Misplaced Pages

Jinping Mountains

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Jinping Mountains or Jinping Shan ( Chinese : 锦屏山 ; pinyin : Jǐnpíngshān ) are a short north-south mountain range in southwestern Sichuan Province , China . The Jinping are located within Yanyuan and Mianning Counties, both in Liangshan Prefecture . This mountain range is notable for the Jinping Bend, where the Yalong River wraps around the entire Jinping range. The Jinping Mountains, sometimes considered a large mountain massif, are approximately 80 km (50 mi) long and only 15 km (9.3 mi) wide.

#761238

50-636: The Jinping Mountains are part of a complicated orogenic complex from the Indian subcontinent 's collision with the Eurasian Plate and the resistance of the Yangtze Plate to the east. The mountains are primarily composed of Triassic marble . The Jinping Mountains are rugged and rise almost 3,000 m (9,800 ft) above the Yalong River on either side. The Jinping are located in

100-455: A crater in Arizona, now known as Meteor Crater but then as Coon Butte. For several reasons, and against his intuition, he concluded it was the result of a volcanic steam explosion rather than an impact of a meteorite . Gilbert based his conclusion on the beliefs that the volume of an impact crater including the meteorite should be more than the ejected material on the rim and that, if it was

150-506: A delamination of the orogenic root beneath them. Mount Rundle on the Trans-Canada Highway between Banff and Canmore provides a classic example of a mountain cut in dipping-layered rocks. Millions of years ago a collision caused an orogeny, forcing horizontal layers of an ancient ocean crust to be thrust up at an angle of 50–60°. That left Rundle with one sweeping, tree-lined smooth face, and one sharp, steep face where

200-695: A little further downstream, diverts the water of the Yalong River nearly 17 km (11 mi) under the Jinping Mountains to the east side of the bend. More than 13.2 million m of earth was excavated for the construction of Jinping-II's power station below the mountains. A total of seven tunnels were bored through the Jinping Mountains at depths up to 2,525 m (8,284 ft) beneath the mountain peaks. This included four water diversion tunnels, two auxiliary tunnels, and one construction drainage tunnel. The China Jinping Underground Laboratory

250-589: A major continent-continent collision, is called an accretionary orogen. The North American Cordillera and the Lachlan Orogen of southeast Australia are examples of accretionary orogens. The orogeny may culminate with continental crust from the opposite side of the subducting oceanic plate arriving at the subduction zone. This ends subduction and transforms the accretional orogen into a Himalayan -type collisional orogen. The collisional orogeny may produce extremely high mountains, as has been taking place in

300-462: A meteorite, iron should create magnetic anomalies. Gilbert's calculations showed that the crater's volume and the debris on the rim were roughly equal, and that there were no magnetic anomalies. He argued that the meteorite fragments found on the rim were just "coincidence". In 1892, Gilbert delivered his paper "The Moon's Face; A Study of the Origin of Its Features" as his retiring President's lecture to

350-412: A noncollisional orogenic belt, and such belts are sometimes called Andean-type orogens . As subduction continues, island arcs , continental fragments , and oceanic material may gradually accrete onto the continental margin. This is one of the main mechanisms by which continents have grown. An orogen built of crustal fragments ( terranes ) accreted over a long period of time, without any indication of

400-442: A pronounced linear structure resulting in terranes or blocks of deformed rocks, separated generally by suture zones or dipping thrust faults . These thrust faults carry relatively thin slices of rock (which are called nappes or thrust sheets, and differ from tectonic plates ) from the core of the shortening orogen out toward the margins, and are intimately associated with folds and the development of metamorphism . Before

450-600: A study of the former ancient Lake Bonneville in 1890 (the lake existed during the Pleistocene ), of which the Great Salt Lake is a remnant. He named it after the army captain Benjamin Bonneville , who had explored the region. The type of river delta that Gilbert described at this location has since become known to geomorphologists as a Gilbert delta . In 1891, Gilbert examined the origins of

500-426: Is considered one of the giants of the subdiscipline of geomorphology , having contributed to the understanding of landscape evolution, erosion , river incision, and sedimentation . He was a planetary science pioneer, correctly identifying lunar craters as caused by impacts, and carrying out early impact-cratering experiments. He coined the term sculpture for a pattern of radial ridges surrounding Mare Imbrium on

550-446: Is initiated along one or both of the continental margins of the ocean basin, producing a volcanic arc and possibly an Andean-type orogen along that continental margin. This produces deformation of the continental margins and possibly crustal thickening and mountain building. Mountain formation in orogens is largely a result of crustal thickening. The compressive forces produced by plate convergence result in pervasive deformation of

SECTION 10

#1732775809762

600-458: Is one that occurs during an orogeny. The word orogeny comes from Ancient Greek ὄρος ( óros )  'mountain' and γένεσις ( génesis )  'creation, origin'. Although it was used before him, the American geologist G. K. Gilbert used the term in 1890 to mean the process of mountain-building, as distinguished from epeirogeny . Orogeny takes place on

