Misplaced Pages

Epoch (astronomy)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Terrestrial Time ( TT ) is a modern astronomical time standard defined by the International Astronomical Union , primarily for time-measurements of astronomical observations made from the surface of Earth. For example, the Astronomical Almanac uses TT for its tables of positions ( ephemerides ) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD), which succeeded ephemeris time (ET) . TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth .

#654345

119-402: In astronomy , an epoch or reference epoch is a moment in time used as a reference point for some time-varying astronomical quantity. It is useful for the celestial coordinates or orbital elements of a celestial body , as they are subject to perturbations and vary with time. These time-varying astronomical quantities might include, for example, the mean longitude or mean anomaly of

238-448: A binary black hole . A second gravitational wave was detected on 26 December 2015 and additional observations should continue but gravitational waves require extremely sensitive instruments. The combination of observations made using electromagnetic radiation, neutrinos or gravitational waves and other complementary information, is known as multi-messenger astronomy . One of the oldest fields in astronomy, and in all of science,

357-505: A body, the node of its orbit relative to a reference plane , the direction of the apogee or aphelion of its orbit, or the size of the major axis of its orbit. The main use of astronomical quantities specified in this way is to calculate other relevant parameters of motion, in order to predict future positions and velocities. The applied tools of the disciplines of celestial mechanics or its subfield orbital mechanics (for predicting orbital paths and positions for bodies in motion under

476-561: A constant rate. Formally it is defined by the equation T T = ( 1 − L G ) × T C G + E , {\displaystyle \mathrm {TT} ={\bigl (}1-L_{\mathrm {G} }{\bigr )}\times \mathrm {TCG} +E,} where TT and TCG are linear counts of SI seconds in Terrestrial Time and Geocentric Coordinate Time respectively, L G {\displaystyle L_{\mathrm {G} }}

595-452: A continuation of (but is more precisely uniform than) the former Ephemeris Time (ET). It was designed for continuity with ET, and it runs at the rate of the SI second, which was itself derived from a calibration using the second of ET (see, under Ephemeris time, Redefinition of the second and Implementations ). The JPL ephemeris time argument T eph is within a few milliseconds of TT. TT

714-562: A few milliseconds to thousands of seconds before fading away. Only 10% of gamma-ray sources are non-transient sources. These steady gamma-ray emitters include pulsars, neutron stars , and black hole candidates such as active galactic nuclei. In addition to electromagnetic radiation, a few other events originating from great distances may be observed from the Earth. In neutrino astronomy , astronomers use heavily shielded underground facilities such as SAGE , GALLEX , and Kamioka II/III for

833-510: A fixed standard date and time of reference (and not, as might be expected from current usage, to a change from one date and time of reference to a different date and time). Astronomical data are often specified not only in their relation to an epoch or date of reference but also in their relations to other conditions of reference, such as coordinate systems specified by " equinox ", or "equinox and equator ", or "equinox and ecliptic " – when these are needed for fully specifying astronomical data of

952-585: A given date defines which coordinate system is used. Most standard coordinates in use today refer to 2000 TT (i.e. to 12h (noon) on the Terrestrial Time scale on January 1, 2000, see below), which occurred about 64 seconds sooner than noon UT1 on the same date (see ΔT ). Before about 1984, coordinate systems dated to 1950 or 1900 were commonly used. There is a special meaning of the expression "equinox (and ecliptic/equator) of date ". When coordinates are expressed as polynomials in time relative to

1071-552: A model allows astronomers to select between several alternative or conflicting models. Theorists also modify existing models to take into account new observations. In some cases, a large amount of observational data that is inconsistent with a model may lead to abandoning it largely or completely, as for geocentric theory , the existence of luminiferous aether , and the steady-state model of cosmic evolution. Phenomena modeled by theoretical astronomers include: Modern theoretical astronomy reflects dramatic advances in observation since

1190-424: A notional observer located at infinitely high altitude. The present definition of TT is a linear scaling of Geocentric Coordinate Time (TCG), which is the proper time of a notional observer who is infinitely far away (so not affected by gravitational time dilation) and at rest relative to Earth. TCG is used to date mainly for theoretical purposes in astronomy. From the point of view of an observer on Earth's surface

1309-671: A number of important astronomers. Richard of Wallingford (1292–1336) made major contributions to astronomy and horology , including the invention of the first astronomical clock, the Rectangulus which allowed for the measurement of angles between planets and other astronomical bodies, as well as an equatorium called the Albion which could be used for astronomical calculations such as lunar , solar and planetary longitudes and could predict eclipses . Nicole Oresme (1320–1382) and Jean Buridan (1300–1361) first discussed evidence for

SECTION 10

#1732772603655

1428-409: A particular date, such as J2000.0) could be used forever, but a set of osculating elements for a particular epoch may only be (approximately) valid for a rather limited time, because osculating elements such as those exampled above do not show the effect of future perturbations which will change the values of the elements. Nevertheless, the period of validity is a different matter in principle and not

1547-507: A particular theory of the orbit of the Earth around the Sun, that of Newcomb (1895), which is now obsolete; for that reason among others, the use of Besselian years has also become or is becoming obsolete. Lieske 1979 , p. 282 says that a "Besselian epoch" can be calculated from the Julian date according to Lieske's definition is not exactly consistent with the earlier definition in terms of

1666-460: A recent epoch for all of the elements: but some of the data are dependent on a chosen coordinate system, and then it is usual to specify the coordinate system of a standard epoch which often is not the same as the epoch of the data. An example is as follows: For minor planet (5145) Pholus , orbital elements have been given including the following data: where the epoch is expressed in terms of Terrestrial Time, with an equivalent Julian date. Four of

