2004, Vint Cerf and Bob Kahn received the Turing Award for their foundational work on TCP/IP. The Transmission Control Protocol provides a communication service at an intermediate level between an application program and
4770-589: The Real-time Transport Protocol (RTP) operating over the User Datagram Protocol (UDP) are usually recommended instead. TCP is a reliable byte stream delivery service that guarantees that all bytes received will be identical and in the same order as those sent. Since packet transfer by many networks is not reliable, TCP achieves this using a technique known as positive acknowledgment with re-transmission . This requires
4876-681: The Transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP. TCP is connection-oriented , meaning that sender and receiver firstly need to establish a connection based on agreed parameters; they do this through three-way handshake procedure. The server must be listening (passive open) for connection requests from clients before a connection is established. Three-way handshake (active open), retransmission , and error detection adds to reliability but lengthens latency . Applications that do not require reliable data stream service may use
4982-539: The User Datagram Protocol (UDP) instead, which provides a connectionless datagram service that prioritizes time over reliability. TCP employs network congestion avoidance . However, there are vulnerabilities in TCP, including denial of service , connection hijacking , TCP veto, and reset attack . In May 1974, Vint Cerf and Bob Kahn described an internetworking protocol for sharing resources using packet switching among network nodes. The authors had been working with Gérard Le Lann to incorporate concepts from
5088-546: The User Datagram Protocol : TCP uses a sequence number to identify each byte of data. The sequence number identifies the order of the bytes sent from each computer so that the data can be reconstructed in order, regardless of any out-of-order delivery that may occur. The sequence number of the first byte is chosen by the transmitter for the first packet, which is flagged SYN. This number can be arbitrary, and should, in fact, be unpredictable to defend against TCP sequence prediction attacks . Acknowledgments (ACKs) are sent with
5194-471: The World Wide Web (WWW), email, File Transfer Protocol , Secure Shell , peer-to-peer file sharing , and streaming media . TCP is optimized for accurate delivery rather than timely delivery and can incur relatively long delays (on the order of seconds) while waiting for out-of-order messages or re-transmissions of lost messages. Therefore, it is not particularly suitable for real-time applications such as voice over IP . For such applications, protocols like
5300-408: The maximum transmission unit (MTU) size of the data link layer of the networks to which the sender and receiver are directly attached. TCP senders can use path MTU discovery to infer the minimum MTU along the network path between the sender and receiver, and use this to dynamically adjust the MSS to avoid IP fragmentation within the network. Operating system An operating system ( OS )
5406-498: The personal computer market, as of September 2024 , Microsoft Windows holds a dominant market share of around 73%. macOS by Apple Inc. is in second place (15%), Linux is in third place (5%), and ChromeOS is in fourth place (2%). In the mobile sector (including smartphones and tablets ), as of September 2023 , Android's share is 68.92%, followed by Apple's iOS and iPadOS with 30.42%, and other operating systems with .66%. Linux distributions are dominant in
SECTION 50
#17327807730655512-420: The transistor in the mid-1950s, mainframes began to be built. These still needed professional operators who manually do what a modern operating system would do, such as scheduling programs to run, but mainframes still had rudimentary operating systems such as Fortran Monitor System (FMS) and IBSYS . In the 1960s, IBM introduced the first series of intercompatible computers ( System/360 ). All of them ran
5618-414: The ARPANET. It was almost universally referred to by the acronym, NCP. This was later taken over to refer to the protocol suite itself. NCPs were written for many operating systems , including Multics , TENEX , UNIX and TOPS-10 , and many of those NCPs survive (although of course they are now used by only vintage computer enthusiasts). On January 1, 1983, in what is known as a flag day , NCP
5724-410: The CPU for every byte or word transferred, and having the CPU transfer the byte or word between the device and memory, would require too much CPU time. Data is, instead, transferred between the device and memory independently of the CPU by hardware such as a channel or a direct memory access controller; an interrupt is delivered only when all the data is transferred. If a computer program executes
5830-474: The CPU to re-enter supervisor mode , placing the kernel in charge. This is called a segmentation violation or Seg-V for short, and since it is both difficult to assign a meaningful result to such an operation, and because it is usually a sign of a misbehaving program, the kernel generally resorts to terminating the offending program, and reports the error. Windows versions 3.1 through ME had some level of memory protection, but programs could easily circumvent
5936-608: The French CYCLADES project into the new network. The specification of the resulting protocol, RFC 675 ( Specification of Internet Transmission Control Program ), was written by Vint Cerf, Yogen Dalal , and Carl Sunshine, and published in December 1974. It contains the first attested use of the term internet , as a shorthand for internetwork . The Transmission Control Program incorporated both connection-oriented links and datagram services between hosts. In version 4,
