56-461: JVT may refer to: Joint Video Team, providing Advanced Video Coding standards John Van Tongeren , American musician and composer Jack van Tongeren , Australian neo-Nazi Jonathan Van-Tam , British specialist in influenza and pandemic preparedness JVT, a 1955 car raced by Len Terry Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with
112-461: A H.264/AVC codec that does not support SVC. For temporal bitstream scalability (i.e., the presence of a sub-bitstream with a smaller temporal sampling rate than the main bitstream), complete access units are removed from the bitstream when deriving the sub-bitstream. In this case, high-level syntax and inter-prediction reference pictures in the bitstream are constructed accordingly. On the other hand, for spatial and quality bitstream scalability (i.e.
168-410: A free video format which is thought to be unencumbered by patents, and H.264, which contains patented technology. As late as July 2009, Google and Apple were said to support H.264, while Mozilla and Opera support Ogg Theora (now Google, Mozilla and Opera all support Theora and WebM with VP8 ). Microsoft, with the release of Internet Explorer 9, has added support for HTML 5 video encoded using H.264. At
224-448: A new patent pool administration company called Via Licensing Alliance . The commercial use of patented H.264 technologies requires the payment of royalties to Via and other patent owners. MPEG LA has allowed the free use of H.264 technologies for streaming Internet video that is free to end users, and Cisco paid royalties to MPEG LA on behalf of the users of binaries for its open source H.264 encoder openH264 . The H.264 name follows
280-515: A number of new features that allow it to compress video much more efficiently than older standards and to provide more flexibility for application to a wide variety of network environments. In particular, some such key features include: These techniques, along with several others, help H.264 to perform significantly better than any prior standard under a wide variety of circumstances in a wide variety of application environments. H.264 can often perform radically better than MPEG-2 video—typically obtaining
336-428: A profile code (profile_idc) and sometimes a set of additional constraints applied in the encoder. The profile code and indicated constraints allow a decoder to recognize the requirements for decoding that specific bitstream. (And in many system environments, only one or two profiles are allowed to be used, so decoders in those environments do not need to be concerned with recognizing the less commonly used profiles.) By far
392-691: A result of the Scalable Video Coding (SVC) extension, the standard contains five additional scalable profiles , which are defined as a combination of a H.264/AVC profile for the base layer (identified by the second word in the scalable profile name) and tools that achieve the scalable extension: As a result of the Multiview Video Coding (MVC) extension, the standard contains two multiview profiles : The Multi-resolution Frame-Compatible (MFC) extension added two more profiles: The 3D-AVC extension added two more profiles: As
448-443: A very broad application range that covers all forms of digital compressed video from low bit-rate Internet streaming applications to HDTV broadcast and Digital Cinema applications with nearly lossless coding. With the use of H.264, bit rate savings of 50% or more compared to MPEG-2 Part 2 are reported. For example, H.264 has been reported to give the same Digital Satellite TV quality as current MPEG-2 implementations with less than half
504-524: Is not included in the computation of DPB fullness (unless the encoder has indicated for it to be stored for use as a reference for decoding other pictures or for delayed output timing). Thus, a decoder needs to actually have sufficient memory to handle (at least) one frame more than the maximum capacity of the DPB as calculated above. In 2009, the HTML5 working group was split between supporters of Ogg Theora ,
560-494: Is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019 . It supports a maximum resolution of 8K UHD . The intent of the H.264/AVC project was to create a standard capable of providing good video quality at substantially lower bit rates than previous standards (i.e., half or less
616-408: Is a constant value provided in the table below as a function of level number, and PicWidthInMbs and FrameHeightInMbs are the picture width and frame height for the coded video data, expressed in units of macroblocks (rounded up to integer values and accounting for cropping and macroblock pairing when applicable). This formula is specified in sections A.3.1.h and A.3.2.f of the 2017 edition of
SECTION 10
#1732779630833672-764: Is a statutory meeting of the World Telecommunication Standardization Assembly (WTSA), which creates the ITU-T Study Groups and appoints their management teams. The secretariat is provided by the Telecommunication Standardization Bureau (under Director Seizo Onoe ). WTSA instructed ITU to hold the Global Standards Symposium as a part of the deliberations that is open to the public. The goal of SG16