1785-459: A reference frame defined in this way, that means the values obtained for the coordinates in respect of any interval t after the stated epoch, are in terms of the coordinate system of the same date as the obtained values themselves, i.e. the date of the coordinate system is equal to (epoch + t). It can be seen that the date of the coordinate system need not be the same as the epoch of the astronomical quantities themselves. But in that case (apart from

1904-578: A repeating cycle known as a saros . Following the Babylonians, significant advances in astronomy were made in ancient Greece and the Hellenistic world. Greek astronomy is characterized from the start by seeking a rational, physical explanation for celestial phenomena. In the 3rd century BC, Aristarchus of Samos estimated the size and distance of the Moon and Sun , and he proposed a model of

2023-409: A specific time and place on the Earth, the coordinates of the object are needed relative to a coordinate system of the current date. If coordinates relative to some other date are used, then that will cause errors in the results. The magnitude of those errors increases with the time difference between the date and time of observation and the date of the coordinate system used, because of the precession of

2142-608: A substantial amount of work in the realms of theoretical and observational physics. Some areas of study for astrophysicists include their attempts to determine the properties of dark matter , dark energy , and black holes ; whether or not time travel is possible, wormholes can form, or the multiverse exists; and the origin and ultimate fate of the universe . Topics also studied by theoretical astrophysicists include Solar System formation and evolution ; stellar dynamics and evolution ; galaxy formation and evolution ; magnetohydrodynamics ; large-scale structure of matter in

2261-523: A terrestrial time standard was adopted by the International Astronomical Union (IAU) in 1976 at its XVI General Assembly and later named Terrestrial Dynamical Time (TDT). It was the counterpart to Barycentric Dynamical Time (TDB), which was a time standard for Solar system ephemerides , to be based on a dynamical time scale . Both of these time standards turned out to be imperfectly defined. Doubts were also expressed about

2380-482: A year with decimals ( 2000 + x ), where x is either positive or negative and is quoted to 1 or 2 decimal places, has come to mean a date that is an interval of x Julian years of 365.25 days away from the epoch J2000 = JD 2451545.0 (TT), still corresponding (in spite of the use of the prefix "J" or word "Julian") to the Gregorian calendar date of January 1, 2000, at 12h TT (about 64 seconds before noon UTC on

2499-415: Is 2443 144.500 3725 exactly. TT is a theoretical ideal, not dependent on a particular realization. For practical use, physical clocks must be measured and their readings processed to estimate TT. A simple offset calculation is sufficient for most applications, but in demanding applications, detailed modeling of relativistic physics and measurement uncertainties may be needed. The main realization of TT

SECTION 20

#1732772603655

2618-427: Is visible light , or more generally electromagnetic radiation . Observational astronomy may be categorized according to the corresponding region of the electromagnetic spectrum on which the observations are made. Some parts of the spectrum can be observed from the Earth's surface, while other parts are only observable from either high altitudes or outside the Earth's atmosphere. Specific information on these subfields

2737-590: Is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky . These include the Egyptians , Babylonians , Greeks , Indians , Chinese , Maya , and many ancient indigenous peoples of the Americas . In the past, astronomy included disciplines as diverse as astrometry , celestial navigation , observational astronomy , and

2856-584: Is absorbed by the Earth's atmosphere, requiring observations at these wavelengths to be performed from the upper atmosphere or from space. Ultraviolet astronomy is best suited to the study of thermal radiation and spectral emission lines from hot blue stars ( OB stars ) that are very bright in this wave band. This includes the blue stars in other galaxies, which have been the targets of several ultraviolet surveys. Other objects commonly observed in ultraviolet light include planetary nebulae , supernova remnants , and active galactic nuclei. However, as ultraviolet light

2975-595: Is also believed that the ruins at Great Zimbabwe and Timbuktu may have housed astronomical observatories. In Post-classical West Africa , Astronomers studied the movement of stars and relation to seasons, crafting charts of the heavens as well as precise diagrams of orbits of the other planets based on complex mathematical calculations. Songhai historian Mahmud Kati documented a meteor shower in August 1583. Europeans had previously believed that there had been no astronomical observation in sub-Saharan Africa during

3094-460: Is an independent means of computing TT. The researchers observed that their scale was within 0.5 microseconds of TT(BIPM17), with significantly lower errors since 2003. The data used was insufficient to analyze long-term stability, and contained several anomalies, but as more data is collected and analyzed, this realization may eventually be useful to identify defects in TAI and TT(BIPM). TT is in effect

3213-583: Is an inseparable part of the discipline of astrobiology. Astrobiology concerns itself with interpretation of existing scientific data , and although speculation is entertained to give context, astrobiology concerns itself primarily with hypotheses that fit firmly into existing scientific theories . This interdisciplinary field encompasses research on the origin of planetary systems , origins of organic compounds in space , rock-water-carbon interactions, abiogenesis on Earth, planetary habitability , research on biosignatures for life detection, and studies on

3332-412: Is defined by international agreement to be equivalent to: Over shorter timescales, there are a variety of practices for defining when each day begins. In ordinary usage, the civil day is reckoned by the midnight epoch, that is, the civil day begins at midnight. But in older astronomical usage, it was usual, until January 1, 1925, to reckon by a noon epoch, 12 hours after the start of the civil day of