6042-690: The Host/IMP Protocol in BBN Report 1822 , which was written by Bob Kahn . Under the auspices of Leonard Kleinrock at University of California Los Angeles (UCLA), Stephen D. Crocker , then a graduate student in computer science at UCLA, formed and led the Network Working Group (NWG). Working with Jon Postel and others, they designed a host-to-host protocol, known as the Network Control Program, which
6148-564: The Internet Protocol. It provides host-to-host connectivity at the transport layer of the Internet model . An application does not need to know the particular mechanisms for sending data via a link to another host, such as the required IP fragmentation to accommodate the maximum transmission unit of the transmission medium. At the transport layer, TCP handles all handshaking and transmission details and presents an abstraction of
6254-675: The NWG developed these application-level protocols, TELNET and FTP . Since lower protocol layers were provided by the IMP-host interface, NCP essentially provided a transport layer consisting of the ARPANET Host-to-Host Protocol (AHHP) and the Initial Connection Protocol (ICP). AHHP defined procedures to transmit a unidirectional, flow-controlled data stream between two hosts. The ICP defined
6360-453: The RTT estimate. Sequence numbers allow receivers to discard duplicate packets and properly sequence out-of-order packets. Acknowledgments allow senders to determine when to retransmit lost packets. To assure correctness a checksum field is included; see § Checksum computation for details. The TCP checksum is a weak check by modern standards and is normally paired with a CRC integrity check at layer 2 , below both TCP and IP, such as
6466-415: The TCP and passing buffers of data as arguments. The TCP packages the data from these buffers into segments and calls on the internet module [e.g. IP] to transmit each segment to the destination TCP. A TCP segment consists of a segment header and a data section. The segment header contains 10 mandatory fields, and an optional extension field ( Options , pink background in table). The data section follows
SECTION 60
#17327807730656572-463: The TCP implementation must perform a lookup on this table to find the destination process. Each entry in the table is known as a Transmission Control Block or TCB. It contains information about the endpoints (IP and port), status of the connection, running data about the packets that are being exchanged and buffers for sending and receiving data. The number of sessions in the server side is limited only by memory and can grow as new connections arrive, but
6678-404: The TCP sender attempts recovery by sending a small packet so that the receiver responds by sending another acknowledgment containing the new window size. If a receiver is processing incoming data in small increments, it may repeatedly advertise a small receive window. This is referred to as the silly window syndrome , since it is inefficient to send only a few bytes of data in a TCP segment, given
6784-519: The acknowledgments for the original transmissions arrive, the sender may believe them to be acknowledging the retransmission and conclude, incorrectly, that segments sent between the original transmission and retransmission have been lost, causing further needless retransmissions to the extent that the link truly becomes congested; selective acknowledgement can reduce this effect. RFC 6298 specifies that implementations must not use retransmitted segments when estimating RTT. Karn's algorithm ensures that
6890-538: The application program, which then interacts with the user and with hardware devices. However, in some systems an application can request that the operating system execute another application within the same process, either as a subroutine or in a separate thread, e.g., the LINK and ATTACH facilities of OS/360 and successors . An interrupt (also known as an abort , exception , fault , signal , or trap ) provides an efficient way for most operating systems to react to
6996-526: The classic RTO discussed below). The time based loss detection algorithm called Recent Acknowledgment (RACK) has been adopted as the default algorithm in Linux and Windows. When a sender transmits a segment, it initializes a timer with a conservative estimate of the arrival time of the acknowledgment. The segment is retransmitted if the timer expires, with a new timeout threshold of twice the previous value, resulting in exponential backoff behavior. Typically,
7102-607: The client must allocate an ephemeral port before sending the first SYN to the server. This port remains allocated during the whole conversation and effectively limits the number of outgoing connections from each of the client's IP addresses. If an application fails to properly close unrequired connections, a client can run out of resources and become unable to establish new TCP connections, even from other applications. Both endpoints must also allocate space for unacknowledged packets and received (but unread) data. The Transmission Control Protocol differs in several key features compared to
7208-453: The computer's memory. Various methods of memory protection exist, including memory segmentation and paging . All methods require some level of hardware support (such as the 80286 MMU), which does not exist in all computers. In both segmentation and paging, certain protected mode registers specify to the CPU what memory address it should allow a running program to access. Attempts to access other addresses trigger an interrupt, which causes