728-409: Is a successor to H.264/MPEG-4 AVC developed by the same organizations, while earlier standards are still in common use. H.264 is perhaps best known as being the most commonly used video encoding format on Blu-ray Discs . It is also widely used by streaming Internet sources, such as videos from Netflix , Hulu , Amazon Prime Video , Vimeo , YouTube , and the iTunes Store , Web software such as
784-634: Is also referred to as "the JVT codec", in reference to the Joint Video Team (JVT) organization that developed it. (Such partnership and multiple naming is not uncommon. For example, the video compression standard known as MPEG-2 also arose from the partnership between MPEG and the ITU-T, where MPEG-2 video is known to the ITU-T community as H.262. ) Some software programs (such as VLC media player ) internally identify this standard as AVC1. In early 1998,
840-414: Is by far the most commonly used format. A specific decoder decodes at least one, but not necessarily all profiles. The standard describes the format of the encoded data and how the data is decoded, but it does not specify algorithms for encoding video – that is left open as a matter for encoder designers to select for themselves, and a wide variety of encoding schemes have been developed. H.264
896-610: Is known as the Joint Video Team (JVT). The ITU-T H.264 standard and the ISO/IEC MPEG-4 AVC standard (formally, ISO/IEC 14496-10 – MPEG-4 Part 10, Advanced Video Coding) are jointly maintained so that they have identical technical content. The final drafting work on the first version of the standard was completed in May 2003, and various extensions of its capabilities have been added in subsequent editions. High Efficiency Video Coding (HEVC), a.k.a. H.265 and MPEG-H Part 2
952-644: Is responsible for standardization of the "H.26x" line of video coding standards, the "T.8xx" line of image coding standards, and related technologies, as well as various collaborations with the World Health Organization , including on safe listening ( H.870 ) accessibility of e-health ( F.780.2 ), it is also the parent body of VCEG and various Focus Groups, such as the ITU-WHO Focus Group on Artificial Intelligence for Health and its AI for Health Framework . Administratively, SG16
1008-609: Is the highest level supported by that video standard. XAVC can support 4K resolution (4096 × 2160 and 3840 × 2160) at up to 60 frames per second (fps). Sony has announced that cameras that support XAVC include two CineAlta cameras—the Sony PMW-F55 and Sony PMW-F5. The Sony PMW-F55 can record XAVC with 4K resolution at 30 fps at 300 Mbit/s and 2K resolution at 30 fps at 100 Mbit/s. XAVC can record 4K resolution at 60 fps with 4:2:2 chroma sampling at 600 Mbit/s. H.264/AVC/MPEG-4 Part 10 contains
1064-425: Is to produce Recommendations (international standards) for multimedia , including e.g. video coding , audio coding and image coding methods, such as H.264 , H.265 , H.266 , and JPEG , as well as other types of multimedia related standards such as F.780.2 , H.810 , and H.870 on safe listening, together with the World Health Organization . It is also responsible for "the coordination of related studies across
1120-558: Is typically used for lossy compression , although it is also possible to create truly lossless-coded regions within lossy-coded pictures or to support rare use cases for which the entire encoding is lossless. H.264 was standardized by the ITU-T Video Coding Experts Group (VCEG) of Study Group 16 together with the ISO/IEC JTC 1 Moving Picture Experts Group (MPEG). The project partnership effort
1176-588: The Adobe Flash Player and Microsoft Silverlight , and also various HDTV broadcasts over terrestrial ( ATSC , ISDB-T , DVB-T or DVB-T2 ), cable ( DVB-C ), and satellite ( DVB-S and DVB-S2 ) systems. H.264 is restricted by patents owned by various parties. A license covering most (but not all ) patents essential to H.264 is administered by a patent pool formerly administered by MPEG LA . Via Licensing Corp acquired MPEG LA in April 2023 and formed
SECTION 20
#17327796308331232-608: The Blu-ray Disc format and the now-discontinued HD DVD format include the H.264/AVC High Profile as one of three mandatory video compression formats. The Digital Video Broadcast project ( DVB ) approved the use of H.264/AVC for broadcast television in late 2004. The Advanced Television Systems Committee (ATSC) standards body in the United States approved the use of H.264/AVC for broadcast television in July 2008, although
1288-546: The ITU-T naming convention , where Recommendations are given a letter corresponding to their series and a recommendation number within the series. H.264 is part of "H-Series Recommendations: Audiovisual and multimedia systems". H.264 is further categorized into "H.200-H.499: Infrastructure of audiovisual services" and "H.260-H.279: Coding of moving video". The MPEG-4 AVC name relates to the naming convention in ISO / IEC MPEG , where
1344-622: The Moving Picture Experts Group . The above-mentioned aspects include features in all profiles of H.264. A profile for a codec is a set of features of that codec identified to meet a certain set of specifications of intended applications. This means that many of the features listed are not supported in some profiles. Various profiles of H.264/AVC are discussed in next section. The standard defines several sets of capabilities, which are referred to as profiles , targeting specific classes of applications. These are declared using