3451-427: Is easily absorbed by interstellar dust , an adjustment of ultraviolet measurements is necessary. X-ray astronomy uses X-ray wavelengths . Typically, X-ray radiation is produced by synchrotron emission (the result of electrons orbiting magnetic field lines), thermal emission from thin gases above 10 (10 million) kelvins , and thermal emission from thick gases above 10 Kelvin. Since X-rays are absorbed by

3570-414: Is founded on the detection and analysis of infrared radiation, wavelengths longer than red light and outside the range of our vision. The infrared spectrum is useful for studying objects that are too cold to radiate visible light, such as planets, circumstellar disks or nebulae whose light is blocked by dust. The longer wavelengths of infrared can penetrate clouds of dust that block visible light, allowing

3689-464: Is from these clouds that solar systems form. Studies in this field contribute to the understanding of the formation of the Solar System , Earth's origin and geology, abiogenesis , and the origin of climate and oceans. Astrobiology is an interdisciplinary scientific field concerned with the origins , early evolution , distribution, and future of life in the universe . Astrobiology considers

Epoch (astronomy) - Misplaced Pages Continue

3808-416: Is given below. Radio astronomy uses radiation with wavelengths greater than approximately one millimeter, outside the visible range. Radio astronomy is different from most other forms of observational astronomy in that the observed radio waves can be treated as waves rather than as discrete photons . Hence, it is relatively easier to measure both the amplitude and phase of radio waves, whereas this

3927-645: Is not as easily done at shorter wavelengths. Although some radio waves are emitted directly by astronomical objects, a product of thermal emission , most of the radio emission that is observed is the result of synchrotron radiation , which is produced when electrons orbit magnetic fields . Additionally, a number of spectral lines produced by interstellar gas , notably the hydrogen spectral line at 21 cm, are observable at radio wavelengths. A wide variety of other objects are observable at radio wavelengths, including supernovae , interstellar gas, pulsars , and active galactic nuclei . Infrared astronomy

4046-426: Is not itself defined by atomic clocks. It is a theoretical ideal, and real clocks can only approximate it. TT is distinct from the time scale often used as a basis for civil purposes, Coordinated Universal Time (UTC). TT is indirectly the basis of UTC, via International Atomic Time (TAI). Because of the historical difference between TAI and ET when TT was introduced, TT is 32.184 s ahead of TAI. A definition of

4165-475: Is one of the few sciences in which amateurs play an active role . This is especially true for the discovery and observation of transient events . Amateur astronomers have helped with many important discoveries, such as finding new comets. Astronomy (from the Greek ἀστρονομία from ἄστρον astron , "star" and -νομία -nomia from νόμος nomos , "law" or "culture") means "law of the stars" (or "culture of

4284-407: Is slightly ahead of UT1 (a refined measure of mean solar time at Greenwich) by an amount known as Δ T = TT − UT1. Δ T was measured at +67.6439 seconds (TT ahead of UT1) at 0 h UTC on 1 January 2015; and by retrospective calculation, Δ T was close to zero about the year 1900. Δ T is expected to continue to increase, with UT1 becoming steadily (but irregularly) further behind TT in

4403-426: Is supplied by TAI. The BIPM TAI service, performed since 1958, estimates TT using measurements from an ensemble of atomic clocks spread over the surface and low orbital space of Earth. TAI is canonically defined retrospectively, in monthly bulletins, in relation to the readings shown by that particular group of atomic clocks at the time. Estimates of TAI are also provided in real time by the institutions that operate

4522-508: Is the TCG time expressed as a Julian date (JD) . The Julian Date is a linear transformation of the raw count of seconds represented by the variable TCG, so this form of the equation is not simplified . The use of a Julian Date specifies the epoch fully. The above equation is often given with the Julian Date 2443 144.5 for the epoch, but that is inexact (though inappreciably so, because of

4641-479: Is the branch of astronomy that employs the principles of physics and chemistry "to ascertain the nature of the astronomical objects , rather than their positions or motions in space". Among the objects studied are the Sun , other stars , galaxies , extrasolar planets , the interstellar medium and the cosmic microwave background . Their emissions are examined across all parts of the electromagnetic spectrum , and

4760-395: Is the constant difference in the rates of the two time scales, and E {\displaystyle E} is a constant to resolve the epochs (see below). L G {\displaystyle L_{\mathrm {G} }} is defined as exactly 6.969 290 134 × 10 . Due to the term 1 − L G {\displaystyle 1-L_{\mathrm {G} }}

4879-453: Is the measurement of the positions of celestial objects. Historically, accurate knowledge of the positions of the Sun, Moon, planets and stars has been essential in celestial navigation (the use of celestial objects to guide navigation) and in the making of calendars . Careful measurement of the positions of the planets has led to a solid understanding of gravitational perturbations , and an ability to determine past and future positions of

Epoch (astronomy) - Misplaced Pages Continue

4998-438: Is widely known, although not always the same date in the year: thus "J2000" refers to the instant of 12 noon (midday) on January 1, 2000, and J1900 refers to the instant of 12 noon on January 0 , 1900, equal to December 31, 1899. It is also usual now to specify on what time scale the time of day is expressed in that epoch-designation, e.g. often Terrestrial Time . In addition, an epoch optionally prefixed by "J" and designated as

5117-484: The Compton Gamma Ray Observatory or by specialized telescopes called atmospheric Cherenkov telescopes . The Cherenkov telescopes do not detect the gamma rays directly but instead detect the flashes of visible light produced when gamma rays are absorbed by the Earth's atmosphere. Most gamma-ray emitting sources are actually gamma-ray bursts , objects which only produce gamma radiation for