650-422: Is still in use today, though commonly investigated by geochronology using radiometric dating. Based on available observations from the metamorphic differences in orogenic belts of Europe and North America, H. J. Zwart (1967) proposed three types of orogens in relationship to tectonic setting and style: Cordillerotype, Alpinotype, and Hercynotype. His proposal was revised by W. S. Pitcher in 1979 in terms of

700-491: Is still taking place, are characterized by frequent volcanic activity and earthquakes . Older orogenic belts are typically deeply eroded to expose displaced and deformed strata . These are often highly metamorphosed and include vast bodies of intrusive igneous rock called batholiths . Subduction zones consume oceanic crust , thicken lithosphere, and produce earthquakes and volcanoes. Not all subduction zones produce orogenic belts; mountain building takes place only when

750-480: Is taking place today in the Southern Alps of New Zealand). Orogens have a characteristic structure, though this shows considerable variation. A foreland basin forms ahead of the orogen due mainly to loading and resulting flexure of the lithosphere by the developing mountain belt. A typical foreland basin is subdivided into a wedge-top basin above the active orogenic wedge, the foredeep immediately beyond

800-453: The Alpine type orogenic belt , typified by a flysch and molasse geometry to the sediments; ophiolite sequences, tholeiitic basalts, and a nappe style fold structure. In terms of recognising orogeny as an event , Leopold von Buch (1855) recognised that orogenies could be placed in time by bracketing between the youngest deformed rock and the oldest undeformed rock, a principle which

850-640: The Himalayas for the last 65 million years. The processes of orogeny can take tens of millions of years and build mountains from what were once sedimentary basins . Activity along an orogenic belt can be extremely long-lived. For example, much of the basement underlying the United States belongs to the Transcontinental Proterozoic Provinces, which accreted to Laurentia (the ancient heart of North America) over

900-609: The Rocky Mountain Region in 1874, becoming Powell's primary assistant, and stayed with the survey until 1879. During this time he published an important monograph, The Geology of the Henry Mountains (1877). After the U.S. Geological Survey was created in 1879, he was appointed to the position of Senior Geologist and worked for the USGS until his death (including a term as acting director). Gilbert published

950-691: The San Andreas Fault , restraining bends result in regions of localized crustal shortening and mountain building without a plate-margin-wide orogeny. Hotspot volcanism results in the formation of isolated mountains and mountain chains that look as if they are not necessarily on present tectonic-plate boundaries, but they are essentially the product of plate tectonism. Likewise, uplift and erosion related to epeirogenesis (large-scale vertical motions of portions of continents without much associated folding, metamorphism, or deformation) can create local topographic highs. Eventually, seafloor spreading in

1000-498: The convergent margins of continents. The convergence may take the form of subduction (where a continent rides forcefully over an oceanic plate to form a noncollisional orogeny) or continental collision (convergence of two or more continents to form a collisional orogeny). Orogeny typically produces orogenic belts or orogens , which are elongated regions of deformation bordering continental cratons (the stable interiors of continents). Young orogenic belts, in which subduction

1050-647: The late Devonian (about 380 million years ago) with the Antler orogeny and continuing with the Sonoma orogeny and Sevier orogeny and culminating with the Laramide orogeny . The Laramide orogeny alone lasted 40 million years, from 75 million to 35 million years ago. Orogens show a great range of characteristics, but they may be broadly divided into collisional orogens and noncollisional orogens (Andean-type orogens). Collisional orogens can be further divided by whether

SECTION 20

#1732775809762

1100-568: The Jinping Mountains rises to 4,420 m (14,500 ft) above sea level and has a topographic prominence of 1,630 m (5,350 ft). This peak is also known in Chinese as Jinping Shan (锦屏山) as the word for mountain ( 山 ) can refer to either a mountain or mountain range. After flowing southeasterly, the Yalong River diverts 80 km (50 mi) north along the west side of the Jinping before turning 180 degrees and flowing south along

1150-606: The Philosophical Society of Washington, and it was published in the Society's bulletin. He publicized these conclusions in a series of lectures in 1895. Later investigations revealed that it was in fact a meteor crater, but that interpretation was not well established until the mid-20th century. As part of his interest in crater origins, Gilbert also studied the moon's craters and concluded they were caused by impact events rather than volcanoes, although he wondered why

1200-659: The abbreviated name G. K. Gilbert in academic literature, was an American geologist . Gilbert was born in Rochester, New York , and graduated from the University of Rochester . During the American Civil War , he was twice listed for the draft, but his name was drawn neither time. In 1871, he joined George M. Wheeler 's geographical survey as its first geologist. Gilbert joined the Powell Survey of