1400-544: The Simplified BSD license , and pay all royalties for its use to MPEG LA for any software projects that use Cisco's precompiled binaries, thus making Cisco's OpenH264 binaries free to use. However, any software projects that use Cisco's source code instead of its binaries would be legally responsible for paying all royalties to MPEG LA. Target CPU architectures include x86 and ARM, and target operating systems include Linux, Windows XP and later, Mac OS X, and Android; iOS
1456-541: The Video Coding Experts Group (VCEG – ITU-T SG16 Q.6) issued a call for proposals on a project called H.26L, with the target to double the coding efficiency (which means halving the bit rate necessary for a given level of fidelity) in comparison to any other existing video coding standards for a broad variety of applications. VCEG was chaired by Gary Sullivan ( Microsoft , formerly PictureTel , U.S.). The first draft design for that new standard
1512-874: The FRExt project, such as adding an 8×8 integer discrete cosine transform (integer DCT) with adaptive switching between the 4×4 and 8×8 transforms, encoder-specified perceptual-based quantization weighting matrices, efficient inter-picture lossless coding, and support of additional color spaces. The design work on the FRExt project was completed in July 2004, and the drafting work on them was completed in September 2004. Five other new profiles (see version 7 below) intended primarily for professional applications were then developed, adding extended-gamut color space support, defining additional aspect ratio indicators, defining two additional types of "supplemental enhancement information" (post-filter hint and tone mapping), and deprecating one of
1568-592: The Fidelity Range Extensions (FRExt) project was finalized. From January 2005 to November 2007, the JVT was working on an extension of H.264/AVC towards scalability by an Annex (G) called Scalable Video Coding (SVC). The JVT management team was extended by Jens-Rainer Ohm ( RWTH Aachen University , Germany). From July 2006 to November 2009, the JVT worked on Multiview Video Coding (MVC), an extension of H.264/AVC towards 3D television and limited-range free-viewpoint television . That work included
1624-722: The Gartner Symposium/ITXpo in November 2010, Microsoft CEO Steve Ballmer answered the question "HTML 5 or Silverlight ?" by saying "If you want to do something that is universal, there is no question the world is going HTML5." In January 2011, Google announced that they were pulling support for H.264 from their Chrome browser and supporting both Theora and WebM / VP8 to use only open formats. On March 18, 2012, Mozilla announced support for H.264 in Firefox on mobile devices, due to prevalence of H.264-encoded video and
1680-588: The H.264/AVC standard include the following completed revisions, corrigenda, and amendments (dates are final approval dates in ITU-T, while final "International Standard" approval dates in ISO/IEC are somewhat different and slightly later in most cases). Each version represents changes relative to the next lower version that is integrated into the text. The following organizations hold one or more patents in MPEG LA's H.264/AVC patent pool. The H.264 video format has
1736-598: The High Profile is 1.25 times that of the Constrained Baseline, Baseline, Extended and Main Profiles; 3 times for Hi10P, and 4 times for Hi422P/Hi444PP. The number of luma samples is 16×16=256 times the number of macroblocks (and the number of luma samples per second is 256 times the number of macroblocks per second). Previously encoded pictures are used by H.264/AVC encoders to provide predictions of
JVT - Misplaced Pages Continue
1792-430: The bit rate of MPEG-2 , H.263 , or MPEG-4 Part 2 ), without increasing the complexity of design so much that it would be impractical or excessively expensive to implement. This was achieved with features such as a reduced-complexity integer discrete cosine transform (integer DCT), variable block-size segmentation, and multi-picture inter-picture prediction . An additional goal was to provide enough flexibility to allow
1848-520: The bitrate, with current MPEG-2 implementations working at around 3.5 Mbit/s and H.264 at only 1.5 Mbit/s. Sony claims that 9 Mbit/s AVC recording mode is equivalent to the image quality of the HDV format, which uses approximately 18–25 Mbit/s. To ensure compatibility and problem-free adoption of H.264/AVC, many standards bodies have amended or added to their video-related standards so that users of these standards can employ H.264/AVC. Both
1904-535: The complete encoding or decoding process, or for acceleration assistance within a CPU-controlled environment. CPU based solutions are known to be much more flexible, particularly when encoding must be done concurrently in multiple formats, multiple bit rates and resolutions ( multi-screen video ), and possibly with additional features on container format support, advanced integrated advertising features, etc. CPU based software solution generally makes it much easier to load balance multiple concurrent encoding sessions within