5236-524: The Earth's atmosphere , all X-ray observations must be performed from high-altitude balloons , rockets , or X-ray astronomy satellites . Notable X-ray sources include X-ray binaries , pulsars , supernova remnants , elliptical galaxies , clusters of galaxies , and active galactic nuclei . Gamma ray astronomy observes astronomical objects at the shortest wavelengths of the electromagnetic spectrum. Gamma rays may be observed directly by satellites such as

5355-484: The Gregorian calendar are used. For continuity with their predecessor Ephemeris Time (ET), TT and TCG were set to match ET at around Julian Date 2443 144.5 (1977-01-01T00Z). More precisely, it was defined that TT instant 1977-01-01T00:00:32.184 and TCG instant 1977-01-01T00:00:32.184 exactly correspond to the International Atomic Time (TAI) instant 1977-01-01T00:00:00.000. This is also

5474-478: The IAU , so astronomers worldwide can collaborate more effectively. It is inefficient and error-prone if data or observations of one group have to be translated in non-standard ways so that other groups could compare the data with information from other sources. An example of how this works: if a star's position is measured by someone today, they then use a standard transformation to obtain the position expressed in terms of

5593-977: The Milky Way , as its own group of stars was only proven in the 20th century, along with the existence of "external" galaxies. The observed recession of those galaxies led to the discovery of the expansion of the Universe . In 1919, when the Hooker Telescope was completed, the prevailing view was that the universe consisted entirely of the Milky Way Galaxy. Using the Hooker Telescope, Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922–1923 proved conclusively that Andromeda Nebula and Triangulum among others, were entire galaxies outside our own, thus proving that

5712-794: The Muslim world by the early 9th century. In 964, the Andromeda Galaxy , the largest galaxy in the Local Group , was described by the Persian Muslim astronomer Abd al-Rahman al-Sufi in his Book of Fixed Stars . The SN 1006 supernova , the brightest apparent magnitude stellar event in recorded history, was observed by the Egyptian Arabic astronomer Ali ibn Ridwan and Chinese astronomers in 1006. Iranian scholar Al-Biruni observed that, contrary to Ptolemy ,

5831-561: The Renaissance , Nicolaus Copernicus proposed a heliocentric model of the solar system. His work was defended by Galileo Galilei and expanded upon by Johannes Kepler . Kepler was the first to devise a system that correctly described the details of the motion of the planets around the Sun. However, Kepler did not succeed in formulating a theory behind the laws he wrote down. It was Isaac Newton , with his invention of celestial dynamics and his law of gravitation , who finally explained

5950-561: The Solar System where the Earth and planets rotated around the Sun, now called the heliocentric model. In the 2nd century BC, Hipparchus discovered precession , calculated the size and distance of the Moon and invented the earliest known astronomical devices such as the astrolabe . Hipparchus also created a comprehensive catalog of 1020 stars, and most of the constellations of the northern hemisphere derive from Greek astronomy. The Antikythera mechanism ( c.  150 –80 BC)

6069-625: The heliacal rising of the star Sirius , a phenomenon which occurs in the morning just before dawn. In some cultures following a lunar or lunisolar calendar , in which the beginning of the month is determined by the appearance of the New Moon in the evening, the beginning of the day was reckoned from sunset to sunset, following an evening epoch, e.g. the Jewish and Islamic calendars and in Medieval Western Europe in reckoning

SECTION 50

#1732772603655

6188-427: The interstellar medium . The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites , is also called cosmochemistry , while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it

6307-406: The "equinox of date" case described above), two dates will be associated with the data: one date is the epoch for the time-dependent expressions giving the values, and the other date is that of the coordinate system in which the values are expressed. For example, orbital elements , especially osculating elements for minor planets, are routinely given with reference to two dates: first, relative to

6426-442: The 1990s, including studies of the cosmic microwave background , distant supernovae and galaxy redshifts , which have led to the development of a standard model of cosmology . This model requires the universe to contain large amounts of dark matter and dark energy whose nature is currently not well understood, but the model gives detailed predictions that are in excellent agreement with many diverse observations. Astrophysics

6545-403: The Earth's atmosphere and of their physical and chemical properties", while "astrophysics" refers to the branch of astronomy dealing with "the behavior, physical properties, and dynamic processes of celestial objects and phenomena". In some cases, as in the introduction of the introductory textbook The Physical Universe by Frank Shu , "astronomy" may be used to describe the qualitative study of

6664-464: The German mathematician and astronomer Friedrich Bessel (1784–1846). Meeus 1991 , p. 125 defines the beginning of a Besselian year to be the moment at which the mean longitude of the Sun, including the effect of aberration and measured from the mean equinox of the date, is exactly 280 degrees. This moment falls near the beginning of the corresponding Gregorian year . The definition depended on

6783-527: The Sun's apogee (highest point in the heavens) was mobile, not fixed. Some of the prominent Islamic (mostly Persian and Arab) astronomers who made significant contributions to the science include Al-Battani , Thebit , Abd al-Rahman al-Sufi , Biruni , Abū Ishāq Ibrāhīm al-Zarqālī , Al-Birjandi , and the astronomers of the Maragheh and Samarkand observatories. Astronomers during that time introduced many Arabic names now used for individual stars . It

6902-584: The Sun, the Moon and the stars rotating around it. This is known as the geocentric model of the Universe, or the Ptolemaic system , named after Ptolemy . A particularly important early development was the beginning of mathematical and scientific astronomy, which began among the Babylonians , who laid the foundations for the later astronomical traditions that developed in many other civilizations. The Babylonians discovered that lunar eclipses recurred in