1250-497: The acceptance of plate tectonics , geologists had found evidence within many orogens of repeated cycles of deposition, deformation, crustal thickening and mountain building, and crustal thinning to form new depositional basins. These were named orogenic cycles , and various theories were proposed to explain them. Canadian geologist Tuzo Wilson first put forward a plate tectonic interpretation of orogenic cycles, now known as Wilson cycles. Wilson proposed that orogenic cycles represented

1300-414: The active front, a forebulge high of flexural origin and a back-bulge area beyond, although not all of these are present in all foreland-basin systems. The basin migrates with the orogenic front and early deposited foreland basin sediments become progressively involved in folding and thrusting. Sediments deposited in the foreland basin are mainly derived from the erosion of the actively uplifting rocks of

1350-635: The collision is with a second continent or a continental fragment or island arc. Repeated collisions of the later type, with no evidence of collision with a major continent or closure of an ocean basin, result in an accretionary orogen. Examples of orogens arising from collision of an island arc with a continent include Taiwan and the collision of Australia with the Banda arc. Orogens arising from continent-continent collisions can be divided into those involving ocean closure (Himalayan-type orogens) and those involving glancing collisions with no ocean basin closure (as

1400-789: The complicated grouping of mountains called the Hengduan Mountains that transition between the Tibetan Plateau in the northwest to the Yungui Plateau in the southeast. The Jinping are sometimes classified as a southern subrange of the Shaluli Mountains , a component range of the Hengduan. The Yalong River separates the Jinping Mountains from the Daxue Mountains to north. The tallest peak of

1450-596: The course of 200 million years in the Paleoproterozoic . The Yavapai and Mazatzal orogenies were peaks of orogenic activity during this time. These were part of an extended period of orogenic activity that included the Picuris orogeny and culminated in the Grenville orogeny , lasting at least 600 million years. A similar sequence of orogenies has taken place on the west coast of North America, beginning in

1500-543: The craters were round and not oval as expected for an oblique impact. The interpretation of lunar craters as of impact origin was also debated until the mid-20th century. Gilbert joined the Harriman Alaska Expedition in 1899. Two weeks after the 1906 San Francisco earthquake , he took a series of photographs documenting the damage along the San Andreas fault from Inverness to Bolinas. Gilbert

1550-427: The crust of the continental margin ( thrust tectonics ). This takes the form of folding of the ductile deeper crust and thrust faulting in the upper brittle crust. Crustal thickening raises mountains through the principle of isostasy . Isostacy is the balance of the downward gravitational force upon an upthrust mountain range (composed of light, continental crust material) and the buoyant upward forces exerted by

Jinping Mountains - Misplaced Pages Continue

1600-575: The dense underlying mantle . Portions of orogens can also experience uplift as a result of delamination of the orogenic lithosphere , in which an unstable portion of cold lithospheric root drips down into the asthenospheric mantle, decreasing the density of the lithosphere and causing buoyant uplift. An example is the Sierra Nevada in California. This range of fault-block mountains experienced renewed uplift and abundant magmatism after

1650-754: The development of geologic concepts during the 19th century, the presence of marine fossils in mountains was explained in Christian contexts as a result of the Biblical Deluge . This was an extension of Neoplatonic thought, which influenced early Christian writers . The 13th-century Dominican scholar Albert the Great posited that, as erosion was known to occur, there must be some process whereby new mountains and other land-forms were thrust up, or else there would eventually be no land; he suggested that marine fossils in mountainsides must once have been at

1700-454: The east side of the mountains. This forms the dramatic Jinping Bend, known for its deep gorge and inhospitable terrain. The Jinping's vertical relief and the Yalong River's 300 m (980 ft) elevation drop from one side to the other make it an optimal source of hydroelectric energy . The Jinping-I Dam , on the west side of the Jinping Mountains, is the tallest dam in the world at 305 m (1,001 ft) high. The Jinping-II Dam ,

1750-520: The edge of the uplifted layers are exposed. Although mountain building mostly takes place in orogens, a number of secondary mechanisms are capable of producing substantial mountain ranges. Areas that are rifting apart, such as mid-ocean ridges and the East African Rift , have mountains due to thermal buoyancy related to the hot mantle underneath them; this thermal buoyancy is known as dynamic topography . In strike-slip orogens, such as

1800-409: The final form of the majority of old orogenic belts is a long arcuate strip of crystalline metamorphic rocks sequentially below younger sediments which are thrust atop them and which dip away from the orogenic core. An orogen may be almost completely eroded away, and only recognizable by studying (old) rocks that bear traces of orogenesis. Orogens are usually long, thin, arcuate tracts of rock that have

1850-631: The margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges . This involves a series of geological processes collectively called orogenesis . These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism . Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere ( crust and uppermost mantle ). A synorogenic (or synkinematic ) process or event