7314-407: The connection, but the other side can. The terminating side should continue reading the data until the other side terminates as well. Most implementations allocate an entry in a table that maps a session to a running operating system process. Because TCP packets do not include a session identifier, both endpoints identify the session using the client's address and port. Whenever a packet is received,
7420-471: The details of how interrupt service routines behave vary from operating system to operating system. However, several interrupt functions are common. The architecture and operating system must: A software interrupt is a message to a process that an event has occurred. This contrasts with a hardware interrupt — which is a message to the central processing unit (CPU) that an event has occurred. Software interrupts are similar to hardware interrupts — there
7526-422: The environment. Interrupts cause the central processing unit (CPU) to have a control flow change away from the currently running program to an interrupt handler , also known as an interrupt service routine (ISR). An interrupt service routine may cause the central processing unit (CPU) to have a context switch . The details of how a computer processes an interrupt vary from architecture to architecture, and
7632-410: The hardware checks that the software is only executing legal instructions, whereas the kernel has unrestricted powers and is not subject to these checks. The kernel also manages memory for other processes and controls access to input/output devices. The operating system provides an interface between an application program and the computer hardware, so that an application program can interact with
7738-493: The hardware only by obeying rules and procedures programmed into the operating system. The operating system is also a set of services which simplify development and execution of application programs. Executing an application program typically involves the creation of a process by the operating system kernel , which assigns memory space and other resources, establishes a priority for the process in multi-tasking systems, loads program binary code into memory, and initiates execution of
7844-476: The header and is the payload data carried for the application. The length of the data section is not specified in the segment header; it can be calculated by subtracting the combined length of the segment header and IP header from the total IP datagram length specified in the IP header. TCP protocol operations may be divided into three phases. Connection establishment is a multi-step handshake process that establishes
7950-418: The indirect pollution of important processor structures (like CPU caches , the instruction pipeline , and so on) which affects both user-mode and kernel-mode performance. The first computers in the late 1940s and 1950s were directly programmed either with plugboards or with machine code inputted on media such as punch cards , without programming languages or operating systems. After the introduction of
8056-407: The individual units of data transmission that a message is divided into for efficient routing through the network. For example, when an HTML file is sent from a web server, the TCP software layer of that server divides the file into segments and forwards them individually to the internet layer in the network stack . The internet layer software encapsulates each TCP segment into an IP packet by adding
8162-513: The initial timer value is smoothed RTT + max ( G , 4 × RTT variation ) {\displaystyle {\text{smoothed RTT}}+\max(G,4\times {\text{RTT variation}})} , where G {\displaystyle G} is the clock granularity. This guards against excessive transmission traffic due to faulty or malicious actors, such as man-in-the-middle denial of service attackers . Accurate RTT estimates are important for loss recovery, as it allows
8268-404: The interrupt request, the operating system will: When the writing process has its time slice expired, the operating system will: With the program counter now reset, the interrupted process will resume its time slice. Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by the programs. This ensures that
8374-431: The kernel—and applications—all other software. There are three main purposes that an operating system fulfills: With multiprocessors multiple CPUs share memory. A multicomputer or cluster computer has multiple CPUs, each of which has its own memory . Multicomputers were developed because large multiprocessors are difficult to engineer and prohibitively expensive; they are universal in cloud computing because of
8480-464: The lack of acknowledgments, are used by senders to infer network conditions between the TCP sender and receiver. Coupled with timers, TCP senders and receivers can alter the behavior of the flow of data. This is more generally referred to as congestion control or congestion avoidance. Modern implementations of TCP contain four intertwined algorithms: slow start , congestion avoidance , fast retransmit , and fast recovery . In addition, senders employ
8586-417: The last unacknowledged packet. A threshold of three is used because the network may reorder segments causing duplicate acknowledgements. This threshold has been demonstrated to avoid spurious retransmissions due to reordering. Some TCP implementations use selective acknowledgements (SACKs) to provide explicit feedback about the segments that have been received. This greatly improves TCP's ability to retransmit