7021-535: The age of the Universe and size of the Observable Universe. Theoretical astronomy led to speculations on the existence of objects such as black holes and neutron stars , which have been used to explain such observed phenomena as quasars , pulsars , blazars , and radio galaxies . Physical cosmology made huge advances during the 20th century. In the early 1900s the model of the Big Bang theory

7140-505: The age of the observations and their epoch, and the equinox and equator to which they are referred, get older. After a while, it is easier or better to switch to newer data, generally referred to as a newer epoch and equinox/equator, than to keep applying corrections to the older data. Epochs and equinoxes are moments in time, so they can be specified in the same way as moments that indicate things other than epochs and equinoxes. The following standard ways of specifying epochs and equinoxes seem

7259-486: The atmosphere itself produces significant infrared emission. Consequently, infrared observatories have to be located in high, dry places on Earth or in space. Some molecules radiate strongly in the infrared. This allows the study of the chemistry of space; more specifically it can detect water in comets. Historically, optical astronomy, which has been also called visible light astronomy, is the oldest form of astronomy. Images of observations were originally drawn by hand. In

SECTION 60

#1732772603655

7378-406: The considered type. When the data are dependent for their values on a particular coordinate system, the date of that coordinate system needs to be specified directly or indirectly. Celestial coordinate systems most commonly used in astronomy are equatorial coordinates and ecliptic coordinates . These are defined relative to the (moving) vernal equinox position, which itself is determined by

7497-426: The current position of that comet must be expressed in the coordinate system of 1875 (equinox/equator of 1875). Thus that coordinate system can still be used today, even though most comet predictions made originally for 1875 (epoch = 1875) would no longer be useful today, because of the lack of information about their time-dependence and perturbations. To calculate the visibility of a celestial object for an observer at

7616-794: The dates of religious festivals, while in others a morning epoch was followed, e.g. the Hindu and Buddhist calendars . Astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics , physics , and chemistry in order to explain their origin and their overall evolution . Objects of interest include planets , moons , stars , nebulae , galaxies , meteoroids , asteroids , and comets . Relevant phenomena include supernova explosions, gamma ray bursts , quasars , blazars , pulsars , and cosmic microwave background radiation . More generally, astronomy studies everything that originates beyond Earth's atmosphere . Cosmology

7735-408: The department is historically affiliated with a physics department, and many professional astronomers have physics rather than astronomy degrees. Some titles of the leading scientific journals in this field include The Astronomical Journal , The Astrophysical Journal , and Astronomy & Astrophysics . In early historic times, astronomy only consisted of the observation and predictions of

7854-474: The detection of neutrinos . The vast majority of the neutrinos streaming through the Earth originate from the Sun , but 24 neutrinos were also detected from supernova 1987A . Cosmic rays , which consist of very high energy particles (atomic nuclei) that can decay or be absorbed when they enter the Earth's atmosphere, result in a cascade of secondary particles which can be detected by current observatories. Some future neutrino detectors may also be sensitive to

7973-499: The elements are independent of any particular coordinate system: M is mean anomaly (deg), n: mean daily motion (deg/d), a: size of semi-major axis (AU), e: eccentricity (dimensionless). But the argument of perihelion, longitude of the ascending node and the inclination are all coordinate-dependent, and are specified relative to the reference frame of the equinox and ecliptic of another date "2000.0", otherwise known as J2000, i.e. January 1.5, 2000 (12h on January 1) or JD 2451545.0. In

8092-425: The equator and of the ecliptic. The epoch of the coordinate system need not be the same, and often in practice is not the same, as the epoch for the data themselves. The difference between reference to an epoch alone, and a reference to a certain equinox with equator or ecliptic, is therefore that the reference to the epoch contributes to specifying the date of the values of astronomical variables themselves; while

8211-492: The equinoxes. If the time difference is small, then fairly easy and small corrections for the precession may well suffice. If the time difference gets large, then fuller and more accurate corrections must be applied. For this reason, a star position read from a star atlas or catalog based on a sufficiently old equinox and equator cannot be used without corrections if reasonable accuracy is required. Additionally, stars move relative to each other through space. Apparent motion across

8330-575: The form "TT(BIPM08)", with the digits indicating the year of publication. They are published in the form of a table of differences from TT(TAI), along with an extrapolation equation that may be used for dates later than the table. The latest as of July 2024 is TT(BIPM23). Researchers from the International Pulsar Timing Array collaboration have created a realization TT(IPTA16) of TT based on observations of an ensemble of pulsars up to 2012. This new pulsar time scale

8449-456: The formula given above, A Julian year is an interval with the length of a mean year in the Julian calendar , i.e. 365.25 days. This interval measure does not itself define any epoch: the Gregorian calendar is in general use for dating. But, standard conventional epochs which are not Besselian epochs have been often designated nowadays with a prefix "J", and the calendar date to which they refer

8568-400: The future. In fine detail, Δ T is somewhat unpredictable, with 10-year extrapolations diverging by 2-3 seconds from the actual value. Observers in different locations, that are in relative motion or at different altitudes, can disagree about the rates of each other's clocks, owing to effects described by the theory of relativity . As a result, TT (even as a theoretical ideal) does not match

8687-435: The gravitational effects of other bodies) can be used to generate an ephemeris , a table of values giving the positions and velocities of astronomical objects in the sky at a given time or times. Astronomical quantities can be specified in any of several ways, for example, as a polynomial function of the time interval, with an epoch as a temporal point of origin (this is a common current way of using an epoch). Alternatively,