1900-764: The moon, and correctly interpreted them in 1892 as ejecta from a giant impact. Gilbert was one of the more influential early American geologists. He won the Wollaston Medal from the Geological Society of London in 1900. He was elected as a member to the American Philosophical Society in 1902. He was awarded the Charles P. Daly Medal by the American Geographical Society in 1910. Gilbert

1950-543: The mountain range, although some sediments derive from the foreland. The fill of many such basins shows a change in time from deepwater marine ( flysch -style) through shallow water to continental ( molasse -style) sediments. While active orogens are found on the margins of present-day continents, older inactive orogenies, such as the Algoman , Penokean and Antler , are represented by deformed and metamorphosed rocks with sedimentary basins further inland. Long before

2000-416: The ocean basin comes to a halt, and continued subduction begins to close the ocean basin. The closure of the ocean basin ends with a continental collision and the associated Himalayan-type orogen. Erosion represents the final phase of the orogenic cycle. Erosion of overlying strata in orogenic belts, and isostatic adjustment to the removal of this overlying mass of rock, can bring deeply buried strata to

2050-416: The periodic opening and closing of an ocean basin, with each stage of the process leaving its characteristic record on the rocks of the orogen. The Wilson cycle begins when previously stable continental crust comes under tension from a shift in mantle convection . Continental rifting takes place, which thins the crust and creates basins in which sediments accumulate. As the basins deepen, the ocean invades

Jinping Mountains - Misplaced Pages Continue

2100-547: The relationship to granite occurrences. Cawood et al. (2009) categorized orogenic belts into three types: accretionary, collisional, and intracratonic. Both accretionary and collisional orogens developed in converging plate margins. In contrast, Hercynotype orogens generally show similar features to intracratonic, intracontinental, extensional, and ultrahot orogens, all of which developed in continental detachment systems at converged plate margins. Grove Karl Gilbert Grove Karl Gilbert (May 6, 1843 – May 1, 1918), known by

2150-441: The rift zone, and as the continental crust rifts completely apart, shallow marine sedimentation gives way to deep marine sedimentation on the thinned marginal crust of the two continents. As the two continents rift apart, seafloor spreading commences along the axis of a new ocean basin. Deep marine sediments continue to accumulate along the thinned continental margins, which are now passive margins . At some point, subduction

2200-491: The sea-floor. Orogeny was used by Amanz Gressly (1840) and Jules Thurmann (1854) as orogenic in terms of the creation of mountain elevations, as the term mountain building was still used to describe the processes. Elie de Beaumont (1852) used the evocative "Jaws of a Vise" theory to explain orogeny, but was more concerned with the height rather than the implicit structures created by and contained in orogenic belts. His theory essentially held that mountains were created by

2250-414: The squeezing of certain rocks. Eduard Suess (1875) recognised the importance of horizontal movement of rocks. The concept of a precursor geosyncline or initial downward warping of the solid earth (Hall, 1859) prompted James Dwight Dana (1873) to include the concept of compression in the theories surrounding mountain-building. With hindsight, we can discount Dana's conjecture that this contraction

2300-423: The subduction produces compression in the overriding plate. Whether subduction produces compression depends on such factors as the rate of plate convergence and the degree of coupling between the two plates, while the degree of coupling may in turn rely on such factors as the angle of subduction and rate of sedimentation in the oceanic trench associated with the subduction zone. The Andes Mountains are an example of

2350-460: The surface. The erosional process is called unroofing . Erosion inevitably removes much of the mountains, exposing the core or mountain roots ( metamorphic rocks brought to the surface from a depth of several kilometres). Isostatic movements may help such unroofing by balancing out the buoyancy of the evolving orogen. Scholars debate about the extent to which erosion modifies the patterns of tectonic deformation (see erosion and tectonics ). Thus,

2400-435: Was developed along the southernmost Jinping-II tunnel through the Jinping Mountains. This institution specializes in the research of dark matter as the location deep below the surface of the earth shields the laboratory from interfering cosmic rays. Orogenic Orogeny ( / ɒ ˈ r ɒ dʒ ə n i / ) is a mountain - building process that takes place at a convergent plate margin when plate motion compresses

2450-451: Was due to the cooling of the Earth (aka the cooling Earth theory). The cooling Earth theory was the chief paradigm for most geologists until the 1960s. It was, in the context of orogeny, fiercely contested by proponents of vertical movements in the crust, or convection within the asthenosphere or mantle . Gustav Steinmann (1906) recognised different classes of orogenic belts, including

2500-484: Was well-esteemed by all American geologists during his lifetime, and he is the only geologist to ever be elected twice as President of the Geological Society of America (1892 and 1909). Because of Gilbert's prescient insights into planetary geology, the Geological Society of America created the G.K. Gilbert Award for planetary geology in 1983. Gilbert's wide-ranging scientific ideas were so profound that

#761238