8692-400: The memory allocated to a different one. Around the same time, teleprinters began to be used as terminals so multiple users could access the computer simultaneously. The operating system MULTICS was intended to allow hundreds of users to access a large computer. Despite its limited adoption, it can be considered the precursor to cloud computing . The UNIX operating system originated as
8798-474: The monolithic Transmission Control Program was divided into a modular architecture consisting of the Transmission Control Protocol and the Internet Protocol . This resulted in a networking model that became known informally as TCP/IP , although formally it was variously referred to as the DoD internet architecture model ( DoD model for short) or DARPA model . Later, it became the part of, and synonymous with,
8904-408: The need to use it. A general protection fault would be produced, indicating a segmentation violation had occurred; however, the system would often crash anyway. The use of virtual memory addressing (such as paging or segmentation) means that the kernel can choose what memory each program may use at any given time, allowing the operating system to use the same memory locations for multiple tasks. If
9010-442: The network connection to the application typically through a network socket interface. At the lower levels of the protocol stack, due to network congestion , traffic load balancing , or unpredictable network behavior, IP packets may be lost , duplicated, or delivered out of order . TCP detects these problems, requests re-transmission of lost data, rearranges out-of-order data and even helps minimize network congestion to reduce
9116-407: The occurrence of the other problems. If the data still remains undelivered, the source is notified of this failure. Once the TCP receiver has reassembled the sequence of octets originally transmitted, it passes them to the receiving application. Thus, TCP abstracts the application's communication from the underlying networking details. TCP is used extensively by many internet applications, including
9222-408: The open-source Android operating system (introduced 2008), with a Linux kernel and a C library ( Bionic ) partially based on BSD code, became most popular. The components of an operating system are designed to ensure that various parts of a computer function cohesively. With the de facto obsoletion of DOS , all user software must interact with the operating system to access hardware. The kernel
9328-420: The operating system acts as an intermediary between programs and the computer hardware, although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or is interrupted by it. Operating systems are found on many devices that contain a computer – from cellular phones and video game consoles to web servers and supercomputers . In
9434-421: The piping. Signals may be classified into 7 categories. The categories are: Input/output (I/O) devices are slower than the CPU. Therefore, it would slow down the computer if the CPU had to wait for each I/O to finish. Instead, a computer may implement interrupts for I/O completion, avoiding the need for polling or busy waiting. Some computers require an interrupt for each character or word, costing
9540-535: The procedure for establishing a bidirectional pair of such streams between a pair of host processes. Application protocols (e.g., FTP) accessed network services through an interface to the top layer of NCP — a forerunner to the Berkeley sockets interface. Network Control Program (usually given as NCP ) was the name for the software on hosts which implemented the Network Control Protocol of
9646-418: The receiver to respond with an acknowledgment message as it receives the data. The sender keeps a record of each packet it sends and maintains a timer from when the packet was sent. The sender re-transmits a packet if the timer expires before receiving the acknowledgment. The timer is needed in case a packet gets lost or corrupted. While IP handles actual delivery of the data, TCP keeps track of segments –
9752-407: The receiving host. When a receiver advertises a window size of 0, the sender stops sending data and starts its persist timer . The persist timer is used to protect TCP from a deadlock situation that could arise if a subsequent window size update from the receiver is lost, and the sender cannot send more data until receiving a new window size update from the receiver. When the persist timer expires,
9858-504: The relatively large overhead of the TCP header. The final main aspect of TCP is congestion control . TCP uses a number of mechanisms to achieve high performance and avoid congestive collapse , a gridlock situation where network performance is severely degraded. These mechanisms control the rate of data entering the network, keeping the data flow below a rate that would trigger collapse. They also yield an approximately max-min fair allocation between flows. Acknowledgments for data sent, or
9964-687: The right segments. Retransmission ambiguity can cause spurious fast retransmissions and congestion avoidance if there is reordering beyond the duplicate acknowledgment threshold. In the last two decades more packet reordering has been observed over the Internet which led TCP implementations, such as the one in the Linux Kernel to adopt heuristic methods to scale the duplicate acknowledgment threshold. Recently, there have been efforts to completely phase out dupack based fast-retransmissions and replace them with timer based ones. (Not to be confused with