8806-696: The instant at which TAI introduced corrections for gravitational time dilation . TT and TCG expressed as Julian Dates can be related precisely and most simply by the equation J D T T = E J D + ( J D T C G − E J D ) × ( 1 − L G ) , {\displaystyle \mathrm {JD_{TT}} =E_{\mathrm {JD} }+{\bigl (}\mathrm {JD_{TCG}} -E_{\mathrm {JD} }{\bigr )}\times {\bigl (}1-L_{\mathrm {G} }{\bigr )},} where E J D {\displaystyle E_{\mathrm {JD} }}

8925-414: The introduction of new technology, including the spectroscope and photography . Joseph von Fraunhofer discovered about 600 bands in the spectrum of the Sun in 1814–15, which, in 1859, Gustav Kirchhoff ascribed to the presence of different elements. Stars were proven to be similar to the Earth's own Sun, but with a wide range of temperatures , masses , and sizes. The existence of the Earth's galaxy,

9044-579: The late 19th century and most of the 20th century, images were made using photographic equipment. Modern images are made using digital detectors, particularly using charge-coupled devices (CCDs) and recorded on modern medium. Although visible light itself extends from approximately 4000 Å to 7000 Å (400 nm to 700 nm), that same equipment can be used to observe some near-ultraviolet and near-infrared radiation. Ultraviolet astronomy employs ultraviolet wavelengths between approximately 100 and 3200 Å (10 to 320 nm). Light at those wavelengths

9163-576: The making of calendars . Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results. Astronomy

9282-530: The mean longitude of the Sun. When using Besselian years, specify which definition is being used. To distinguish between calendar years and Besselian years, it became customary to add ".0" to the Besselian years. Since the switch to Julian years in the mid-1980s, it has become customary to prefix "B" to Besselian years. So, "1950" is the calendar year 1950, and "1950.0" = "B1950.0" is the beginning of Besselian year 1950. According to Meeus, and also according to

9401-609: The meaning of 'dynamical' in the name TDT. In 1991, in Recommendation IV of the XXI General Assembly, the IAU redefined TDT, also renaming it "Terrestrial Time". TT was formally defined in terms of Geocentric Coordinate Time (TCG), defined by the IAU on the same occasion. TT was defined to be a linear scaling of TCG, such that the unit of TT is the "SI second on the geoid ", i.e. the rate approximately matched

9520-448: The most popular: All three of these are expressed in TT = Terrestrial Time . Besselian years, used mostly for star positions, can be encountered in older catalogs but are now becoming obsolete. The Hipparcos catalog summary, for example, defines the "catalog epoch" as "J1991.25" (8.75 Julian years before January 1.5, 2000 TT, e.g., April 2.5625, 1991 TT). A Besselian year is named after

9639-593: The motions of objects visible to the naked eye. In some locations, early cultures assembled massive artifacts that may have had some astronomical purpose. In addition to their ceremonial uses, these observatories could be employed to determine the seasons, an important factor in knowing when to plant crops and in understanding the length of the year. As civilizations developed, most notably in Egypt , Mesopotamia , Greece , Persia , India , China , and Central America , astronomical observatories were assembled and ideas on

9758-417: The motions of the planets. Newton also developed the reflecting telescope . Improvements in the size and quality of the telescope led to further discoveries. The English astronomer John Flamsteed catalogued over 3000 stars. More extensive star catalogues were produced by Nicolas Louis de Lacaille . The astronomer William Herschel made a detailed catalog of nebulosity and clusters, and in 1781 discovered

9877-406: The nature of the Universe began to develop. Most early astronomy consisted of mapping the positions of the stars and planets, a science now referred to as astrometry . From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon and the Earth in the Universe were explored philosophically. The Earth was believed to be the center of the Universe with

9996-494: The observation of young stars embedded in molecular clouds and the cores of galaxies. Observations from the Wide-field Infrared Survey Explorer (WISE) have been particularly effective at unveiling numerous galactic protostars and their host star clusters . With the exception of infrared wavelengths close to visible light, such radiation is heavily absorbed by the atmosphere, or masked, as

10115-691: The order of 10-50 microseconds. The GPS time scale has a nominal difference from atomic time (TAI − GPS time = +19 seconds) , so that TT ≈ GPS time + 51.184 seconds . This realization introduces up to a microsecond of additional error, as the GPS signal is not precisely synchronized with TAI, but GPS receiving devices are widely available. Approximately annually since 1992, the International Bureau of Weights and Measures ( BIPM ) has produced better realizations of TT based on reanalysis of historical TAI data. BIPM's realizations of TT are named in

10234-479: The orientations of the Earth 's rotation axis and orbit around the Sun . Their orientations vary (though slowly, e.g. due to precession ), and there is an infinity of such coordinate systems possible. Thus the coordinate systems most used in astronomy need their own date-reference because the coordinate systems of that type are themselves in motion, e.g. by the precession of the equinoxes , nowadays often resolved into precessional components, separate precessions of

10353-414: The participating clocks. Because of the historical difference between TAI and ET when TT was introduced, the TAI realization of TT is defined thus: T T ( T A I ) = T A I + 32.184   s . {\displaystyle \mathrm {TT(TAI)=TAI+32.184~s} .} The offset 32.184 s arises from history. The atomic time scale A1 (a predecessor of TAI)

10472-553: The particles produced when cosmic rays hit the Earth's atmosphere. Gravitational-wave astronomy is an emerging field of astronomy that employs gravitational-wave detectors to collect observational data about distant massive objects. A few observatories have been constructed, such as the Laser Interferometer Gravitational Observatory LIGO . LIGO made its first detection on 14 September 2015, observing gravitational waves from