1960-487: The core decoding process, but can indicate how the video is recommended to be post-processed or displayed. Some other high-level properties of the video content are conveyed in video usability information (VUI), such as the indication of the color space for interpretation of the video content. As new color spaces have been developed, such as for high dynamic range and wide color gamut video, additional VUI identifiers have been added to indicate them. The standardization of
2016-681: The development of two new profiles of the standard: the Multiview High Profile and the Stereo High Profile. Throughout the development of the standard, additional messages for containing supplemental enhancement information (SEI) have been developed. SEI messages can contain various types of data that indicate the timing of the video pictures or describe various properties of the coded video or how it can be used or enhanced. SEI messages are also defined that can contain arbitrary user-defined data. SEI messages do not affect
2072-477: The first version of H.264/AVC was completed in May 2003. In the first project to extend the original standard, the JVT then developed what was called the Fidelity Range Extensions (FRExt). These extensions enabled higher quality video coding by supporting increased sample bit depth precision and higher-resolution color information, including the sampling structures known as Y′C B C R 4:2:2 (a.k.a. YUV 4:2:2 ) and 4:4:4. Several other features were also included in
2128-522: The increased power-efficiency of using dedicated H.264 decoder hardware common on such devices. On February 20, 2013, Mozilla implemented support in Firefox for decoding H.264 on Windows 7 and above. This feature relies on Windows' built in decoding libraries. Firefox 35.0, released on January 13, 2015, supports H.264 on OS X 10.6 and higher. On October 30, 2013, Rowan Trollope from Cisco Systems announced that Cisco would release both binaries and source code of an H.264 video codec called OpenH264 under
2184-496: The latest quad-core general-purpose x86 CPUs have sufficient computation power to perform real-time SD and HD encoding. Compression efficiency depends on video algorithmic implementations, not on whether hardware or software implementation is used. Therefore, the difference between hardware and software based implementation is more on power-efficiency, flexibility and cost. To improve the power efficiency and reduce hardware form-factor, special-purpose hardware may be employed, either for
2240-405: The most commonly used profile is the High Profile. Profiles for non-scalable 2D video applications include the following: For camcorders, editing, and professional applications, the standard contains four additional Intra-frame -only profiles, which are defined as simple subsets of other corresponding profiles. These are mostly for professional (e.g., camera and editing system) applications: As
2296-399: The native recording format. AVCHD is a high-definition recording format designed by Sony and Panasonic that uses H.264 (conforming to H.264 while adding additional application-specific features and constraints). AVC-Intra is an intraframe -only compression format, developed by Panasonic . XAVC is a recording format designed by Sony that uses level 5.2 of H.264/MPEG-4 AVC, which
JVT - Misplaced Pages Continue
2352-560: The presence of a sub-bitstream with lower spatial resolution/quality than the main bitstream), the NAL ( Network Abstraction Layer ) is removed from the bitstream when deriving the sub-bitstream. In this case, inter-layer prediction (i.e., the prediction of the higher spatial resolution/quality signal from the data of the lower spatial resolution/quality signal) is typically used for efficient coding. The Scalable Video Coding extensions were completed in November 2007. The next major feature added to
2408-537: The prior FRExt profiles (the High 4:4:4 profile) that industry feedback indicated should have been designed differently. The next major feature added to the standard was Scalable Video Coding (SVC). Specified in Annex G of H.264/AVC, SVC allows the construction of bitstreams that contain layers of sub-bitstreams that also conform to the standard, including one such bitstream known as the "base layer" that can be decoded by
2464-699: The same CPU. The 2nd generation Intel " Sandy Bridge " Core i3/i5/i7 processors introduced at the January 2011 CES ( Consumer Electronics Show ) offer an on-chip hardware full HD H.264 encoder, known as Intel Quick Sync Video . A hardware H.264 encoder can be an ASIC or an FPGA . ITU-T Study Group 16 The ITU-T Study Group 16 ( SG16 ) is a statutory group of the ITU Telecommunication Standardization Sector (ITU-T) concerned with multimedia coding, systems and applications, such as video coding standards. It