10070-418: The same operating system— OS/360 —which consisted of millions of lines of assembly language that had thousands of bugs . The OS/360 also was the first popular operating system to support multiprogramming , such that the CPU could be put to use on one job while another was waiting on input/output (I/O). Holding multiple jobs in memory necessitated memory partitioning and safeguards against one job accessing
10176-404: The sequence number for the other direction (server to client). Following the completion of these steps, both the client and server have received acknowledgments and a full-duplex communication is established. The connection termination phase uses a four-way handshake, with each side of the connection terminating independently. When an endpoint wishes to stop its half of the connection, it transmits
10282-619: The server and supercomputing sectors. Other specialized classes of operating systems (special-purpose operating systems), such as embedded and real-time systems, exist for many applications. Security-focused operating systems also exist. Some operating systems have low system requirements (e.g. light-weight Linux distribution ). Others may have higher system requirements. Some operating systems require installation or may come pre-installed with purchased computers ( OEM -installation), whereas others may run directly from media (i.e. live CD ) or flash memory (i.e. USB stick). An operating system
10388-638: The server in case the ACK is lost in transit. The time duration is implementation-dependent, but some common values are 30 seconds, 1 minute, and 2 minutes. After the timeout, the client enters the CLOSED state and the local port becomes available for new connections. It is also possible to terminate the connection by a 3-way handshake, when host A sends a FIN and host B replies with a FIN & ACK (combining two steps into one) and host A replies with an ACK. Some operating systems, such as Linux and HP-UX , implement
10494-400: The signal number (in mnemonic format) to be sent. (The abrasive name of kill was chosen because early implementations only terminated the process.) In Unix-like operating systems, signals inform processes of the occurrence of asynchronous events. To communicate asynchronously, interrupts are required. One reason a process needs to asynchronously communicate to another process solves
10600-400: The size of the machine needed. The different CPUs often need to send and receive messages to each other; to ensure good performance, the operating systems for these machines need to minimize this copying of packets . Newer systems are often multiqueue —separating groups of users into separate queues —to reduce the need for packet copying and support more concurrent users. Another technique
10706-473: The world. Middleware , an additional software layer between the operating system and applications, is often used to improve consistency. Although it functions similarly to an operating system, it is not a true operating system. Embedded operating systems are designed to be used in embedded computer systems , whether they are internet of things objects or not connected to a network. Embedded systems include many household appliances. The distinguishing factor
10812-482: Was developed in the ARPANET's earliest RFC documents in 1969 after a series of meetings on the topic with engineers from UCLA , University of Utah , and SRI . Crocker said "While much of the development proceeded according to a grand plan, the design of the protocols and the creation of the RFCs was largely accidental." After approval by Barry Wessler at ARPA, who had ordered certain more exotic elements to be dropped, it
10918-561: Was finalized in RFC ; 33 in early 1970, and deployed to all nodes on the ARPANET in December 1970. NCP codified the ARPANET network interface, making it easier to establish, and enabling more sites to join the network. It provided connections and flow control between processes running on different ARPANET host computers. Application services, such as remote login and file transfer , would be built on top of NCP, using it to handle connections to other host computers. Other participants in
11024-430: Was officially rendered obsolete when the ARPANET changed its core networking protocols from NCP to the more flexible and powerful TCP/IP protocol suite, marking the start of the modern Internet . Transmission Control Protocol The Transmission Control Protocol ( TCP ) is one of the main protocols of the Internet protocol suite . It originated in the initial network implementation in which it complemented
11130-588: Was realized that the original expansion of that acronym was inappropriate for its new meaning, so a new quasi- backronym was created, 'Network Control Protocol' — again, organically, not via a formal decision. On the ARPANET, the protocols in the physical layer , the data link layer , and the network layer used within the network were implemented on separate Interface Message Processors (IMPs). The host usually connected to an IMP using another kind of interface, with different physical, data link, and network layer specifications. The IMP's capabilities were specified by
11236-406: Was the first popular computer to use a graphical user interface (GUI). The GUI proved much more user friendly than the text-only command-line interface earlier operating systems had used. Following the success of Macintosh, MS-DOS was updated with a GUI overlay called Windows . Windows later was rewritten as a stand-alone operating system, borrowing so many features from another ( VAX VMS ) that
#64935