10591-419: The particular set of coordinates exampled above, much of the elements has been omitted as unknown or undetermined; for example, the element n allows an approximate time-dependence of the element M to be calculated, but the other elements and n itself are treated as constant, which represents a temporary approximation (see Osculating elements ). Thus a particular coordinate system (equinox and equator/ecliptic of

10710-497: The planet Uranus , the first new planet found. During the 18–19th centuries, the study of the three-body problem by Leonhard Euler , Alexis Claude Clairaut , and Jean le Rond d'Alembert led to more accurate predictions about the motions of the Moon and planets. This work was further refined by Joseph-Louis Lagrange and Pierre Simon Laplace , allowing the masses of the planets and moons to be estimated from their perturbations. Significant advances in astronomy came about with

10829-470: The planets with great accuracy, a field known as celestial mechanics . More recently the tracking of near-Earth objects will allow for predictions of close encounters or potential collisions of the Earth with those objects. The measurement of stellar parallax of nearby stars provides a fundamental baseline in the cosmic distance ladder that is used to measure the scale of the Universe. Parallax measurements of nearby stars provide an absolute baseline for

10948-517: The potential for life to adapt to challenges on Earth and in outer space . Cosmology (from the Greek κόσμος ( kosmos ) "world, universe" and λόγος ( logos ) "word, study" or literally "logic") could be considered the study of the Universe as a whole. Terrestrial Time The unit of TT is the SI second , the definition of which is based currently on the caesium atomic clock , but TT

11067-596: The pre-colonial Middle Ages, but modern discoveries show otherwise. For over six centuries (from the recovery of ancient learning during the late Middle Ages into the Enlightenment), the Roman Catholic Church gave more financial and social support to the study of astronomy than probably all other institutions. Among the Church's motives was finding the date for Easter . Medieval Europe housed

11186-460: The proper time of all observers. In relativistic terms, TT is described as the proper time of a clock located on the geoid (essentially mean sea level ). However, TT is now actually defined as a coordinate time scale . The redefinition did not quantitatively change TT, but rather made the existing definition more precise. In effect it defined the geoid (mean sea level) in terms of a particular level of gravitational time dilation relative to

11305-458: The properties examined include luminosity , density , temperature , and chemical composition. Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics , electromagnetism , statistical mechanics , thermodynamics , quantum mechanics , relativity , nuclear and particle physics , and atomic and molecular physics . In practice, modern astronomical research often involves

11424-473: The properties of more distant stars, as their properties can be compared. Measurements of the radial velocity and proper motion of stars allow astronomers to plot the movement of these systems through the Milky Way galaxy. Astrometric results are the basis used to calculate the distribution of speculated dark matter in the galaxy. During the 1990s, the measurement of the stellar wobble of nearby stars

11543-459: The question of whether extraterrestrial life exists, and how humans can detect it if it does. The term exobiology is similar. Astrobiology makes use of molecular biology , biophysics , biochemistry , chemistry , astronomy, physical cosmology , exoplanetology and geology to investigate the possibility of life on other worlds and help recognize biospheres that might be different from that on Earth. The origin and early evolution of life

11662-470: The rate of proper time on the Earth's surface at mean sea level. Thus the exact ratio between TT time and TCG time was 1 − L G {\displaystyle 1-L_{\mathrm {G} }} , where L G = U G / c 2 {\displaystyle L_{\mathrm {G} }=U_{\mathrm {G} }/c^{2}} was a constant and U G {\displaystyle U_{\mathrm {G} }}

11781-599: The rate of TT is very slightly slower than that of TCG. The equation linking TT and TCG more commonly has the form given by the IAU, T T = T C G − L G × ( J D T C G − 2443144.5003725 ) × 86400 , {\displaystyle \mathrm {TT} =\mathrm {TCG} -L_{\mathrm {G} }\times {\bigl (}\mathrm {JD_{TCG}} -2443144.5003725{\bigr )}\times 86400,} where J D T C G {\displaystyle \mathrm {JD_{TCG}} }

11900-464: The reference to an equinox along with equator/ecliptic, of a certain date, addresses the identification of, or changes in, the coordinate system in terms of which those astronomical variables are expressed. (Sometimes the word 'equinox' may be used alone, e.g. where it is obvious from the context to users of the data in which form the considered astronomical variables are expressed, in equatorial form or ecliptic form.) The equinox with equator/ecliptic of

12019-487: The result of the use of an epoch to express the data. In other cases, e.g. the case of a complete analytical theory of the motion of some astronomical body, all of the elements will usually be given in the form of polynomials in interval of time from the epoch, and they will also be accompanied by trigonometrical terms of periodical perturbations specified appropriately. In that case, their period of validity may stretch over several centuries or even millennia on either side of

12138-425: The rotation of the Earth, furthermore, Buridan also developed the theory of impetus (predecessor of the modern scientific theory of inertia ) which was able to show planets were capable of motion without the intervention of angels. Georg von Peuerbach (1423–1461) and Regiomontanus (1436–1476) helped make astronomical progress instrumental to Copernicus's development of the heliocentric model decades later. During

12257-513: The same calendar day). (See also Julian year (astronomy) .) Like the Besselian epoch, an arbitrary Julian epoch is therefore related to the Julian date by The IAU decided at their General Assembly of 1976 that the new standard equinox of J2000.0 should be used starting in 1984. Before that, the equinox of B1950.0 seems to have been the standard. Different astronomers or groups of astronomers used to define individually, but today standard epochs are generally defined by international agreements through