2520-410: The same quality at half of the bit rate or less, especially on high bit rate and high resolution video content. Like other ISO/IEC MPEG video standards, H.264/AVC has a reference software implementation that can be freely downloaded. Its main purpose is to give examples of H.264/AVC features, rather than being a useful application per se . Some reference hardware design work has also been conducted in
2576-519: The standard is not yet used for fixed ATSC broadcasts within the United States. It has also been approved for use with the more recent ATSC-M/H (Mobile/Handheld) standard, using the AVC and SVC portions of H.264. The closed-circuit-television and video-surveillance markets have included the technology in many products. Many common DSLRs use H.264 video wrapped in QuickTime MOV containers as
2632-410: The standard is part 10 of ISO/IEC 14496, which is the suite of standards known as MPEG-4. The standard was developed jointly in a partnership of VCEG and MPEG, after earlier development work in the ITU-T as a VCEG project called H.26L. It is thus common to refer to the standard with names such as H.264/AVC, AVC/H.264, H.264/MPEG-4 AVC, or MPEG-4/H.264 AVC, to emphasize the common heritage. Occasionally, it
2688-400: The standard to be applied to a wide variety of applications on a wide variety of networks and systems, including low and high bit rates, low and high resolution video, broadcast , DVD storage, RTP / IP packet networks, and ITU-T multimedia telephony systems. The H.264 standard can be viewed as a "family of standards" composed of a number of different profiles, although its "High profile"
2744-874: The standard was Multiview Video Coding (MVC). Specified in Annex H of H.264/AVC, MVC enables the construction of bitstreams that represent more than one view of a video scene. An important example of this functionality is stereoscopic 3D video coding. Two profiles were developed in the MVC work: Multiview High profile supports an arbitrary number of views, and Stereo High profile is designed specifically for two-view stereoscopic video. The Multiview Video Coding extensions were completed in November 2009. Additional extensions were later developed that included 3D video coding with joint coding of depth maps and texture (termed 3D-AVC), multi-resolution frame-compatible (MFC) stereoscopic and 3D-MFC coding, various additional combinations of features, and higher frame sizes and frame rates. Versions of
2800-433: The standard. For example, for an HDTV picture that is 1,920 samples wide ( PicWidthInMbs = 120 ) and 1,080 samples high ( FrameHeightInMbs = 68 ), a Level 4 decoder has a maximum DPB storage capacity of floor(32768/(120*68)) = 4 frames (or 8 fields). Thus, the value 4 is shown in parentheses in the table above in the right column of the row for Level 4 with the frame size 1920×1080. The current picture being decoded
2856-440: The term is used in the standard, a " level " is a specified set of constraints that indicate a degree of required decoder performance for a profile. For example, a level of support within a profile specifies the maximum picture resolution, frame rate, and bit rate that a decoder may use. A decoder that conforms to a given level must be able to decode all bitstreams encoded for that level and all lower levels. The maximum bit rate for
SECTION 50
#17327796308332912-528: The title JVT . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=JVT&oldid=1178540277 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Advanced Video Coding Advanced Video Coding ( AVC ), also referred to as H.264 or MPEG-4 Part 10 ,
2968-409: The values of samples in other pictures. This allows the encoder to make efficient decisions on the best way to encode a given picture. At the decoder, such pictures are stored in a virtual decoded picture buffer (DPB). The maximum capacity of the DPB, in units of frames (or pairs of fields), as shown in parentheses in the right column of the table above, can be computed as follows: Where MaxDpbMbs
3024-688: Was adopted in August 1999. In 2000, Thomas Wiegand ( Heinrich Hertz Institute , Germany) became VCEG co-chair. In December 2001, VCEG and the Moving Picture Experts Group ( MPEG – ISO/IEC JTC 1/SC 29 /WG 11) formed a Joint Video Team (JVT), with the charter to finalize the video coding standard. Formal approval of the specification came in March 2003. The JVT was (is) chaired by Gary Sullivan , Thomas Wiegand , and Ajay Luthra ( Motorola , U.S.: later Arris , U.S.). In July 2004,
3080-442: Was not supported by the 2013 Cisco software release, Apple updated its Video Toolbox Framework with iOS 8 (released in September 2014) to provide direct access to hardware-based H.264/AVC video encoding and decoding. Because H.264 encoding and decoding requires significant computing power in specific types of arithmetic operations, software implementations that run on general-purpose CPUs are typically less power efficient. However,
3136-472: Was notably absent from this list, because it doesn't allow applications to fetch and install binary modules from the Internet. Also on October 30, 2013, Brendan Eich from Mozilla wrote that it would use Cisco's binaries in future versions of Firefox to add support for H.264 to Firefox where platform codecs are not available. Cisco published the source code to OpenH264 on December 9, 2013. Although iOS
#832167