12376-478: The same denomination, so that the day began when the mean sun crossed the meridian at noon. This is still reflected in the definition of J2000, which started at noon, Terrestrial Time. In traditional cultures and in antiquity other epochs were used. In ancient Egypt , days were reckoned from sunrise to sunrise, following a morning epoch. This may be related to the fact that the Egyptians regulated their year by

12495-427: The sky relative to other stars is called proper motion . Most stars have very small proper motions, but a few have proper motions that accumulate to noticeable distances after a few tens of years. So, some stellar positions read from a star atlas or catalog for a sufficiently old epoch require proper motion corrections as well, for reasonable accuracy. Due to precession and proper motion, star data become less useful as

12614-413: The small size of the multiplier L G {\displaystyle L_{\mathrm {G} }} ). The value 2443 144.500 3725 is exactly in accord with the definition. Time coordinates on the TT and TCG scales are specified conventionally using traditional means of specifying days, inherited from non-uniform time standards based on the rotation of Earth. Specifically, both Julian Dates and

12733-400: The standard reference frame of J2000, and it is often then this J2000 position which is shared with others. On the other hand, there has also been an astronomical tradition of retaining observations in just the form in which they were made, so that others can later correct the reductions to standard if that proves desirable, as has sometimes occurred. The currently used standard epoch "J2000"

12852-436: The stars" depending on the translation). Astronomy should not be confused with astrology , the belief system which claims that human affairs are correlated with the positions of celestial objects. Although the two fields share a common origin, they are now entirely distinct. "Astronomy" and " astrophysics " are synonyms. Based on strict dictionary definitions, "astronomy" refers to "the study of objects and matter outside

12971-418: The stated epoch. Some data and some epochs have a long period of use for other reasons. For example, the boundaries of the IAU constellations are specified relative to an equinox from near the beginning of the year 1875. This is a matter of convention, but the convention is defined in terms of the equator and ecliptic as they were in 1875. To find out in which constellation a particular comet stands today,

13090-477: The subject, whereas "astrophysics" is used to describe the physics-oriented version of the subject. However, since most modern astronomical research deals with subjects related to physics, modern astronomy could actually be called astrophysics. Some fields, such as astrometry , are purely astronomy rather than also astrophysics. Various departments in which scientists carry out research on this subject may use "astronomy" and "astrophysics", partly depending on whether

13209-433: The time-varying astronomical quantity can be expressed as a constant, equal to the measure that it had at the epoch, leaving its variation over time to be specified in some other way—for example, by a table, as was common during the 17th and 18th centuries. The word epoch was often used in a different way in older astronomical literature, e.g. during the 18th century, in connection with astronomical tables. At that time, it

13328-548: The universe consists of a multitude of galaxies. With this Hubble formulated the Hubble constant , which allowed for the first time a calculation of the age of the Universe and size of the Observable Universe, which became increasingly precise with better meassurements, starting at 2 billion years and 280 million light-years, until 2006 when data of the Hubble Space Telescope allowed a very accurate calculation of

13447-409: The universe; origin of cosmic rays ; general relativity and physical cosmology , including string cosmology and astroparticle physics . Astrochemistry is the study of the abundance and reactions of molecules in the Universe , and their interaction with radiation . The discipline is an overlap of astronomy and chemistry . The word "astrochemistry" may be applied to both the Solar System and

13566-640: Was used to detect large extrasolar planets orbiting those stars. Theoretical astronomers use several tools including analytical models and computational numerical simulations ; each has its particular advantages. Analytical models of a process are better for giving broader insight into the heart of what is going on. Numerical models reveal the existence of phenomena and effects otherwise unobserved. Theorists in astronomy endeavor to create theoretical models that are based on existing observations and known physics, and to predict observational consequences of those models. The observation of phenomena predicted by

13685-520: Was an early analog computer designed to calculate the location of the Sun , Moon , and planets for a given date. Technological artifacts of similar complexity did not reappear until the 14th century, when mechanical astronomical clocks appeared in Europe. Astronomy flourished in the Islamic world and other parts of the world. This led to the emergence of the first astronomical observatories in

13804-438: Was customary to denote as "epochs", not the standard date and time of origin for time-varying astronomical quantities, but rather the values at that date and time of those time-varying quantities themselves . In accordance with that alternative historical usage, an expression such as 'correcting the epochs' would refer to the adjustment, usually by a small amount, of the values of the tabulated astronomical quantities applicable to

13923-536: Was formulated, heavily evidenced by cosmic microwave background radiation , Hubble's law , and the cosmological abundances of elements . Space telescopes have enabled measurements in parts of the electromagnetic spectrum normally blocked or blurred by the atmosphere. In February 2016, it was revealed that the LIGO project had detected evidence of gravitational waves in the previous September. The main source of information about celestial bodies and other objects

14042-408: Was set equal to UT2 at its conventional starting date of 1 January 1958, when Δ T (ET − UT) was about 32 seconds. The offset 32.184 seconds was the 1976 estimate of the difference between Ephemeris Time (ET) and TAI, "to provide continuity with the current values and practice in the use of Ephemeris Time". TAI is never revised once published and TT(TAI) has small errors relative to TT(BIPM), on

14161-419: Was the gravitational potential at the geoid surface, a value measured by physical geodesy . In 1991 the best available estimate of L G {\displaystyle L_{\mathrm {G} }} was 6.969 291 × 10 . In 2000, the IAU very slightly altered the definition of TT by adopting an exact value, L G = 6.969 290 134 × 10 . TT differs from Geocentric Coordinate Time (TCG) by

#654345